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Numerical Identification of the Hydraulic Conductivity of Composite
Anisotropic Materials
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Abstract: Two homogeneous anisotropic mate-
rials are butted together to form a contact sur-
face within a single composite material (the spec-
imen). An inverse boundary element method
(BEM) is developed to determine the components
of the hydraulic conductivity tensor of each ma-
terial and the position of the contact surface. A
steady state flow is forced through the specimen
by the application of a constant pressure differ-
ential on its opposite faces. Experimental mea-
surements (simulated) of pressure and average hy-
draulic flux at exposed boundaries are then used
in a modified least squares functional. This func-
tional minimises the gap between the above mea-
sured (simulated) values and their corresponding
BEM values within a genetic algorithm maximi-
sation procedure. The latter quantities are deter-
mined using the current estimates of the compo-
nents of the hydraulic conductivity tensors and the
position of the contact surface.

Keyword: Boundary element method, genetic
algorithm, hydraulic conductivity, inverse prob-
lem.

1 Introduction

The production of gas and oil in many reservoirs
is seriously affected by their highly heterogeneous
and/or anisotropic structure. From the fluid flow
viewpoint, it is well accepted that heterogeneity
and anisotropy are two closely related properties.
Non-homogeneous materials are usually thought
to appear homogeneous, but anisotropic, when
considered at a scale much larger than the largest
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scale of heterogeneity.

A number of methods have been proposed to
measure the full hydraulic conductivity tensor in
rocks or soils. Zhan and Yortsos (2001) identified
the permeability field of an anisotropic porous
medium directly from the solution of a nonlin-
ear boundary value problem by monitoring the
displacement front at successive time intervals.
Fontugne (1969) performed two flow measure-
ments simultaneously on a prepared soil, with
the fluid outlets aligned with the assumed prin-
cipal directions. He then determined the ratio of
the principal hydraulic conductivities. The am-
plitudes of the principal hydraulic conductivities
were measured separately. Rose (1970) designed
an experimental procedure to force the stream-
lines to be straight lines parallel to the sample
axis. However, this method required the modifica-
tion by trial and error of the shape of the sample,
making it difficult to implement in practice. Both
of these methods assume that the sample axis can
be oriented parallel or perpendicular to one of the
principal directions. However, this is not as seri-
ous a restriction as it might first appear since, in
many cases, at least one of the principal directions
can be guessed from the bedding planes, preferred
orientation of the micro-cracks, and the like. The
commonly used concept of horizontal and vertical
hydraulic conductivities implicitly assumes that
the principal hydraulic conductivity directions in-
situ are likewise in orientation, but this is not al-
ways true. However, samples can be taken in di-
rections parallel and perpendicular to the bedding
planes when visible, rather than parallel and per-
pendicular to the axis of the core as it is usually
done.

If the principal directions cannot be estimated, a
different method becomes necessary. The best so-
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lution would be to measure the full hydraulic con-
ductivity tensor in one single sample by impos-
ing periodic boundary conditions [Durlofsky and
Chung (1987); Mei and Auriault (1989); Saez,
Otero, and Rusinek (1989)]. Whilst this can be
achieved, it is rather difficult to implement in
practice. Alternatively, it may be possible to per-
form a suite of independent flow measurements,
each one with a different set of Neumann and
Dirichlet boundary conditions. As this is perfectly
possible in laboratory experiments, this method
may yield enough information to allow one to in-
fer the full hydraulic conductivity tensor. A sim-
ilar idea was applied in White and Horne (1987),
but in another context. Bernabe (1992) sketched a
possible procedure involving six steady state flux
measurements (two longitudinal and the rest di-
agonal) and inferred the components of the hy-
draulic conductivity tensor with an accuracy that
varied from 10% for the largest component to
30% for the smallest.

In this paper, the steady flow of a single liq-
uid phase through a rectangular, composite speci-
men, composed of two anisotropic materials with
a plane contact surface, is analysed using a BEM
approach. The particular geometry of the speci-
men has been chosen so as to correspond to the
apparatus used in laboratory experiments. A ge-
netic algorithm based inverse technique is em-
ployed for identifying the two hydraulic conduc-
tivity tensors and the contact surface position, us-
ing pressure and/or hydraulic flux values (simu-
lated) at the exposed boundaries of the specimen.

Finally, we note that, recently, the solution of
inverse problems has been undertaken numeri-
cally in a wide variety of applications in engi-
neering and science [Shiozawa, Kubo, Sakagami,
and Takagi (2006); Ling and Atluri (2006); Liu
(2006); Mera, Elliott, and Ingham (2006); Liu,
Liu, and Hong (2007); Huang and Shih (2007);
Marin, Power, Bowtell, Sanchez, Becker, Glover,
and Jones (2008)].

2 Mathematical formulation

In conventional laboratory experiments, the speci-
mens are either rectangular blocks or cylinders. In
this paper, we consider the former type of spec-

imen which, in two-dimensions, can be repre-
sented as a rectangle. The specimen under investi-
gation consists of two materials which we label as
sample X and sample Y . A steady state flow situa-
tion exists in which the fluid is forced through the
specimen by applying the constant pressures p =
p0 and p = p0 − δ p0, where δ p0 > 0, on oppo-
site faces. The equation describing the conserva-
tion of mass can be combined with the generalised
form of Darcy’s law for anisotropic materials to
give the equation of single-phase incompressible
fluid flow in a two-dimensional, composite porous
material within the rectangular domain Ω. In non-
dimensional form, assuming that the total length
of the specimen has the non-dimensional value
L = 2, the governing equation can then be writ-
ten in the reference frame (x,y) as

k11
∂ 2 p
∂x2 +2k12

∂ 2 p
∂x∂y

+k22
∂ 2p
∂y2 = 0 , (1)

for (x,y) ∈ Ω = (0,2)× (0,1), where ki j denote
the components of the constant hydraulic con-
ductivity tensor kkk, with k11k22 > k2

12, and p =
(p− (p0 −δ p0))/δ p0 is the non-dimensional
pressure. In the same reference frame, the bound-
ary conditions corresponding to the application of
the pressure differential between the faces x = 0
(inflow) and x = 2 (outflow), with sealed top (y =
1) and bottom (y = 0) boundaries, can be written
as

p|x=0 = 1, p|x=2 = 0,

∂ p
∂ν+

∣∣∣∣
y=0

=
∂ p

∂ν+

∣∣∣∣
y=1

= 0 ,
(2)

where

∂
∂ν+ =

2

∑
i, j=1

ki j cos(ν+,xi)
∂

∂x j
(3)

with the convention that x1 = x, x2 = y and
cos (ν+,xi) are the direction cosines of the posi-
tive normal ν+ to the surface of the sample. Fig-
ure 1 shows that the contact surface between sam-
ple X and sample Y is defined by distances x f

b and

x f
t measured from the inflow face of the specimen

along the bottom (y = 0) and top (y = 1) no-flow
boundaries, respectively. This contact surface is
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Figure 1: Configuration considered in the mathe-
matical model of the problem.

considered to provide discontinuities in the hy-
draulic conductivity tensor components.

At the plane contact surface d, defined by

d =

{
(x,y) : y =

x−x f
b

x f
t −x f

b

, x f
b � x � x f

t

}
, (4)

the pressure and hydraulic flux are assumed to be
continuous functions, i.e.

lim
(x,y)∈X↗d

p = lim
(x,y)∈Y↘d

p ,

lim
(x,y)∈X↗d

∂ p
∂ν+ = lim

(x,y)∈Y↘d

∂ p
∂ν+ .

(5)

Each of the homogeneous anisotropic materials
has a constant hydraulic conductivity tensor de-
fined by

kkks =
(

ks
11 ks

12
ks

12 ks
22

)
,

where the superscript s ∈ {X ,Y}. However, a bet-
ter insight into the physics of the problem is pro-
vided by a set of related quantities. Therefore,
we provide, and look for, values of the principal
hydraulic conductivities, ks

1 and ks
2. We assume

that ks
1 > ks

2 and that the direction of ks
1 for each

material makes an angle θ s with the x-axis. In
the (x,y) coordinate system, the components of
the hydraulic conductivity tensors are given by the
following relations:

ks
11 = ks

1 cos2 θ s +ks
2 sin2 θ s ,

ks
12 = (ks

1 −ks
2)cosθ s sinθ s ,

ks
22 = ks

2 cos2 θ s +ks
1 sin2 θ s ,

(6)

where θ s ∈ {
θ X ,θY

}
can be different from one

sample to another.

We consider two situations concerning the contact
surface orientation. In the first, the contact surface
is assumed perpendicular to the x-axis of the sam-
ple, namely x f

t = x f
b . In the second, the contact

surface is inclined to the x-axis, namely x f
t �= x f

b .

3 The direct problem

This section addresses the boundary discretization
adopted to solve the direct, well-posed problem,
as defined by Eq. (1), and the boundary and inter-
face conditions (2) and (5).

The bottom and top no-flow boundaries of the
specimen are each divided into M equally-sized
intervals [xb,i−1,xb,i] and [xt,i−1,xt,i], respectively,
for i = 1,M, with xb,0 = xt,0 = 0 and xb,M = xt,M =
2. Depending on the values of x f

b and x f
t , we

determine to which of the intervals from the dis-
cretization of the boundary the contact surface be-
longs. Let Wb < M and Wt < M denote the ele-
ments on the bottom and top boundaries, respec-
tively, in which the contact surface is situated, i.e.
xb,Wb−1 < x f

b < xb,Wb and xt,Wt −1 < x f
t < xt,Wt . Then

on the bottom and the top no-flow boundaries of
sample X we have a total of Wb +Wt −2 elements
of length 2/M and two special elements of length
x f

b − 2(Wb −1)/M and x f
t − 2(Wt −1)/M. Ac-

cordingly, the bottom and the top no-flow faces
of sample Y are discretized into 2M−Wb−Wt el-
ements of length 2/M and two special elements
of length 2Wb/M − x f

b and 2Wt/M − x f
t . The in-

flow and outflow faces of the specimen and the
contact surface are each discretized into N ele-
ments, and these elements have sizes 1/N and(√(

x f
b −x f

t

)2 +1
)/

N, respectively. These sets

of elements are equal in size only when x f
b = x f

t .

If x f
b or x f

t coincides with one of the extremities of
the interval, namely xb,Wb−1, xb,Wb , xt,Wt −1 or xt,Wt ,
then we require only elements of length 2/M on
either the bottom or top face of the composite ma-
terial. Over each element created in such a man-
ner, the pressure function p, as well as its normal
derivative, are assumed to be constant and take
their values at the mid-point of the element.
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To our problem we apply a classical BEM formu-
lation [Brebbia, Telles, and Wrobel (1984)]. The
resulting linear system of equations includes as
unknowns the following:

• the pressure on the bottom and top bound-
aries;

• the hydraulic flux at the inflow and outflow
faces of the specimen; and

• the pressure and hydraulic flux at the contact
surface determined by Eq. (4).

The two cases studied were as follows:

(a) When the contact surface is perpendicular
to the x-axis of the specimen, namely x f

t =
x f

b , we consider that sample X has a non-
dimensional length of L1 = 1.33 and the
magnitudes of the principal hydraulic con-
ductivities are given by kX

1 = 5, kX
2 = 1, with

θ X = 30◦ being the angle that the x-axis of
the specimen makes with the direction of
kX

1 . The sample Y has a non-dimensional
length of L2 = L − L1 = 0.67 and the hy-
draulic properties are defined by the values
kY

1 = 5, kY
2 = 1 and θY = 60◦.

(b) When the contact surface is inclined to the
x-axis of the specimen, namely x f

t �= x f
b ,

whilst the hydraulic properties and the non-
dimensional length of the specimen remain
as in (i), the parameters defining the con-
tact surface are chosen to be x f

t = 1.42 and
x f

b = 1.23.

Comparisons of the pressure distribution within
the specimen for numerical simulations with N ∈
{5,10,20} and M = 2N were carried out. As
demonstrated in Fig. 2 for case (a), the pressure
distribution along the bottom no-flow face of the
specimen becomes graphically indistinguishable
for values of N � 10. Therefore, we do not present
results for N = 20. As the choice N = 10, M = 20
produces a sufficiently accurate numerical solu-
tion to the direct problem, we use this grid in the
numerical inversion presented next.

Figure 2: Numerically simulated pressure distri-
bution along the bottom no-flow boundary of the
butted sample for several grid sizes.

4 Inverse numerical formulation

The inverse analysis involves identifying values
of:

• the principal hydraulic conductivities, ks
1 and

ks
2;

• the angles, θ s, between the directions of ks
1

and the horizontal (x-axis) of the specimen;
and

• the parameter values that determine the con-
tact surface, namely x f

t and x f
b .

We use genetic algorithm (GA) optimisation to
determine the best set of these parameters. Mini-
mal data inputs to the GA include local measure-
ments of the pressure and/or average hydraulic
flux on the boundary of the specimen. There-
fore, in practice, possible required measurements
include pressure readings at ports situated on the
bottom and top no-flow boundaries and average
flux values taken at either end of the sample (in
the steady state regime these average fluxes have
the same absolute value).

Pressure alone is inadequate for accurately deter-
mining the hydraulic parameters because many
parameter sets match these measurements. This
non-uniqueness is most easily demonstrated by
dividing Eq. (1) by one of the components of the
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hydraulic conductivity tensor. The result is an
equivalent problem that depends only upon the ra-
tios of these parameters rather than their individ-
ual values. The non-uniqueness of the retrieved
original parameters can be overcome if one also
measures non-zero average hydraulic flux values
in the inversion process. In that case one must
pay particular attention to the use of an effective
combination of pressures and fluxes, mainly due
to their different magnitudes. Therefore, we de-
fine the modified least squares objective function

LS =

[
α +

NT

∑
j=1

1
αTj

[
(Tj)

calc − (Tj)
orig

]2
]−1

, (7)

where the superscripts (calc) and (orig) denote
the BEM numerically predicted and the simulated
(or measured) data values, respectively, and we
record NT data measurements Tj that can denote a
pressure or an average hydraulic flux value. Fur-
thermore, for each j = 1,NT , the normalising fac-
tor αTj is chosen as a representative value of the
measurement Tj to ensure a valid comparison be-
tween quantities of different orders of magnitude.
The constant α = 10−8 was chosen to be small
enough so that significant errors in the sums of the
squared differences are always sufficiently larger
than α . The GA-based optimisation technique is
employed to search in an a priori specified range
for each of the unknown parameters. The LS
functional (7) which is maximised then indicates
the ‘fitness’ of each parameter set based upon the
constraints provided by the simulated or measured
data values.

The GA process for identifying the unknown pa-
rameters begins by randomly constructing an ini-
tial population of Npop chromosomes, each of
which characterises estimates to the solution of
the problem through their separate genes. The
genes represent encodings of the unknown pa-
rameters over specified ranges. We employ k-
tournament selection, with associated probabil-
ity pT , and a fitness evaluation function, as
given by (7), which measures the accuracy of
the predicted pressure and/or hydraulic flux val-
ues against some known (simulated or experi-
mental) measurements. From the simplest pro-
cedures available, two-point crossover, with as-

sociated probability pc, and bit-by-bit mutation,
with associated probability pm, are used to derive
child chromosomes and form a pool of offspring
of size Nchild. However, alternative and more
complex chromosome processing operators could
have been employed. Using an elitist approach,
the ne fittest individuals from the parent popula-
tion are retained for the next generation. These
steps are repeated either for a specified number of
generations or until a match to the imposed data
is achieved to within a desired tolerance.

There are only very general guidelines as to how
to choose the values of the GA evolution param-
eters. The typical values Npop = 50, Nchild = 60,
pm = 0.02, pc = 0.65, tournament pool size k =
2, pT = 0.8 and ne = 2, which are maintained
throughout this study, have been chosen based
upon the numerical experiments reported by the
authors for related inverse problems [Mustata,
Harris, Elliott, Ingham, and Lesnic (1999); Mus-
tata, Harris, Elliott, Lesnic, Ingham, Khachfe, and
Jarny (2001)]. The domain in which the GA does
its search is highlighted for each of the individual
cases studied.

5 Numerical results and discussion

5.1 Contact surface perpendicular to xxx-axis of
sample: xxx fff

ttt === xxx fff
bbb (case (a))

For inversion purposes, information is provided
by pressure readings at ports situated on the bot-
tom and top no-flow boundaries of the butted sam-
ple, with the aim of employing a minimal number
of ports to ensure that the required parameters are
successfully retrieved.

First, we consider the configuration ‘XY ’ in which
the sample X of length L1 = 1.33 is situated at the
inflow face (on which p = 1) and we locate ports
P1 and P2, which provide pressure measurements,
at distances xP1 = 0.35 and xP2 = 1.65 on the bot-
tom boundary, respectively. If we assume that the
hydraulic properties of both X and Y are known,
a first investigation is made into the possible re-
trieval of the contact surface position x f

t = x f
b =

1.33 when using just pressure readings at these
ports. The range in which the search takes place
is defined by x f

b ∈ D = [0.5,1.5] and a success-
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ful retrieval of the contact surface position is pos-
sible only if we utilise measurements situated in
both samples. For example, if pressure is recorded
at P1 and P2, a typical stable retrieved value for
the contact surface position is x f

t = x f
b = 1.33,

to two decimal places. This means that for the
whole inversion process we will require at least
one boundary pressure reading from each of the
two samples.

However, as we established before, pressure alone
does not provide sufficient information for retriev-
ing the unknown hydraulic properties of the sam-
ple. Therefore, in the following calculations we
add to the inversion information the average hy-
draulic flux value measured at the inflow face.
In order to ensure a valid combination of these
two types of information we perform a sensitiv-
ity analysis. Having experimented with pressure
measurements from other ports on the no-flow
boundaries of the samples, we reached the con-
clusion that the average hydraulic flux is approxi-
mately ten times more sensitive to changes in the
sample parameters than is any pressure measure-
ment at the ports. Therefore, in order to perform
an effective GA search, using both pressure and
average hydraulic flux information in the expres-
sion of the fitness function, we have to scale ac-
cordingly the term containing the latter contribu-
tion.

The complete inversion process provides esti-
mates for the hydraulic conductivity parameters,
ks

1, ks
2 and θ s in each sample, and the contact sur-

face location, x f
b = x f

t . We begin the inversion
process with an underspecified situation, namely
pressure measurements from the two ports on
both no-flow faces of the sample, and the aver-
age flux value measured at the inflow. Pressure
ports are located at the coordinate points (0.35,0),
(0.35,1) and (1.65,0), (1.65,1). These give five
measurements (four pressures and average flux)
with seven parameters to be identified. The fol-
lowing ranges are prescribed:((

kX
1 ,kX

2 ,θ X)
,
(
kY

1 ,kY
2 ,θY)

,x f
b = x f

t

)
∈ D

=
(
([4.5,5.5]× [0.5,1.5]× [20◦,40◦]) ,

([4.5,5.5]× [0.5,1.5]× [50◦,70◦]) , ([0.5,1.5])
)
,

and these ensure a significant pressure variation
within the sample. The results of several runs,
such as the ones presented as Run1 and Run2 in
Tab. 1, suggest that the lack of information may
not be overcome by the numerical optimisation
scheme, thus resulting in the non-uniqueness of
the solution. A detailed study concerning these
results, by means of a comparison with a tradi-
tional numerical optimisation scheme, will be un-
dertaken in Section 6.

Table 1: Numerical results for the GA simulta-
neous recovery of the principal hydraulic conduc-
tivities, ks

1 and ks
2, the angles, θ s, and the contact

surface position in the underspecified situation.

Run1 Run2
Coefficient Exact Range Results Range Results

kX
1 5 [4.5,5.5] 5.06 [4.5,5.5] 5.19

kX
2 1 [0.5,1.5] 1.02 [0.5,1.5] 1.04

θ X 30◦ [20◦,40◦] 30.46 [20◦,40◦] 31.02

kY
1 5 [4.5,5.5] 4.54 [4.5,5.5] 4.77

kY
2 1 [0.5,1.5] 0.99 [0.5,1.5] 1.00

θY 60◦ [50◦,70◦] 58.35 [50◦,70◦] 59.06
x f

b = x f
t 1.33 [0.5,1.5] 1.32 [1.0,1.4] 1.33

Due to the above non-uniqueness, we propose to
move towards a fully specified situation and to
investigate the accurate retrieval of the unknown
parameters. A first successful attempt is one in
which three pressure measurements recorded in
each sample, coupled with the average inflow flux
value, provides seven items of information for
retrieving seven unknowns. Pressure measure-
ments are taken at ports having coordinate posi-
tions (0.35,0), (0.65,0), (1.55,0), (1.85,0) on
the bottom no-flow face and (0.55,1), (1.75,1)
on the top no-flow face. Typical retrieved val-
ues, using the same ranges as considered in Run2
of Tab. 1, were accurate to within 1%, namely(
kX

1 ,kX
2 ,θ X

)
= (5.02,1.00,29.97),

(
kY

1 ,kY
2 ,θY

)
=

(4.98,1.00,59.98) and x f
b = x f

t = 1.33. The error
in the retrievals did not increase for larger param-
eter ranges, suggesting that the GA optimisation
scheme produces results that are close to the opti-
mal ones when considering the above information
in the inversion process.
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Another technique is to perform the inversion in a
sequence of steps. In the first two steps, by inter-
changing the positions of the samples, we retrieve
the principal hydraulic conductivities, ks

1 and ks
2,

and the angles, θ s, that the x-axis of the butted
sample makes with the direction of ks

1 for each
sample. Then, in the final step, we can use either
of the possible configurations to retrieve the con-
tact surface position by employing pressure read-
ings alone.

Starting with configuration ‘XY ’, we prescribe six
pressure measurements in the sample X at coor-
dinate positions (0.25,0), (0.35,0), (0.45,0) on
the bottom no-flow face and (0.25,1), (0.35,1),
(0.45,1) on the top no-flow face. This informa-
tion, coupled with the average flux at the inflow
face x = 0, produces highly accurate results for
sample X , typical to those of Run1 in Tab. 2.

Table 2: Numerical results for the GA simulta-
neous recovery of the principal hydraulic conduc-
tivities, ks

1 and ks
2, the angles, θ s, and the contact

surface position when the inversion is performed
in steps.

Run1
Coefficient Exact Range Results

kX
1 5 [4.5,5.5] 4.99

kX
2 1 [0.5,1.5] 1.00

θ X 30◦ [20◦,40◦] 29.98

kY
1 5 [4.5,5.5] 5.43

kY
2 1 [0.5,1.5] 0.80

θY 60◦ [50◦,70◦] 69.38
x f

b = x f
t 1.33 [1.0,2.0] 1.63

Run2
Coefficient Exact Range Results

kX
1 5 [4.5,5.5] 5.37

kX
2 1 [0.5,1.5] 0.98

θ X 30◦ [20◦,40◦] 23.64

kY
1 5 [4.5,5.5] 4.99

kY
2 1 [0.5,1.5] 0.99

θY 60◦ [50◦,70◦] 60.03
x f

b = x f
t 0.67 [0.5,1.5] 0.86

Reversing the flow direction is equivalent to con-
sidering the configuration ‘Y X’. In that case, the
same information is expected to provide good es-
timates for the principal hydraulic conductivities,
kY

1 and kY
2 , and the angle, θY , that the x-axis of

the sample makes with the direction of kY
1 , with

results typical to those of Run2 in Tab. 2.

With the values of the unknown hydraulic con-
ductivity parameters obtained accurately from the
first two steps of the inversion, we then perform
a final step in which we use only pressure infor-
mation to determine the contact surface. For ei-
ther of the configurations ‘XY ’ or ‘Y X’, and pro-
vided that we take pressure readings in both sam-
ples, the contact surface location can usually be
obtained accurately. For example, when consid-
ering the configuration ‘XY ’ and extra pressure
readings on the bottom no-flow boundary at the
coordinate positions (0.35,0), (1.65,0), a typi-
cal retrieved value for the position of the contact
surface interface was x f

b = x f
t = 1.33. Although

this three-step inversion technique very accurately
estimates the hydraulic parameters, the relatively
large number of additional measurement ports
makes this approach expensive.

5.2 Oblique contact surface: xxx fff
ttt � � �=== xxx fff

bbb (case (b))

For the more general case of the contact surface
determined by the straight line d that joins the
coordinate points (x f

b ,0) and (x f
t ,1), see Fig. 1,

and provided that the principal hydraulic conduc-
tivities, ks

1 and ks
2, and the angles, θ s, are given,

we reach a similar conclusion to the case when
the contact surface was perpendicular to the x-
axis of the butted sample, namely that pressure
alone measured in both samples, either side of the
contact surface, will ensure an accurate retrieval
of the positions x f

t and x f
b . For example, if we

take x f
t = 1.42 and x f

b = 1.23 and pressure read-
ings at the coordinate positions (0.35,0), (1.65,0)
on the bottom no-flow face and (0.35,1), (1.65,1)
on the top no-flow face, we obtain very accurate
estimates of the contact surface positions such as
x f

b = 1.23 and x f
t = 1.42 for a domain of search(

x f
b ,x f

t

) ∈ D = ([0.5,1.5]× [0.5,1.5]).

When applying the three-step inversion, we ex-
perimented with different numbers of measure-
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ment ports located along the no-flow boundaries
of the upstream sample, namely sample X from
the ‘XY ’ configuration. Table 3 shows that in-
creasing the number of ports improves the accu-
racy of kX

1 , kX
2 and θ X . However, for a reasonable

number of ports, we do not estimate these values
as accurately for oblique contact surfaces as for
perpendicular ones.

Table 3: Numerical results for the GA simulta-
neous recovery of the principal hydraulic conduc-
tivities, ks

1 and ks
2, the angles, θ s, and the contact

surface position for different numbers of pressure
measurement ports.

Results
Coefficient Exact Range 6 Ports 8 Ports 9 Ports

kX
1 5 [4.5,5.5] 5.19 5.08 5.05

kX
2 1 [0.5,1.5] 1.04 1.01 1.01

θ X 30◦ [20◦,40◦] 31.29 30.47 30.28

kY
1 5 [4.5,5.5] 4.58 4.79 5.05

kY
2 1 [0.5,1.5] 1.03 1.11 1.06

θY 60◦ [50◦,70◦] 58.22 61.43 61.88

x f
b 1.23 [1.0,1.5] 1.15 1.06 1.15

x f
t 1.42 [1.0,1.5] 1.39 1.44 1.46

The conclusion remains the same when we re-
verse the flow direction. For example, in the case
of measurements from eight ports in sample Y ,
typical results of the inversion were no better than(
kY

1 ,kY
2 ,θY

)
= (4.92,1.06,59.71). With these val-

ues and the ones in Tab. 3 obtained for eight ports
for sample X , the third step of the inversion, using
only pressures, produced estimates of the contact
surface positions such as x f

b = 1.19 and x f
t = 1.45,

with relative approximation errors of 3.23% and
2.08%, respectively.

6 Comparison of inversion methods

In this section, by means of a comparison with
the more traditional, gradient based, optimisation
techniques, we perform a detailed comparative
study that attempts to discuss the relevance of
the genetic algorithm technique to the particular
problem of identifying the components of the hy-
draulic conductivity tensors and the contact sur-
face position in the case when it is perpendicu-

lar to the x-axis of the butted sample (case (a)).
The information that we use in the inversion pro-
cess combines the pressure recorded at ports on
the bottom and top no-flow boundaries and the av-
erage inflow flux.

The traditional gradient method that we use is the
derivative-based iterative NAG routine E04KCF,
which performs a quasi-Newton algorithm for
finding the minimum of a function of several vari-
ables, subject to simple bounds on the variables.
In this case, the objective function which is min-
imised is LS−1 −α , see Eq. (7). The gradient of
this functional is calculated using forward differ-
ences.

The same type of additional information added
into the GA inversion process was used by the
NAG routine to perform the inversion. Based
on the pressure measurement ports for which
the GA performed a successful simultaneous re-
trieval of all the unknown parameters, namely in
the fully specified situation when pressure mea-
surements were recorded at the coordinate points
(0.35,0), (0.65,0), (1.55,0), (1.85,0) on the bot-
tom no-flow face and (0.55,1), (1.75,1) on the
top no-flow face, we study the behaviour of the
NAG optimisation procedure. We perform a se-
quence of experiments, starting with the under-
specified situation, where we have one measure-
ment port in each sample. We build up to the
fully specified situation in which we measure
pressure at all of the above points. The ranges
for the NAG inversion, i.e. the simple bounds
on the variables, were the same as for the GA
(Run2 in Tab. 1). We used the average influx
flow and the following data: pressure readings
at (i) (0.35,0), (1.55,0); (ii) (0.35,0), (1.55,0),
(0.55,1); (iii) (0.35,0), (1.55,0), (1.75,1);
(iv) (0.35,0), (1.55,0), (0.55,1), (1.75,1); (v)
(0.35,0), (0.65,0), (1.55,0), (0.55,1), (1.75,1);
and the fully specified situation (vi) pressure read-
ings at (0.35,0), (0.65,0), (1.55,0), (1.85,0),
(0.55,1), (1.75,1). Table 4 shows the results of
the NAG inversion when we used the same ini-
tial guesses for each numerical simulation. We
observe that the estimation error decreases as we
move towards the fully specified situation and the
results are very accurate in the final situation.
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Table 4: Numerical results of the inversion pro-
cess when using the NAG routine and the infor-
mation as described by cases (i)–(vi).

Results
Value Exact (i) (ii) (iii) (iv) (v) (vi)

kX
1 5 4.50 4.50 4.50 5.50 5.01 5.00

kX
2 1 0.76 0.83 0.80 1.13 1.00 1.00

θ X 30◦ 20.00 23.36 24.01 34.61 30.07 30.00

kY
1 5 4.50 4.50 4.50 4.50 4.50 5.00

kY
2 1 0.97 0.86 0.99 0.98 0.98 1.00

θY 60◦ 57.73 50.00 58.30 58.20 58.25 60.00
x f

b = x f
t 1.33 1.19 1.13 1.29 1.35 1.32 1.33

For an underspecified situation the results are not
optimal but do provide a very good match to the
measured data. This is due to the non-uniqueness
that the underspecification produces, a situation
which was also encountered in the case of the GA
optimisation. However, in such cases, in order
to produce better results, we can provide good
initial guesses for the NAG routine using results
from the GA optimisation. Then, despite the un-
derspecification of the situation, it is possible to
achieve results close to their optimal values.

Table 5 shows results from using the GA pro-
cedure outputs as initial guesses for the NAG
routine. Numerical results are presented for the
underspecified case (v) and using various initial
guesses for the NAG algorithm. It is observed that
in the cases of Run1 and Run2, where reasonably
good initial guesses are imposed, the algorithm
however fails to render accurate results, whereas
in Run3, where the initial guesses are given by
the GA, the NAG optimisation produces close to
optimal results.

If we consider now the fully specified situation
encountered in the three-step inversion technique
of Section 5.1, namely we consider that six pres-
sure readings are available in the first sample,
then, unless a close to optimal initial guess is
prescribed, the NAG routine does not provide
the optimal, or close to the optimal, solution.
This is due to the fact that such a situation im-
plies a degree of underspecification for the sec-
ond sample. For example, in ranges of search
such as the ones prescribed for the GA, namely

Table 5: Numerical results of the NAG inversion
for the case (v) and different initial guesses for the
parameters.

Run1 Run2
Value Exact Guess Results Guess Results

kX
1 5 4.75 5.50 4.95 5.13

kX
2 1 1.20 1.13 0.95 1.04

θ X 30◦ 27.0 34.61 29.0 31.35

kY
1 5 5.20 4.50 4.95 4.50

kY
2 1 0.75 0.98 0.95 0.99

θY 60◦ 62.0 58.14 59.0 58.19
x f

b = x f
t 1.33 1.21 1.35 1.31 1.33

Run3
Value Exact Guess Results

kX
1 5 5.19 4.95

kX
2 1 1.04 0.98

θ X 30◦ 31.02 29.46

kY
1 5 4.77 5.00

kY
2 1 1.00 1.00

θY 60◦ 59.06 60.02
x f

b = x f
t 1.33 1.33 1.33

from Run1 of Tab. 2, a good initial guess such as(
kX

1 ,kX
2 ,θ X

)
= (5.25,0.75,28.0),

(
kY

1 ,kY
2 ,θY

)
=

(4.75,0.65,66.0) and x f
b = x f

t = 1.31 produces
good estimates for the principal hydraulic con-
ductivities of only the first sample, kX

1 and kX
2 ,

and the angle, θ X , of the form
(
kX

1 ,kX
2 ,θ X

)
=

(5.00,1.00,30.00). However, a poor initial
guess such as

(
kX

1 ,kX
2 ,θ X

)
= (4.6,0.6,21.0),(

kY
1 ,kY

2 ,θY
)

= (5.4,0.4,51.0) and x f
b = x f

t = 1.51
produces inaccurate results within the first sam-
ple, such as

(
kX

1 ,kX
2 ,θ X

)
= (4.50,0.70,20.00), as

well as in the second sample. This situation is
not encountered by the GA optimisation, which
combines effectively the information in the same
domain of search to produce close to optimal so-
lutions for the hydraulic parameters in the first
sample. Similar conclusions can be drawn with
respect to the retrieval of the hydraulic properties
of the second sample by reversing the flow direc-
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tion. Then, following the third step in this inver-
sion procedure, we have an overspecified situation
for determining the contact surface location. Pro-
vided that good initial guesses are used in the first
two steps of the inversion, thus ensuring good es-
timates of the hydraulic parameters for both sam-
ples, the contact surface location can usually be
determined with high accuracy, as in the case of
the GA inversion.

7 Conclusions

In this paper we have dealt with the identification
of the hydraulic conductivity tensors and the con-
tact surface location for a composite anisotropic
material. The success of the GA retrieval depends
on the degree of specification of the unknowns.
Whilst in an underspecified situation the GA fails
to render accurate results, when sufficient infor-
mation is prescribed the GA produces stable and
accurate results. The GA also deals with the sit-
uation when just one of the sets of parameters
describing the components of the hydraulic prop-
erties of one of the samples is fully specified or
overspecified, in which case the inversion can be
performed in steps by means of reversing the di-
rection of the flow through the butted sample. In
a fully specified situation, a traditional NAG op-
timisation technique behaves, for this particular
problem, better than the GA optimisation. How-
ever, whenever some degree of underspecifica-
tion is encountered the GA usually produces bet-
ter results. A method of producing good results
when an underspecified and realistic situation is
encountered, namely with a reduced number of
ports, is to combine the GA with the NAG optimi-
sation technique, where the GA is applied initially
to provide a good initial guess for the NAG algo-
rithm. Although noise in the measurement data
has not been considered in this paper, from previ-
ous studies [Mustata, Harris, Elliott, Ingham, and
Lesnic (1999); Mustata, Harris, Elliott, Lesnic,
Ingham, Khachfe, and Jarny (2001)] we believe
that accurate results for the type of inverse prob-
lem studied here will still be achieved in such sit-
uations.
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