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Meshless Local Petrov-Galerkin Method with Unity Test Function for
Non-Isothermal Fluid Flow

A. Arefmanesh1, M. Najafi1 and H. Abdi1

Abstract: The meshless local Petrov-Galerkin
(MLPG) method with unity as the weighting func-
tion has been applied to the solution of the Navier-
Stokes and energy equations. The Navier-Stokes
equations in terms of the stream function and vor-
ticity formulation together with the energy equa-
tion are solved for different test cases. This
present study considers the implementation of
the method on a non-isothermal lid-driven cavity
flow, the lid-driven cavity flow with an inlet and
outlet, and also on the non-isothermal flow over
an obstacle. Nonuniform point distribution is em-
ployed for all the test cases for the numerical sim-
ulations. The flow streamlines for each test case
is depicted. The L2-norm of the error as a func-
tion of the size of the control volumes is presented
for moderate Reynolds numbers and the rate of
convergence of the method is established. Close
agreements of the obtained results with those of
the other numerical techniques show that the pro-
posed method is applicable in solving a variety of
non-isothermal fluid flow problems.

Keyword: meshless, control volume, Petrov-
Galerkin, stream function, vorticity

Nomenclature

h distance between two consecutive points
L domain length
N total number of points
P pressure
Pe Peclet number
q heat flux
R radius
Re Reynolds number
T temperature

1 Islamic Azad University, Science & Research Branch,
Tehran, Iran

U lid velocity
V velocity
w weighting function

Greek Symbols

α thermal diffusivity
φ interpolation function
Γ boundary
Γg, Γh boundary segments
ν kinematic viscosity
ρ density
Ω domain
ω vorticity
ψ stream function

Subscripts

i point or control volume number
BW bottom wall

TW top wall
x x-derivative

Superscripts

∗ physical variable
− dimensionless variable, balancing coefficient
∧ unit vector
+ local variable
→ vector

1 Introduction

Various meshless schemes have been introduced
in recent years in order to circumvent the dif-
ficulties associated with mesh generation in the
well-established numerical techniques, such as
the finite element and the finite volume methods
[Atluri and Shen (2002); Atluri (2004)]. Among
the earliest so-called meshless techniques is “the
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diffuse element method” proposed by Nayroles,
Touzot and Villon (1992) in which a collection of
nodes and a boundary description are sufficient
to obtain the Galerkin equations. However, in
this method, an auxiliary grid is still required to
evaluate the integrals which result from applying
the Galerkin method to the differential equations.
Subsequently, via introducing a regular cell struc-
ture as the auxiliary grid, Belytschko, Krongauz,
Organ, Flemming and Krystel (1996) and Lu, Be-
lytschko and Gu (1994) transformed the above
technique to the so-called element-free Galerkin
method.

In recent years, two other meshless technique –
the meshless local boundary equation method,
and the meshless local Petrov-Galerkin method
(MLPG)– have been proposed by Zhu, Zhang and
Atluri (1998) and Atluri and Zhu (2000), respec-
tively. In these schemes, a local weak form of the
differential equation over a local subdomain to-
gether with the shape function from moving least-
squares (MLS) interpolations are used to obtain
the discretized equations. A recent comprehen-
sive review of the MLPG method with emphasis
on the solid mechanics applications can be found
in Atluri’s book (2004).

Among other developments in the area of mesh-
less techniques, one can mention the method of
spheres proposed by De and Bathe (2001), in
which subdomains of spherical shapes are gen-
erated at every point in the domain. Subse-
quently, the dependant variables are interpolated
within the spheres and the discretized equations
are obtained by substituting the interpolations in
the Galerkin weak form of the differential equa-
tion for the subdomains. Other truly meshless
scheme that have been recently proposed and ap-
plied specifically to elasticity problems are the
local point interpolation method by Gu and Liu
(2001), the regular hybrid boundary node method
by Zhang and Yao (2004), and a modified mesh-
less local Petrov-Galerkin method to elasticity
problems in computer modeling and simulation
by Hu, Long, Liu and Li (2006). In this work [Hu,
Long, Liu and Li (2006)], the MLPG method is
implemented using the moving least squares ap-
proximation. Heaviside test function is chosen to

overcome the computational costs, and essential
boundary conditions are imposed by using a di-
rect interpolation method. A comparison study of
the efficiency and accuracy of a variety of MLPG
methods is made in a study by Atluri and Shen
(2002). In this study, different test functions re-
sulted different MLPG methods. In order to de-
velop a fast and robust meshless method, ways to
avoid the use of a domain integral in the weak-
form, by choosing an appropriate test function
were explored. Convergence studies of the nu-
merical examples showed that all of the MLPG
methods possessed excellent rates of convergence
for both the unknown variables and their deriva-
tives. The analysis of computational costs showed
that the proposed MLPG method was less expen-
sive in computational costs as well as in human-
labor costs compared to finite element and bound-
ary element methods.

Applications of the MLPG method on solid me-
chanics area are substantial. In a work by
Vavourakis and Polyzos (2007), the use of deriva-
tives of the MLS shape functions were avoided
through treating displacements and stresses as in-
dependent variables through the corresponding
local integral equations and considering nodal
points located only internally and externally and
not on the global boundary of the analyzed elastic
structure. In a study by Han and Atluri (2004),
three different MLPG methods (using different
test functions) were developed for solving three-
dimensional elastostatic problems. A novel def-
inition of the local three-dimensional subdomain
was presented in order to perform the numerical
integration accurately. Atluri, Han and Rajen-
dran, (2004) introduced a meshless finite volume
method by taking the Heaviside function as the
test function for solving elastostatic problems. A
new MLPG method called singular/hypersingular
MLPG method was developed by Sellountos,
Vavourakis and Polyzos (2005) based on local
boundary integral equation (LBIE) for solving
elastostatic problems. In this work strong sin-
gular and hypersingular integrals were evaluated
directly and with high accuracy by means of ad-
vanced integration techniques. Comparison stud-
ies on the accuracy provided by five different elas-
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tostatic MLPG type formulations, based on LBIE,
were made by Vavourakis, Sellountos and Poly-
zos, (2006). Useful conclusions on the accuracy
and the stability of an MLPG (LBIE) method were
also addressed. Sladek J., Sladek V. and Atluri
(2004) proposed an MLPG method for static and
elastodynamic problems in a homogenous and
anisotropic medium using Heaviside step function
as the test function in the local weak form. The
final form of local integral equations has a pure
contour character only in elastostatics. In elas-
todynamics an additional domain integral is in-
volved due to inertia terms. A non-linear formu-
lation of the MLPG finite volume mixed method
was developed for the large deformation analy-
sis of static and dynamic problems of large de-
formations and rotations of a hyper-elastic can-
tilever beam, and impact of an elasto-plastic solid
rod on a rigid surface [Han, Rajendran and Atluri
(2005)]. The work showed that the mixed MLPG
method was relatively more efficient than the
FEM for the examples considered. In a work by
Atluri, Liu and Han (2006), an MLPG mixed col-
location method was proposed for solving elastic-
ity problems. In the MLPG approach, the mixed
scheme was applied to interpolate the displace-
ments and stresses independently. The numerical
examples showed that the proposed MLPG mixed
collocation method possessed a stable conver-
gence rate, and was more efficient than the other
MLPG implementations, including the MLPG fi-
nite volume method. A mixed finite difference
MLPG method was proposed for solving a num-
ber of solid mechanics problems [Atluri, Liu and
Han (2006)]. A mixed interpolation scheme was
also adopted in the implementation: the displace-
ments, displacement gradients, and stresses were
interpolated independently using identical MLS
shape functions. Numerical examples showed
that the proposed MLPG mixed finite difference
method was accurate and efficient.

In a study by Sladek J., Sladek V., Wen and
Aliabadi (2006), an MLPG method was applied
to solve bending problems of shear deformable
shallow shells described by the Reissner theory.
For transient elastodynamic case the Laplace-
transform was used to eliminate the time de-

pendence of the field variables. The meshless
approximation based on the MLS method was
employed for the implementation. Unknown
Laplace-transformed quantities were computed
from the local boundary integral equations. The
time-dependant values were obtained by the Ste-
hfest’s inversion technique. A meshless computa-
tional method based on the local Petrov-Galerkin
approach for the analysis of shell structures was
presented by Jarak, Sori’c and Hoster (2007). A
concept of a three dimensional solid allowing the
use of completely 3-D constitutive models was
applied. Discretization was carried out by us-
ing both a MLS approximation and polynomial
functions. The numerical efficiency of the de-
rived concept was demonstrated by numerical ex-
amples. In a work by Han and Atluri (2004),
an MLPG method was developed for solving 3-
D elastodynamic problems. The numerical tech-
nique in this work imposes a correction to all
accelerations, to enforce the kinematic boundary
conditions in the MLS approximation, while us-
ing an explicit time-integration algorithm. An
efficient meshless formulation based on the lo-
cal Petrov-Galerkin approach for the analysis of
shear deformation over the thickness was used for
the in-plane displacements, while the hierarchi-
cal quadratic interpolation was adopted by Sori’c,
Li, Jarak and Atluri, (2004) for the transver-
sal displacement in order to avoid the thickness
locking effect. The implementation of a three-
dimensional dynamic code, for contact, impact,
and penetration mechanics based on the MLPG
was presented by Han, Liu, Rajendran and Atluri
(2006). The computational times for the simula-
tions made were also recorded, and were com-
pared with those of the popular finite element
code (Dyna3D), to demonstrate the efficiency of
implemented approach. In a work by Sladek
J., Sladek V., Zhang, Solek and Starek (2007),
a meshless method based on the local Petrov-
Galerkin approach was proposed for crack analy-
sis in two-dimensional and three-dimensional ax-
isymmetric piezoelectric solids with continuously
varying material properties. The accuracy of the
proposed method for computing the stress inten-
sity factor (SIF) and electrical displacement inten-
sity factor (EDIF) were discussed by comparison
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with available analytical or numerical solutions.
A meshless method based on the local Petrov-
Galerkin approach was proposed for the solution
of boundary value problems for coupled thermo-
electro-mechanical fields [Sladek J., Sladek V.,
Zhang and Solek (2007)]. Transient dynamic gov-
erning equations were considered and to eliminate
the time-dependence, the Laplace-transform tech-
nique was applied. Two-dimensional analyzed
domain was subdivided into small circular sub-
domains surrounding nodes randomly spread over
the whole domain. A unit step function was used
as the test function. The moving MLS method
was adopted for the approximation of the phys-
ical quantities. The Stehfest’s inversion method
was applied to obtain the final time-dependent so-
lutions. An MLPG method for studying the dif-
fusion of a magnetic field within a non-magnetic
conducting medium with non-homogeneous and
anisotropic electrical resistivity was proposed by
Johnson and Owen (2007). The method has the
potential to be combined with other mesh-free
methods such as smoothed particle hydrodynam-
ics (SPH) to solve problems in resistive magneto-
hydrodynamics. It must be emphasized here that
a good number of other studies on different as-
pects, and applications of MLPG are made by the
authors mentioned in this work, and also by some
other authors such as S. Shen, J. Krivacek, Ch.
Zhang, U. Andreaus, L. Gao, K. Liu, Y. Liu, R.
Pecher, W. Yuan, P. Chen, and many others.

There are also some recent developments in the
applications of meshless techniques to fluid flow
and heat transfer problems. Lin and Atluri (2000,
2001), in two different works, used the MLPG
method to solve convection-diffusion problems
as well as the Navier-Stokes (N-S) equations.
They introduced different upwinding schemes and
modified the local weak form so as to overcome
the so-called Babuska-Brezzi conditions while
solving the N-S equations. The MLPG method
has been implemented for solving steady as well
as transient heat conduction problems in a con-
tinuously non-homogenous anisotropic medium
[Sladek J., Sladek V. and Atluri (2004)]. In this
work, Heaviside step function together with mov-
ing least-squares method has been employed to

obtain the discretized equations. Wu, Shen and
Tao (2007) have applied the MLPG collocation
method to two-dimensional heat conduction prob-
lems in irregular domain. The results show that
the method is in good agreement with standard
existing packages, and it can accurately describe
the boundaries of irregular domain. A thermo-
mechanical analysis of functionally graded com-
posites under laser heating has been conducted
using the MLPG method. Numerical results are
presented for the thermomechanical responses in
both the steady and transient states [Ching and
Chen (2006)]. Recently the MLPG method based
on Rankine source solution has been implemented
for simulating nonlinear water waves generated
by wavemakers [Ma (2005)]. In this study the
solution for Rankine source was taken as the test
function and the local weak form was expressed
in terms of pressure rather than pressure gradient.

Arefmanesh, Najafi and Abdi (2005) have applied
a variation of the MLPG method with unity as
the test function to the convection-diffusion, and
potential flow equations. The results show that
the method combined with a proper upwinding
scheme is very promising for obtaining accurate
solutions to problems in the field of thermofluids.
Also in a very recent work Liu (2006) has used an
MLPG approach based on discrete-ordinate equa-
tions to solve a radiation heat transfer problem in
multi-dimensional absorbing-emitting-scattering
semitransparent graded index media. His results
show that the MLPG method gives good accuracy
in solving radiation heat transfer problems.

In this present study, the meshless local Petrov-
Galerkin method with unity as the test function is
applied to the solutions of the non-isothermal vis-
cous flow equations. A variation of the streamline
upwind Petrov-Galerkin (SUPG) technique based
on adding optimal balancing diffusion along the
streamlines is employed to obtain a stable solu-
tion for high Peclet, and moderate Reynolds num-
bers. To establish the rate of convergence of the
method, wherever possible, the L2-norm of the er-
ror is presented.
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2 Numerical model

A bounded region Ω with the boundary Γ = Γg ∪
Γh in the two-dimensional space (Fig. 1) is con-
sidered. For the region, the steady incompress-
ible Navier-Stokes equations written in terms of
the stream function and vorticity, and the energy
equation in a dimensionless form are

�∇.
(
�Vω

)
=

1
Re

∇2ω (1)

∇2ψ = −ω (2)

�∇.
(
�VT

)
=

1
Pe

∇2T (3)

where,�V is the dimensionless velocity vector with
components u= u∗/U and v= v∗/U in the x and
y directions, respectively. Also, ω = ω∗L/U
is the dimensionless vorticity, Re= UL/ν is the
Reynolds number, Pe= UL/α is the Peclet num-
ber, ψ = ψ∗/UL is the dimensionless stream
function, and T = (T∗−TBW )/(TTW −TBW ) is the
dimensionless temperature.

In the meshless local Petrov-Galerkin method
with unity as the test function, hereafter named
the meshless control volume method (MCVM),
due to its similarity with the finite volume tech-
niques, a collection of points is selected in the
domain. Subsequently, a control volume is gen-
erated around each of the points. The control vol-
umes have simple shapes such as circle or rect-
angle in the two-dimensional space. The size of
the control volumes and the number of points be-
longing to each one of them can, in general, vary.
Contrary to the usual control volume techniques,
in this method the control volumes can intersect
each other and overlap [Versteeg and Malalasek-
era (1995)].

2.1 Weak formulation

To develop the vorticity, stream function, and en-
ergy weak formulations for the numerical imple-
mentation of the MCVM, Eqs. 1, 2, and 3, are
multiplied by the test function w. With w=1 the
resulting expressions are then integrated over a
typical control volume Ωi. However, in order to
obtain stable solutions for convection-dominated
flows, a streamline upwind scheme is required

Figure 1: Domain Ω with two circular control vol-
umes

[Brooks and Hughes (1982); Heinrich and Pepper
(1999)]. Two upwinding schemes have been em-
ployed by Lin and Atluri (2000, 2001) while us-
ing the MLPG method for solving the convection-
diffusion and Navier-Stokes equations. The first
scheme, which is based on using different trial
and test functions, is implemented through skew-
ing the test function opposite to the streamline di-
rection. In the second scheme, the local subdo-
main is moved opposite to the streamline direc-
tion when implementing the integration. The up-
winding scheme employed in this study is based
on adding a proper amount of artificial viscos-
ity along the streamline direction to the govern-
ing equations. To apply the upwind technique to
Eqs. 1 and 3, these equations are first transformed
to the streamline coordinates, s-t, with s pointing
in the streamline direction and t being perpendic-
ular to it. The resulting equations, after adding
the proper artificial viscosity 1/Re and diffusivity
1/Pe, are

V
∂ω
∂ s

=
(

1
Re

+
1

Re

)
∂ 2ω
∂ s2 +

1
Re

∂ 2ω
∂ t2 (4)

V
∂T
∂ s

=
(

1
Pe

+
1

Pe

)
∂ 2T
∂ s2

+
1
Pe

∂ 2T
∂ t2

(5)

where, V = (u2 + v2)1/2 is the magnitude of the
velocity vector. The optimal artificial viscos-
ity and diffusivity are respectively obtained from
[Arefmanesh, Najafi and Abdi (2005); Heinrich
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and Pepper (1999)]

1

Re
=

V h
2

[
coth

(
Re+

2

)
− 2

Re+

]
(6)

1

Pe
=

Vh
2

[
coth

(
Pe+

2

)
− 2

Pe+

]
(7)

where, Re+ = Vh/ν and Pe+ = Vh/α are the lo-
cal Reynolds and Peclet numbers, respectively.
The magnitude of h for non-uniform point distri-
bution cases, is h = (l1|u|+ l2|v|)/V with l1 and
l2 being the size of a control volume in x and y
directions, respectively. Next, Eqs. 4 and 5 are
transformed back to the original coordinates, x-y.
The resulting equations are

u
∂ω
∂x

+v
∂ω
∂y

=
1

Re

(
∂ 2ω
∂x2 +

∂ 2ω
∂y2

)
+

1

ReV 2

(
u2 ∂ 2ω

∂x2 +2uv
∂ 2ω
∂x∂y

+v2 ∂ 2ω
∂y2

)
(8)

u
∂T
∂x

+v
∂T
∂y

=
1
Pe

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
+

1

PeV 2

(
u2 ∂ 2T

∂x2 +2uv
∂ 2T
∂x∂y

+v2 ∂ 2T
∂y2

)
. (9)

Multiplying Eqs. 2, 8, and 9 by the test function,
w=1, and integrating the resulting equations over
Ωi give, after integration by parts, the following
weak forms of the vorticity, stream function, and
energy equations for a typical control volume, re-
spectively,

∫
Γi

�Vω .n̂dΓ =
1

Re

∫
Γi

∂ω
∂n

dΓ+

1

Re

∫
Γi

(
u

∂ω
∂x

+v
∂ω
∂y

)
�V
V 2 .n̂dΓ (10)

∫
Γi

∂ψ
∂n

dΓ = −
∫
Ωi

ωdΩ (11)

∫
Γi

�VT.n̂dΓ =
1
Pe

∫
Γi

∂T
∂n

dΓ+

1

Pe

∫
Γi

(
u

∂T
∂x

+v
∂T
∂y

)
�V
V 2 .n̂dΓ (12)

where, Γi is the boundary of the Ωi, and n̂ is the
unit outward normal to the Γi. After solving for
the stream function and the vorticity, through the
following equation the appropriate pressure val-
ues can be obtained,

∫
Γi

∂P
∂n

dΓ

+
∫
Ωi

2

[
∂ 2ψ
∂x2

∂ 2ψ
∂y2 −

(
∂ 2ψ
∂x∂y

)2
]

dΩ = 0. (13)

2.2 Fields approximations

To obtain the discretized equations for a control
volume, the unknown fields have to be approxi-
mated within the control volume. A typical con-
trol volume Ωi which contains n points is con-
sidered for this purpose. The unknown vortic-
ity, stream function, and temperature fields are re-
spectively approximated within Ωi by

ω (x,y) ∼= ω(i) (x,y)

=
m

∑
l=1

Pl (x,y)αl = PT (x,y)ααα (14)

ψ (x,y) ∼= ψ(i) (x,y)

=
m

∑
l=1

Pl (x,y)βl = PT (x,y)βββ (15)

T (x,y) ∼= T
(i) (x,y)

=
m

∑
l=1

Pl (x,y)γl = PT (x,y)γγγ (16)

where, ααα = [α1,α2, . . . ,αm]T , βββ =
[β1,β2, . . .,βm]T , and γγγ = [γ1,γ2, . . . ,γm]T are
vectors of unknown coefficients, and P(x,y) is
a known vector having m elements, pl(x,y), for
l = 1(1)m, which are, in general, monomials
[Onate, Indelsohn, Zienkiewicz and Taylor
(1996)]. For example, for linear approximations
of the field variables, m is equal to 3 and the trans-
pose of the vector P(x,y) is PT (x,y) = [1,x,y].
Setting the approximations, Eqs. 13-15, equal to
the values of ω(x,y), ψ(x,y), and T (x,y), respec-
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tively, at the n points belonging to the control vol-
ume yields

ωωω =

⎧⎪⎨
⎪⎩

ω1
...

ωn

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

PT
1
...

PT
n

⎫⎪⎬
⎪⎭ααα = Cααα (17)

ψψψ =

⎧⎪⎨
⎪⎩

ψ1
...

ψn

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

PT
1
...

PT
n

⎫⎪⎬
⎪⎭βββ = Cβββ (18)

T =

⎧⎪⎨
⎪⎩

T1
...

Tn

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

PT
1
...

PT
n

⎫⎪⎬
⎪⎭γγγ = Cγγγ (19)

where, ωωω , ψψψ and T are, respectively, the vec-
tors of vorticity, stream function, and temperature
at the n points belonging to the control volume.
The elements ω j = ω(x j,y j), ψ j = ψ(x j,y j), and
Tj = T (x j,y j), j = 1(1)n, are, respectively, the
magnitude of the ωωω , ψψψ , and T at the point (x j,y j),
and PT

j = PT (x j,y j) is the transpose of vector of
monomials at this point. The elements of matrix
C are Cjl = Pl(x j,y j), l = 1(1)m, and j = 1(1)n.
If the number of points belonging to the control
volume, n, is equal to the number of monomials
of the vector P(x,y), m, the performed interpola-
tions will be exact at the points (i.e., they will be
equal to the values of the unknowns functions at
the points), and the vectors ααα , βββ , and γγγ will be
given by

ααα =

⎧⎪⎨
⎪⎩

PT
1
...

PT
n

⎫⎪⎬
⎪⎭

−1

ωωω = C−1ωωω (20)

βββ =

⎧⎪⎨
⎪⎩

PT
1
...

PT
n

⎫⎪⎬
⎪⎭

−1

ψψψ = C−1ψψψ (21)

γγγ =

⎧⎪⎨
⎪⎩

PT
1
...

PT
n

⎫⎪⎬
⎪⎭

−1

T = C−1T. (22)

Substituting the coefficient vectors ααα, βββ , and γγγ
from 20-22 into the relations 14-16, respectively,

yields the following approximations for the vor-
ticity, stream function, and temperature within the
control volume Ωi

ω(i)(x,y) =
n

∑
j=1

φ (i)
j (x,y)ω j (23)

ψ(i)(x,y) =
n

∑
j=1

φ (i)
j (x,y)ψ j (24)

T
(i)(x,y) =

n

∑
j=1

φ (i)
j (x,y)Tj (25)

where, φ (i)
j (x,y) with j=1(1)n, are the usual inter-

polation function for the control volume Ωi (i.e.,
Lagrange polynomials) and ω j, ψ j, and Tj with
j=1(1)n, are the values of the unknown functions
at the points belonging to the control volume. The
interpolation functions, which satisfy the standard
conditions φ (i)

j (xl,yl) = δ jl (δ jl being the Kro-
nocker delta) are given by [Heinrich and Pepper
(1999); Onate, Indelsohn, Zienkiewicz and Tay-
lor (1996)]

φ (i)
j (x,y) =

m

∑
l=1

Pl(x,y)C−1
l j , j = 1(1)n (26)

The control volumes which are employed in this
study are rectangular and contain nine points
each, n=9, such as shown in Fig. 2.

The vector P(x,y), which is used in this case,
has nine elements, m=9, and its transpose is
PT (x,y) = [1,x,y,xy,x2,y2,x2y,xy2,x2y2]. Substi-
tuting this vector of monomials into Eq. 26, the
biquadratic interpolation functions can be readily
obtained.

If the number of points belonging to the control
volume is greater than the number of monomi-
als of the vector P(x,y)(i.e., n>m), the approxi-
mations are still given by Eqs. 23-25. However,
the interpolation functions are now written as fol-
lows [Onate, Indelsohn, Zienkiewicz and Taylor
(1996)]:

φ (i)
j (x,y) =

m

∑
l=1

Pl(x,y)D−1
l j , j = 1(1)n (27)

where, D−1 = A−1B, A =
m
∑
j=1

P(x j,y j)PT (x j,y j),

and B = [P(x1,y1),P(x2,y2), . . .,P(xn,yn)].
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Substituting the approximations ω(i)(x,y),

ψ(i)(x,y), and T
(i)(x,y) for the stream function,

vorticity, and temperature into Eqs. 10-12,
yield the discretized equations for Ωi. Using
the same procedure for every control volume
gives the system of the discretized equations for
all the points within the domain. Solving the
system of algebraic equations yields the unknown
variables at the points. The following test cases
demonstrate the implementation of the method
together with the obtained results.

3 Test cases and results

Equations 10, 11, and 12 are solved for different
test cases. The first test case to be considered is
the non-isothermal lid-driven cavity flow. The do-
main, the boundary conditions, the point distribu-
tion, and a typical control volume for the driven
cavity flow are shown in Fig. 2. The control vol-
ume contains nine points. The shape functions
are biquadratic and the interpolation is exact. For
this case a 33×33 nonuniform point distribution
is employed for the numerical simulations.

For the lid-driven cavity flow, the streamlines for
Re=100 with and without upwind are shown in
Figs. 3a and 3b, respectively. As the comparison
of the two figures show, upwinding contributes
to the accuracy of the results for the proposed
method. However, based on the computations
performed for moderate Reynolds numbers for
fine point distributions, results without upwind-
ing also converge, but with higher iteration com-
pared to when upwinding is implemented. More-
over, for course point distributions cases, the re-
sults without upwinding may diverge. It should
be emphasized here that the upwinding scheme
in this present study is optimal, meaning that up-
winding takes place only when it is needed, and it
is done for the proper amount.

Figure 4 shows a comparison of the cavity hori-
zontal centerline velocity for Re=100 obtained by
the MCVM, with the results of the finite element
method, FEM [Reddy and Gartling (2001)]. Two
uniform and one nonuniform point distributions
with increasing degree of refinement have been
employed for the MCVM results in this figure.

Figure 2: Domain, boundary conditions, and
point distribution for non-isothermal lid-driven
cavity flow

Convergence of the MCVM results to a unique
velocity is also demonstrated in this figure. The
converged velocity is in good agreement with the
results of the finite element method. It is con-
cluded from the results presented in this figure
that a 17×17 uniform point distribution is ade-
quate for obtaining an accurate solution in this
case.

Figure 5 shows the discrete L2-norms of the error
for the stream function and vorticity for Re=100
and 400. Uniform point distributions have been
employed for all the results presented in this fig-
ure. The convergence of the MCVM results
with decreasing the size of the control volumes is
demonstrated in this figure. The rate of the con-
vergence, as observed from the figure, is nearly
quadratic. The isotherms for the driven cavity
flow for the thermal boundary conditions shown
in Fig. 2 for Pe=50 and Re=100, are depicted in
Fig. 6.

Figures 7 and 8 show the streamlines, and the
horizontal centerline velocity, respectively for the
test case for Re=400. In Fig. 8 the horizontal
centerline velocity obtained by the MCVM for
different point distributions are compared with
those obtained by the finite difference method
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(a) 

(b)

Figure 3: Streamlines for lid-driven cavity flow
for Re = 100 a) with upwind b) without upwind

(FDM) employing a pure stream-function formu-
lation [Kupferman (2001)]. The convergence of
the MCVM results to the results of the finite dif-
ference method with decreasing the size of the
control volumes is clearly observed in this figure.
As both Figs. 4 and 8 (centerline velocity plots)
show for Reynolds numbers 100 and 400, course
point distributions (up to some extent), do not af-
fect the convergence much (except for some very
limited regions) compared with the existing FEM
and FDM results.

Figure 4: Cavity horizontal centerline velocities
for lid-driven cavity flow for Re = 100, compar-
ison of MCVM with FEM results [Reddy and
Gartling (2001)]

It is emphasized here that although the pro-
posed method is applicable for Reynolds num-
bers higher than 400 (of course with longer com-
putation duration for the convergence through
the iteration-scheme), Reynolds numbers 100 and
400 are utilized in this present study for compar-
ison with the existing results by other numerical
methods.

The second test case considered is the lid-driven
cavity flow with an inlet and an outlet. The do-
main, and boundary conditions for this flow are
depicted in Fig. 9. A 31×31 nonuniform point
distribution is employed for the numerical simu-
lations in this case.

The streamlines for this case for Re=100 is shown
in Fig. 10. Figure 11 shows the discrete L2-
norm of the error for the stream function and the
vorticity. The convergence of the MCVM results
with decreasing the size of the control volumes is
demonstrated in this figure. Similar to the results
in Fig. 5, the rate of convergence in this case is
also nearly quadratic.

The non-isothermal flow over an obstacle (length
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Figure 5: Discrete L2-norm of the error for stream
function and vorticity for lid-driven cavity flow
for Re = 100 and 400

Figure 6: Isotherms for lid-driven cavity flow for
Pe = 50 and Re = 100

= 0.2, height = 0.3) is considered as another test
case. The domain, and the boandary conditions
for this flow are shown in Fig. 12. A 107×24
nonuniform point distribution is used for the nu-
merical simulations in this case.

Figure 7: Streamlines for the lid-driven cavity
flow for Re = 400

Figure 8: Cavity horizontal centerline velocity for
lid-driven cavity flow for Re = 400, comparisons
of MCVM with FDM results [Kupferman (2001)]

The streamlines and isotherms for the non-
isothermal flow over an obstacle for Pe=3, and
Re=30 are shown in Figs. 13 and 14, respectively.
It is clear from the streamline contours that the
outflow boundary condition has been properly en-
forced. Comparison of the MCVM results with
the results obtained using a typical finite volume
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Figure 9: Domain, boundary conditions, and
point distribution for lid-driven cavity flow with
an inlet and an outlet

Figure 10: Streamlines for the lid-driven cavity
flow with an inlet and an outlet for Re = 100

code [Patankar (1980)] gives a few percent error
for stream function in this case.

4 Conclusions

A meshless local Petrov-Galerkin method with
the weighting function of unity is applied to the
solution of the Navier-Stokes as well as energy
equations for the non-isothermal lid-driven cavity
flow, non-isothermal flow over an obstacle, and

Figure 11: Discrete L2-norm of the error for
stream function and vorticity for cavity flow with
an inlet and an outlet, Re = 100

Figure 12: Domain, boundary conditions, and
point distribution for non-isothermal flow over an
obstacle

Figure 13: Streamlines for flow over an obstacle
for Re = 30

Figure 14: Isotherms for flow over an obstacle for
Pe = 3
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the lid-driven cavity flow with one inlet and out-
let. Nonuniform point distributionwas utilized for
all the test cases considered for the numerical sim-
ulations.

Through the method, the flow streamlines depic-
tion was obtained for each test case. The proposed
method captured the vortices distinctively for all
the cases indicating the accuracy of the method.

For different Reynolds numbers, the horizontal
centerline velocity for the lid-driven cavity flow
was compared with the results of the other nu-
merical techniques. The comparison show close
agreements for substantial portions of the entire
domains considered.

Considering both the lid-driven cavity flow and
the flow over the obstacle cases, the resulting
isotherms match the designated boundary condi-
tions, showing the method accuracy.

The discrete L2-norms of the error for stream
function and vorticity plotted for the lid-driven
cavity flow with and without the inlet-outlet show
nearly quadratic convergence rate.

Based on the overall results of this proposed nu-
merical meshless method, and their comparisons
with other existing numerical techniques the accu-
racy of the MCVM solution is established, hence
the method proves to be applicable for solving
non-isothermal fluid flow problems.
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