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Finite Element Analyses of Dynamic Problems Using Graphics Hardware

Atsuya Oishi' and Shinobu Yoshimura®

Abstract: This paper describes the finite ele-
ment analyses of dynamic problems using graph-
ics hardware. The graphics hardware, known
as GPU that is an acronym of Graphics Pro-
cessing Unit, was first developed only for pro-
cessing 3D computer graphics. However it has
obtained both flexible programmability using a
high-level shader programming language such as
OpenGL Shading Language (GLSL), and has also
obtained fast numerical processing ability of over
160 GFLOPS that is much faster than CPU. In this
paper, GPU is utilized for the finite element anal-
yses of dynamic problems. Two different compu-
tational tasks in the dynamic finite element analy-
ses are implemented to the GPU. One is the con-
struction of element stiffness/mass matrices and
the other is the calculation of time integration
based on an explicit scheme. Fundamental for-
mulations of the implementations are described
in detail, and their basic performance is tested
through sample analyses. The results indicate that
GPU can perform dynamic finite element analy-
ses faster than CPU.

Keyword: Graphics Hardware, Graphics Pro-
cessing Unit, Finite Element Method, Dynamic
Problem, Explicit Scheme, Element Matrix.

1 Introduction

There has always been strong demand for
high level 3D computer graphics in various
fields such as games, animation and CAD/CAM
[Kawai (2004)], and it has promoted very rapid
progress of graphics processing hardware on PCs.
Graphics hardware formerly had only hardware-
acceleration for several fixed functions. Today’s
graphics hardware, however, has come to be pro-
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grammable by users and is called GPU, Graph-
ics Processing Unit, after CPU, Central Process-
ing Unit [Fernando (2004), Pharr (2005)].

As GPUs were specially designed to process char-
acteristic tasks of computer graphics fields where
a very large amount of pixels should be con-
currently processed by almost the same opera-
tions among them, they are suitable for paral-
lel processing of a large amount of data. Latest
GPUs are some of the most powerful computa-
tional chips that are broadly available, in other
words they are "commodities". In addition, the
rate of improvement in the computational power
of GPUs is much higher than that of CPUs.

The flexible programmability and strong compu-
tational power of today’s GPUs make it reason-
able to use them for general numerical process-
ing of various applications other than graphics.
This is called GPGPU, General Purpose GPU
[Fernando (2004), Pharr (2005), Owens, Luebke,
Govindraju, Harris, Kriiger, Lefohn and Purcell
(2005), Rumpf and Strzodka (2006)].

Several GPGPU researches have been done in the
field of CAE (Computer Aided Engineering) re-
lated simulations. Though applications based on
FDM (Finite Difference Method) [Harris, Bax-
ter III, Scheuermann and Lastra (2003)], parti-
cle based method such as SPH (Smoothed Parti-
cle Hydrodynamics) [Miiller, Charypar and Gross
(2003)] and LBM (Lattice Boltzmann Method)
[Li, Wei and Kaufman (2003)], mass - spring
method [Georgii and Westermann (2005)] are
popular, applications based on the FEM (Finite
Element Method) [Rumpf and Strzodka (2001),
Wu and Heng (2004)] are very few in the GPGPU
field. The FEM for solid or fluid problems does
not show essential parallelism in contrast to parti-
cle based methods, and also it often tackles prob-
lems with complex geometry using unstructured
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meshes, which results in irregular, unstructured
sparse matrix that is hard to get high performance
in GPU computing. However, the FEM is the
most important scheme in the CAE-related fields
because of its flexibility in representing both com-
plex geometry of an analysis domain and com-
plex boundary conditions required in those fields.
Therefore, from a practical viewpoint, it is worth
implementing several procedures of the FEM on
GPUs in order to make full use of their computa-
tional power.

In this paper, two key processes of the finite el-
ement analyses of dynamic problems are imple-
mented on GPUs. One is the construction of ele-
ment stiffness/mass matrices for almost one mil-
lion elements, and the other is the calculation of
time integration based on an explicit scheme for
large scale problems, e.g. approximately one mil-
lion DOFs (Degrees of Freedom). Comparing the
computational nature of each process, these two
processes are totally different and needs differ-
ent computational techniques to be implemented
on GPUs. The fundamental formulations of these
implementations are described in detail, and their
basic performance is tested through sample anal-
yses.

2 Graphics Hardware
2.1 Graphics Processing Unit

In our study, GeForce 7800GTX of Nvidia Corpo-
ration is used as the target GPU, whose theoretical
peak computation speed is over 160GFLOPS that
is more than ten times higher than that of Pen-
tium 4 630 CPU. Both the GPU and its graphics
memory are mounted on a graphics board, i.e. an
extension board to be installed into the graphics
extension bus of PC, such as AGP, PCI-Express.
Though high-speed, wide-band graphics memory
ranging from 256MB to 512MB is usually avail-
able, it is impossible to extend its size in contrast
to the expandability of the main memory of CPU
up to 4GByte.

As GPU was originally developed only for com-
puter graphics, one must use the so-called graph-
ics API, such as OpenGL [OpenGL ARB (2005)]
and DirectX [Jones (2004)], to control the present
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GPU. Though DirectX is the proprietary API
of Microsoft, OpenGL was originally developed
by Silicon Graphics and is in the control of
the OpenGL ARB (Architecture Review Board),
an independent consortium consists of a lot of
graphics-related companies. OpenGL is now sup-
ported on various systems, such as Xwindow on
Linux/BSD and Microsoft Windows.

A program that describes operations to be done
by GPU is called a shader. The shader is writ-
ten in the shader language, such as Cg [Fernando
and Kilgard (2003)], HLSL[St-Laurent (2005)]
and GLSL (OpenGL Shading Language) [Rost
(2006)]. Cg is developed by Nvidia and is used
with API, OpenGL or DirectX. GLSL is the stan-
dard for OpenGL.

2.2  Numerical Computation on GPU

Textures, data structure similar to two dimen-
sional array for CPU and usually used for storing
image to be mapped onto surfaces of objects, are
used to store input/output data during execution
of numerical computation on GPU. An element
of a texture, called a texel, can store up to four
32bit floating point data in the case of the tex-
ture of RGBA type, where RGB is the acronym of
three kinds of colors, Red, Green and Blue, and A
is transparency value, Alpha.

Operations on the data in the input textures are
programmed in the shader and executed by ren-
dering the data onto the output texture of the same
size as input textures using the shader. Though
operations only on a single texel are described in
the shader, the operations are executed over all
texels in the texture in a SIMD (Single Instruc-
tion Stream and Multiple Data Stream) parallel
processing manner [Dowd (1993)]. For example,
if 512x512 RGBA input texture is rendered onto
512x512 RGBA output texture using the shader
that outputs the each input data multiplied by 2,
almost one million (512x512x4) multiplications
by 2 are to be executed.

Results calculated by a shader are written into
the frame buffer as default, which is directly con-
nected to the display and can store only 8bit data
per color. In order to write and store 32bit data,
the shader output should be written into the spe-
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cially arranged offscreen buffer. In the OpenGL,
FBO extension (GL_EXT_Framebuffer_Object)
[Astle (2006), Boreskov (2006)], which is sup-
ported in OpenGL 2.0 or later, makes it possible
for a shader to output 32bit data into textures. Us-
ing textures as offscreen output buffer also makes
it easier to reuse the results of one shader as the
input for another shader. Basic configuration for
numerical computation by a shader on the GPU
is illustrated in Fig. 1. In this figure, several tex-
els are colored to make things clear: data in the
colored texels in the input texture are processed
by the shader and corresponding results are writ-
ten into the texels of the same color in the output
texture.

Input Texture

. Shader

Output Texture

Figure 1: Numerical Computation in GPU

GPUs have very poor I/O capabilities. In stan-
dard implementations of numerical computation
on GPUs, the input data for GPU computing are
prepared by CPU and transferred to the GPU
through graphics bus. The output data of GPU
are also transferred to CPU memory through the
graphics bus to be saved into disks or to be pre-
pared for following computation on the CPU or
the GPU. Therefore the overhead due to the data
transfer should be taken into account to achieve
better performance. The GPU can do one job,
while the CPU does another job, in other words
the GPU and the CPU can work concurrently.
This suggests that we should regard the PC with
the GPU embedded as the multiprocessor system

consisting of two processors, the CPU and the
GPU. So, several techniques to achieve better per-
formance in the parallel processing PC clusters,
such as using large computation granularity and
making transfer frequency as low as possible, also
apply to the CPU-GPU system.

Numerical computation on GPU by shaders has
the following limitations:

(1) Precision: Calculation in double precision, is
not supported by today’s GPU hardware.

(2) Shader Length: There is a limitation on the
number of instructions in a shader. There also
exist some limitations related to the complex-
ity of shaders and the number of variables
available at once.

(3) Number of Input Data: There exists a lim-
itation on the number of textures accessible
from a shader at once. This results in setting
a practical limit on the number of input data
that a shader can access.

(4) Number of Output Data: The number of cal-
culated results written into the output texture
by a shader should not be more than four per
texel.

(5) Data Transfer Rate: Data transfer rate from
the GPU to the CPU through graphics bus is
slow. It is slower than the transfer rate in the
reverse direction, from CPU to GPU.

3 Calculation of Element Stiffness/Mass Ma-
trices Using GPU

3.1 Element Stiffness/Mass Matrices

Using the finite element method [Bathe (1996)],
discretization of the equilibrium equation of a
static structural problem with respect to space di-
mensions results in the following equation,

[K]{u} = {f} (1)

where {u} is a displacement vector, [K] a global
stiffness matrix and {f} an external force vec-
tor. Discretization of the motion equation of a
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dynamic structural problem with respect to space
dimensions leads to the following equation,

(M {ii} + [K]{u} = {f} )

where {ii}, {u} are an acceleration vector and a
displacement vector respectively, [M],[K] a global
mass matrix and a global stiffness matrix respec-
tively, and { f} an external force vector.

The global stiffness/mass matrix is constructed by
summing up all the element stiffness/mass matri-
ces as follows:

K= 3 ] @

M =3 ] @

where n is the number of matrices. The element
stiffness/mass matrices are calculated by the fol-
lowing equations respectively,

)= [ 1B (D] Bldv ®

] = [ IV V] v ©

where [N], [B], [D], p, v¢ are a matrix of shape
functions, a strain-displacement matrix, a stress-
strain matrix, a mass density and volume of an
element, respectively.

For some 3D elastic solid elements, the number of
nodes per element, the number of DOFs per ele-
ment and the size of the element matrix are spec-
ified in Table 1. The linear tetrahedron element
and the linear hexahedron element are illustrated
in Fig. 2(a) and 2(b) respectively.

Table 1: 3D Solid Elements

Element Type Nodes DOFs  Matrix Size
Linear Tetrahedron 4 12 144 (12x12)
Quadratic Tetrahedron 10 30 900 (30x30)
Linear Hexahedron 8 24 576 (24x24)

Quadratic Hexahedron 20 603600 (60x60)

There are two kinds of mass matrix: a consistent
mass matrix and a lumped mass matrix. The con-
sistent mass matrix is the one calculated by Eq.
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Figure 2: Solid Elements

(6). The lumped mass matrix is made from the
consistent mass matrix by setting each diagonal
component as the sum of the correspondent row
of the consistent mass matrix and non-diagonal el-
ements as 0. The ij-th component of the lumped
mass matrix mlL] is calculated from the ij-th com-
ponent of the consistent mass matrix m;; as fol-
lows:

my =Y my, mh=0 (i} )
J

The numerical integration in Eqgs. (5), (6) is per-
formed using Gauss-Legendre method in which
the integrated value is approximated by the sum of
the value of the integrand multiplied by the weight
factor at several integration points. This means
the workload of the numerical integration is pro-
portional to the number of integration points.

3.2 Implementation to GPU
3.2.1 Input Data

Coordinate values of nodes that define element
and material properties are required for comput-
ing the element stiffness/mass matrices of the
corresponding element. These input data should
be set in several textures to be accessed from a
shader. For example, to compute the element
stiffness matrix of the 8-noded linear hexahedral
solid element (Fig.2(a)), totally 24 node coordi-
nates (three coordinates per node) and two ma-
terial properties, i.e. Young’s modulus and Pois-
son’s ratio, are required. To compute the element
mass matrix, a mass density instead of Young’s
modulus and Poisson’s ratio is required as ma-
terial property. This results in 26 input data for
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stiffness matrix and 25 input data for mass matrix.
Hereafter, to make description clear and compact,
we focus on the case of 8-noded linear hexahedral
solid element.

The proposed GPU computing of element matri-
ces reads necessary data from several input tex-
tures, and outputs results to the output buffer /
texture of the same size as input textures. Both
input textures and the output texture have one to
one mapping with elements. Every data in a texel
in each input texture, which corresponds to an
element, is processed by the shader, and its re-
sults are written into the texel of the same tex-
ture coordinates as the input texel in the output
texture. This is illustrated in Fig. 3. For in-
put textures, RGBA-type textures that can store
up to four 32bit floating-point data per texel are
used. The sizes of input textures are set to
make the number of texels in each input tex-
ture just more than that of total elements: e.g.
the texture size should be more than 1000x1000
for totally one million elements. The num-
ber of input textures should be set just more
than | (number of input data) /4+0.9], where
| | means the floor function, so that they can store
all the input data in the textures.

Output Texture
Figure 3: Element Matrix Computation by Shader

3.2.2  Output Data

The proposed GPU computation of an element
matrix writes the results, i.e. matrix components,
into the texel corresponding to the element in the
output texture as shown in Fig. 3. However one
texel in the output texture of RGBA-type can store
only four floating point data while an element ma-
trix consists of more than a hundred of compo-
nents. So a lot of shaders are needed to output all
the components of one complete element matrix.
To output 576 (=24 x24) components of the stiff-
ness matrix of an 8-noded linear hexahedral solid
element, for example, 144 (=576/4) shaders are
needed. Each shader, from the shader0O01 to the
shader144, outputs only four components of the
element matrix as follows:

shader001 outputs k]_y] Lk 2 ki ,3,]{1 A

shader002 outputs k; 5 ki 6 ki s ki 8

shader143 outputs k4,17, k24,18, k24,19, k24 20,
shader144 outputs k»4 21, k24,22, k24,23, k24 24.

A pseudo code for Shader0O1, for example, is
shown as follows:
{ //Pseudo Code for Shader001
Several Texture Arguments
{
Calculation of Shape Functions
Calculation of Derivatives of Shape Functions
Calculation of Jacobian Matrix
Calculation of Inverse Jacobian Matrix
Calculation of [B] matrix

gl_FragColor.r = ky;//Output k|
gl_FragColor.g = k,//Output k1,
gl_FragColor.b = k13//Output k13
gl_FragColor.a = k14//Output k4
}
}

Codes for other shaders are almost the same as the
code above, except for the output part. Each of the
shaders outputs four different components.

While computing element matrices on a CPU
needs looping over all elements, it is not neces-
sary to loop over all elements in computing them
on a GPU. This is because processing every tex-
els by shaders, where the total number of texels



120 Copyright (©) 2008 Tech Science Press

is equivalent to that of total elements, equals to
looping over all elements. Looping over shaders
that output different components of matrix respec-
tively, however, is mandatory on the present im-
plementation because each shader can output only
a small portion of the whole components of ele-
ment matrix. Loop count of the shader loop de-
pends not on the number of elements but on the
number of matrix components, which depends on
element type.

The following pseudo code shows the usual im-
plementation of the computation of element ma-
trices on a CPU.

for(k: all elements){
for(i,j: all components of a matrix){
output k;; of the k-th element

}
}

And the following pseudo code shows our imple-
mentation of the computation of element matrices
on a GPU.

for(i,j: all components of a matrix){
for(k: all elements){

output k;; of the k-th element

}
}

Inner loop in the GPU code above is actually per-
formed in a single shader with SIMD parallelism.

When an element matrix is symmetric, only
the upper triangular matrix or the lower one is
needed. This can significantly reduce the number
of shaders required to output necessary compo-
nents of a matrix. To output 300 upper triangular
components of the symmetrical stiffness matrix of
an 8-noded linear hexahedral solid element, for
example, 75 (=300/4) shaders are needed. Each
shader, from the shader0O1 to the shader(75, out-
puts only 4 components of the element matrix as
follows:

shader0O1 outputs k]_y] L ki 2 ki ,3,]{1 A

shader002 outputs k; 5 ki 6 ki s ki 8

shader(Q74 outputs kp; 23, ko 245 kzg_yzz, k22_23 R
shader075 outputs k22_24, k23,23, k23,24, k24,24.
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There are two kinds of element mass matrices,
consistent mass matrices and lumped mass ma-
trices, and different shaders should be used, re-
spectively. For computing consistent mass ma-
trices, almost the same strategy as that for stiff-
ness matrices, where all the components of the
matrix are obtained using one shader after an-
other, is used. The number of components of the
consistent mass matrix that should be computed
and written, however, can be significantly smaller
than that of the stiffness matrix because there are
several fixed-to-zero components in the consistent
mass matrix that should be omitted from comput-
ing/outputting. By utilizing this, the number of
shaders required can be significantly reduced. For
the consistent mass matrix of an 8-noded linear
hexahedral solid element, 48 shaders are enough
for computing and writing non-zero components
of the matrix in contrast to 75 shaders for the stiff-
ness matrix, and utilizing symmetry further re-
duces to 27 shaders.

A lumped element mass matrix is a diagonal ma-
trix and has only as many non-zero components as
the DOFs per element. So extremely few shaders
are enough for computing and writing lumped
mass matrices. To output 24 components of the
lumped mass matrix of an 8-noded linear hexa-
hedral solid element, for example, only 6 shaders
are needed as follows:

shader001 outputs mf |, m5 ,,m5 5, mf 4,

L L L L
shader006 outputs my, 21:M52 22, M3 23, M54 4

The multiple_render_targets (MRT), which en-
ables writing shader output to multiple output tex-
tures simultaneously, is available in Open GL Ver-
sion 2.0 or later [Rost (2006)]. Using both MRT
and FBO makes it possible for a shader to write
data into four output textures by the latest driver
at present. This means that we can reduce the
number of shaders to one fourth. Fig. 4 shows
schematic illustration of the element matrix com-
putation using MRT. In the case of an 8-noded
linear hexahedral solid element, the number of re-
quired shaders utilizing symmetry is 19 for com-
putation of stiffness matrices, 7 for computation
of consistent mass matrices and 2 for computation
of lumped mass matrices.
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Figure 4: Computation using Multiple Render
Targets

3.3 Performance Evaluation

Performance of the GPU computing of element
matrices is tested in the following environment:

(1) CPU,Mem.: Pentium4 3.0GHz + 4096MB
Memory

(2) GPU: NVIDIA GeForce7800GTX 256MB

(3) OS: Linux Fedora Core 4 + Xwin-
dow(X11R6)

(4) Graphics Driver: NVIDIA 81.78
(5) APIL: OpenGL 2.0

(6) Shader Language: GLSL

Four meshes which consist of various number of
8-noded linear hexahedral elements are used for
performance evaluation. Dividing a cubic domain
into cubic elements of the same size makes all
meshes. As for material properties, those of steel
are used. The total number of elements, that of
nodes and that of DOFs of 4 meshes are listed in
Table 2.

Figs. 5, 6, and 7 show the results of performance
evaluation for computation of symmetric stiffness
matrices, symmetric consistent mass matrices and

Table 2: Tested Mesh
Total Elements Total Nodes Total DOFs

Case 1 32768 35937 107811
Case 2 110592 117649 352947
Case 3 262144 274625 823875
Case 4 884736 912673 2738019

lumped mass matrices, respectively. In these three
figures, the horizontal axis represents the number
of elements of the tested mesh, while the verti-
cal axis does the time consumed for computation.
The red or solid line with solid circular marks
represents GPU computing without MRT, and the
solid line with square marks represents the GPU
computing using MRT with four output textures.
The dashed line with open circular marks that rep-
resents the CPU computing is also shown for the
purpose of comparison. Equivalent level of code
optimization is applied to both CPU and GPU
code.

It can be seen from Fig. 5 that the more elements
involved, the faster computing element stiffness
matrices by GPU with MRT becomes in com-
parison with that by CPU. Fig. 6 shows similar
tendency, but with smaller advantage of GPU be-
cause of much less computational intensity in the
mass matrix computation compared with stiffness
matrix computation. Fig. 7 shows much greater
advantage of GPU for lumped mass matrix com-
putation that uses only 7 (without MRT) or 2 (with
MRT) shaders. Two lines related to GPU overlap
each other in the graph. These results indicate that
the more elements, the more intensive computa-
tion and the less shaders are involved, the more
advantage the GPU shows in comparison with the
CPU.

CPU becomes superior to GPU when the total
number of elements is small. There are two
main causes of this tendency. Firstly, high-
speed cache memory of CPU is very efficient for
handling small amount of data. Secondly, the
high latency of shader execution degrades effec-
tive computation speed for a small amount of
data/computation. The latter cause also explains
the slower increase in GPU computation time
compared with CPU for increasing number of el-
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ements.
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Figure 5: Measured Performance: Stiffness Ma-
trix
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Figure 6: Measured Performance: Consistent
Mass Matrix

3.4 Discussions
3.4.1 Textures

There exists a limit of the number of textures ac-
cessible from a shader at once. As for Nvidia
GeForce6 series or later, for example, this limit
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Figure 7: Measured Performance: Lumped Mass
Matrix

is no more than 16 that may be insufficient to
calculate element stiffness/mass matrices of such
elements that consist of tens of nodes or needs
many material properties. The limit of the num-
ber of accessible textures in these cases can be
avoided by using input textures that are several
times larger than output textures as shown in Fig.
8. In Fig. 8, the shader fetches data in four con-
tiguous squarely aligned texels in input textures at
once and the calculated results are written into the
corresponding texel in the output texture.

Input Textures

Output Texture

Figure 8: Computation with Reduction
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3.4.2 Graphics Memory

Graphics memory on board cannot be so large as
CPU main memory; itis usually 256MB - 512MB
on today’s graphics boards. Considering the con-
struction of element stiffness matrices of 8-noded
linear hexahedral solid element, storing 26 32bit
floating point values in total, 24 for node coordi-
nates of 8 nodes and 2 material properties, require
104Byte memory per element, and it indicates
104MB for one million elements. This means
that the maximum number of elements available
at once by the GPU with 256MB graphics mem-
ory is, assuming 8-noded linear hexahedral ele-
ments and the present implementation, just over
one million considering memory consumed for
FBO output textures. When several millions or
more elements should be computed, they will be
divided into several sets of elements less than one
million and shaders are to be repeatedly executed
to calculate each set of elements in turn.

Another implementation of element matrix calcu-
lation on GPUs, where node coordinate data are
not previously distributed to texels of correspond-
ing elements, is possible. In this implementation,
shown in Fig. 9, coordinate data of all nodes are
stored sequentially according to the node number
in one texture with just more texels than the to-
tal number of nodes, which we call a node tex-
ture. Several textures with just more texels than
the total number of elements, where each texel
represents corresponding element, are also used to
store pointers to texels in the node texture, texture
coordinates or node number of the nodes in the
particular element identified by the texel. While
this implementation uses less memory, it causes
a lot of random access over the node texture to
fetch coordinate data of nodes on execution and
may degrade total performance. For our exam-
ple mesh, this implementation shows performance
degradation by almost 10 % for computing stift-
ness matrices.

3.4.3 Shader Length

There also exists a limit of the number of instruc-
tions in a shader. Though this limit for old GPUs
was too small to calculate element matrices of
FEM, it has become large enough, e.g. 65535

.. Shader

Output Texture

Figure 9: Memory-saving Implementation

for GeForce6 series or later, for element matrix
calculation of elements of basic type. However,
it is possible that total instruction count exceeds
the limit for higher order or complicated elements.
When it happens, we should try to reduce the in-
struction count of a shader by limiting the number
of the output data per shader, limiting the inte-
gration points to be calculated per shader, replac-
ing some operations with built-in functions, and
so on. Even if instruction count is cut down un-
der the limit, another limit on the temporary regis-
ter, which is tough to be avoided when it has once
arose, may still prevent the shader from working
[Lengyel (2003)].

4 Time Integration Using GPU

4.1 Time Integration Loop on GPU

Discretization of motion equation of structures of
Eq. (2) with respect to time using the central dif-
ference scheme leads to the following equation:

1
A M =
2
(- ([K] L [M]) (u,
1
- A Mo ©

where {u}, ., {u},, {u},_, are displacement
vectors at n+1-th, n-th and n-1-th time steps, re-
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spectively, and At is a time interval. Using the
lumped diagonal mass matrix as [M] in the Eq.
(8) results in an explicit time integration scheme,
which needs no matrix inversion to solve the
equation.

In this paper, the explicit time integration scheme
utilizing Eq. (8) and a diagonal mass matrix is
implemented on the GPU. Eq. (8) can be trans-
formed into the following equation:

{whpr = {3, = (K {ud, = {u}, ©

where { '}, and [K’] are defined using the identity
matrix [I] as follows.

{F'}, = ()M~ {f}, (10)

[K'] = (At)* [M] " [K] -2 [1] (11)

Multiplying {f},, [K] from left by the inverse of
the lumped diagonal mass matrix [M] ™' in Egs.
(10), (11) is only a simple row-wise scalar mul-
tiplication by the reciprocal of the correspondent
diagonal component of [M].

From the right-hand side of Eq. (9), it can be seen
that the explicit time integration only consists
of two kinds of computations: matrix-vector
multiplication, [K’] {u},, and addition/subtraction
of vectors. We have implemented the time
integration scheme, Eq. (9) on the GPU by
applying three shaders in turn. The three shaders
are applied by the following order:

Shader1: the shader that multiplies the vector{u},
by the matrix [K']

Shader2: the shader that performs
adding/subtracting vectors{f'}, — [K'|{u}, —
{u}n—l

Shader3: the shader that performs copying of
vectors {u}, — {u}, 1, {u},, — {u},

Firstly, [K']{u}, is calculated by Shaderl. Sec-
ondly, the right-hand side of Eq. (9) is calcu-
lated by Shader2. This means that time integra-
tion calculation of Eq. (9) on the GPU actually
needs only two shaders. Finally, copying the vec-
tor {u}, to the vector {u}, , and then copying the
vector {u},, to the vector {u}, are performed
by the Shader3 to proceed by one time step. A
flowchart of this procedure is illustrated in the Fig.
10.
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In our implementation, updating the force vector
{f}, at each time step is done by firstly updating
the corresponding one-dimensional array on the
CPU that represents { '}, in Eq. (10) then load-
ing the array to the texture on the GPU by issu-
ing the corresponding OpenGL call, glTexSublm-
age2D(). After completing time integration pro-
cess by one time step, the OpenGL call, glRead-
Pixels(), is called and the {u}, vector is trans-
ferred to the correspondent array on the CPU if
necessary.

-E
=
—

[ Set{r}, on CPU|

&

{Load{f”}n to GPU} (glTexSubImage2D)

-

(K'fu}, | (Shader 1)
||

dyor < 1}, ~ K Word, ~l},, | (Shader)

Time Loop

=
|, > fud, | (Shader3)
-

| {udyu =1}, | (Shader3)
=

{ Save {u},to CPU} (glReadPixels)

END

Figure 10: Flowchart of Explicit Time Integration
on the GPU

4.2 Matrix-Vector Multiplication on GPU

Both addition and/or subtraction of vectors and
copying one vector to another can be imple-
mented on the GPU as the operation on the data
in a texel of one texture and the data in the
texel located at the corresponding coordinates
of the other texture. So the shader2 and the
shader3, which perform these operations, are easy
to achieve high efficiency. Multiplication of a ma-
trix and a vector is, however, ill-suited to GPUs
because it is a set of inner-product computations
between a row vector of the matrix and the vec-
tor, which requires global access over whole com-
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ponents of vectors. In fact, overall performance
of the time integration on the GPU depends on
the performance of the shaderl, i.e. the matrix-
vector product shader. An example of a funda-
mental technique for efficient matrix-vector prod-
uct is given below.

Consider the following matrix-vector product
computation:

by ail arp aiz ais\ [x
> bl .o |axn axn a3 au||x
b= =AX=
b3 a1 azyp az ax | | x3
by as1 Q4 a43  A44) \X4
(12)

Normal implementation of this equation on the
CPU uses doubly nested loops, where scalar prod-
uct of each row vector of the matrix [A] and the
vector X is performed in the inner loop. Eq. (13)
also shows this order of computation: scalar prod-
uct computation shown in every dashed box is
done in the inner loop one after another.

by = ‘ anxi +anxy +ajzxz +axs ‘

by = ‘ a1X1 + axx +a3x3 + axxs ‘

(13)

bz = ‘ az x| + azxnxy +azzxz +azaxy ‘

by = ‘ a41X1 + aanxy + a43x3 + asaxs ‘

Usual implementation of Eq. (12) on the GPU
takes, in contrast, a totally different approach,
where all scalar products of every row vector of
the matrix [A] and the vector X are incremen-
tally and simultaneously calculated. Eq. (14) also
shows this approach: each dashed box has a corre-
sponding shader that performs single scalar mul-
tiplication and adding the result to the sum at the
last step, calculations in these dashed boxes are
sequentially done from left to right using the same
shader repeatedly.

by =|ayixy |+ |aipxy |+ |a3xs |+ |a1axs
by =|axixy |+ |axnxy |+ |axnxs |+ |auxs (14)
b3 =|azixy |+ |azxz |+ |azsxz |+ |azaxy
by =|asixy |+ |asxy |+ |as3x3 |+ | asaxs

To realize this approach, the matrix [A] is decom-
posed into four column vectors and stored as sepa-
rate textures of 2x2 size, as shown in Fig. 11. One

component of vector Xafter another is given to the
shader as a parameter. Using these textures, cal-
culations in each dashed box, which is performed
by one shader, becomes the operation on the data
of texels located at the same coordinates of tex-
tures, which can be efficiently performed on the
GPU.

aiy | az || a2 | ax || a1z | a3 || di4 | ax
asy | a41 || a3 | 42 || a33 | 43 || A34 | 444

Figure 11: Matrix Decomposition into Textures

The stiffness matrix of the FEM is usually a
sparse matrix in which non-zero components re-
sides only in the neighborhood of its diagonal.
Researches have been done for efficient method
of matrix-vector product using this type of sparse
matrix on the GPU [Bolz, Farmer, Grinspun and
Schroder (2003), Kriiger and Westermann (2003),
Larsen and McAllister (2001)]. Among them,
Boltz, Farmer, Grinspun and Schroeder (2003)
proposed an approach that uses a texture that se-
quentially stores only the non-zero components
of the original sparse matrix. Kriiger and West-
ermann (2003) proposed an efficient implementa-
tion for sparse matrix of banded structure. This
approach decomposes the banded sparse matrix
into several textures, where each texture stores all
data on one diagonally aligned line in the original
matrix. This kind of matrix is typical in the finite
difference method (FDM). For sparse matrices of
this type, this approach is very efficient because
the each DOF of the system directly corresponds
to the same locations of textures. However, the
typical matrix of the FEM with unstructured grid
is a banded sparse matrix of different type than
that of

FDM: a lot of zero components are usually dis-
tributed randomly in the banded area and it can
degrade the efficiency of the approach for a
strictly banded matrix. In this research, we have
implemented a new approach that is based on
Kriiger and Westermann’s approach but improved
for FEM matrices. Our strategy of dividing orig-
inal sparse matrix into several textures is illus-
trated in Fig. 12. Firstly, non-zero components
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Figure 12: Schematic Diagram of Matrix Storage

in each row are sampled and rearranged from the
left end of the row (Fig. 12 (b)). Secondly, each
column with one or more non-zero components
is stored into textures of which the total number
of texels equals to the column size of the original
matrix (Fig. 12(c)).

The number of textures required to store all non-
zero components of the matrix, which directly de-
cides the number of shaders required that dom-
inates performance, depends on the maximum
number of non-zero components per row. If a
few rows of the original matrix have much more
non-zero components than others, it results in a
lot of textures in which most texels only stores
zero. This situation is not rare in the FEM with
unstructured mesh, and it directly leads to poor
computational efficiency. To overcome this, we
propose a new technique of sorting rows of the
original matrix and performing partial rendering
to enhance computational performance by reduc-
ing useless calculations with zero. This method is
illustrated in Fig. 13 for the same matrix used in
Fig. 12 and its procedure is summarized as fol-
lows:

(1) All the non-zero components in each row are
sampled and rearranged from the left end of
the row, as shown in Fig. 13 (a). This process
is the same as explained in Fig. 12.

(2) The rows of the matrix are rearranged in
an ascending/descending order according the
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number of non-zero components in each row
as shown in Fig. 13 (b). The vector is also
rearranged by the same order as rows of the
matrix.

(3) Each column vector of the matrix is stored
into the texture, as shown in Fig. 13(c). In
these textures, non-zero data do not distribute
themselves randomly over the whole domain
of the texture but resides only in the partial
section of the texture because of the rear-
rangement of rows in procedure (2). This is in
contrast to Fig. 12(c), where texels that have
zero data and texels that have non-zero data
are randomly mixed in the texture.

(4) Computation is executed by rendering the
minimum square that covers all non-zero tex-
els. Restricting the rendering area to a small
fraction of the textures omits a lot of useless
computation otherwise to arise in the texels
of zero value, and will enhance performance
significantly.

Kriiger and Westermann’s approach to sparse ma-
trices uses vertex shaders to omit redundant com-
putations with zero components. But, in contrast,
our approach does the equivalent only by using
fragment shaders combined with reordering the
rows of the matrix and reducing the rendering
area. The matrix storage format in our approach is
equivalent to the Jagged Diagonal Storage [Saad
(1989)].

K1,1K1,3 K1,1K1,3

K2,2|K2,3) K22|K2,3
K3,1|K3,2|K3,3|K3,5K3.6] Ks,7|Ks 8|
K4,4|K4,5|K4.6| |:> K4,4|K4,5/K4 6,
Ks,3|Ks5,4|Ks5,5|Ks5,6/K5,7] K7,5K7,6/K7,7K7.8
Ks,3|Ks,4|Ks,5/Ke 6|K6.7] K3,1|K3,2/K3,3|K3,5/K3.6
K7,5/K7.6|K7,7|K7.8] Ks,3|Ks,4/Ks,5|Ks,6/K5.7
Ks,7|Ks,8 Ks,3|Ke,4/Ks,5[K6,6/K8,7]

(a) ‘/“// / \(b)
Il R R K1,3|K2,3|Ks,8K4,5/] r
K7,5|K3,1|K5,3Ké 3| K.6/K.2lKs 4 K6 4. | K7,8/K3,5|K5,6|K6 6| | | K3,6/K5,7|Ks,7] |

(c) |:| ‘Renderig Area

Figure 13: Schematic Diagram of Matrix Storage
with row sort
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4.3 Performance Evaluation

For performance evaluation, elastic wave propa-
gation in solid is calculated by the dynamic ex-
plicit FEM on the GPU and its speed and accu-
racy are tested. An analysis domain is assumed
to be a cubic with all the four corner nodes fixed,
and sinusoidal force is applied at the mid area of
the upper surface. All elements are 8-noded linear
hexahedral solid elements of Imm x Imm x 1mm
cube, material properties are assumed to be those
of steel, and the time step is set to be 0.01us. Four
kinds of meshes with DOFs varying from 14739
of CASEI to 823875 of CASE4, which is large
enough for practical application, are tested. Spec-
ifications of these meshes are listed in Table 3.
All tests are done in the environment described in
section 3.3.

Table 3: Tested Mesh for Elastic Wave Propaga-
tion in solid
Total Elements Total Nodes DOFs
Casel 4096 4913 14739
Case2 32768 35937 107811
Case3 110592 117649 352947
Cased 262144 274625 823875

Fig. 14 shows the speed of elastic wave propaga-
tion simulations on the GPU for four CASEs. The
vertical axis represents the elapsed time required
to proceed by one time step. For comparison, re-
sults by CPU, where calculation is executed in
double (64bit) precision, are also shown. Though
32bit computation by CPU was also tested, it
showed no boost of computation speed. As for
the matrix-vector calculation on the GPU, basic
implementation, illustrated in Fig. 12, is em-
ployed because textures made from the matrix of
four CASEs have very few texels of zero value.
From Fig. 14, it can be concluded that the GPU,
GeForce7800GTX, is almost equal to the CPU,
Intel Pentium4 630, in speed of wave propagation
simulation.

Fig. 15 shows the accuracy of elastic wave propa-
gation simulation on the GPU for CASE3. The
horizontal axis represents time steps, while the
vertical axis does the displacement. The thin solid

0'4 r ' ' ' ' i i i
- | N Pentium4 3.0GHz | E
. | B GeForce7800GTX | ]
0.3 b . .
© 0.2 F E
E 0 | | | ]
H R B |
TIN N

0 SRR |

14739 107811 352947 823875
Number of D. O.F.

Figure 14: Speed of the GPU-based Wave Propa-
gation Simulation
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Figure 15: Accuracy of the GPU-based Wave
Propagation Simulation

line shows the dynamic response of the displace-
ment in z-direction at the bottom center of the
analysis domain calculated on the GPU, and the
thick solid line shows the error in the displace-
ment calculated on the GPU compared with that
obtained by CPU with double precision. The fact
that wave propagation simulations on the GPU do
not show any remarkable error and do not indi-
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cate any accumulation of error in Fig. 15 proves
the feasibility of the GPU in this field.

To assess the effect of the proposed technique
of row sort and limited rendering, analyses us-
ing CASE4 and CASES mesh, listed in Table 4,
are tested. The textures derived from the matrix
made from the CASES mesh are almost equal in
total size to those from CASE4 mesh but have
much more zero texels. Though these two meshes
are regular, comparison between the results us-
ing these meshes can show whether the proposed
technique works well for unstructured meshes.
This is because our target problem uses explicit
scheme that is invulnerable to the condition num-
ber of the matrix and the performance is expected
to depend on the variance of the number of non-
zero components per row, which can be assessed
by the comparison between CASE4 and CASES.

Table 4: Tested Mesh

Total Total Ratio of "0"
Elements DOFs Elements in Textures

Cased 64x64x64 823875 3%
Case52x2x30512 823851 40%
04, v
F | B GeForce7800GTX ]
- M GeForce7800GTX with row sort |
Pentium4 3. 0GHz
0.3 T 3
CHE BRI i
L0z L
LI : —
= E. XTI - a
of

Case4d Caseb
Figure 16: Performance of the Proposed Strategy
Fig. 16 shows the results. The vertical axis rep-

resents the elapsed time for simulation of one
time step. The elapsed time is measured for
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three cases: simulation using GPU with row sort
and limited rendering area, simulation using GPU
without row sort and simulation using CPU for
comparison. The elapsed time in the case of GPU
without row sort shows almost no difference be-
tween CASE4 and CASES, because the maxi-
mum number of non-zero components per row of
CASES5 mesh is equal to that of CASE4. This
means that almost equal computational workload
is required for two cases. In contrast, the elapsed
time in the case of GPU with row sort and the
case of CPU is significantly shorter for CASES
than that for CASE4. This is because a number
of multiplications by zero are omitted: CPU can
avoid useless multiplications by zero simply by
omitting them from for-loop scope and GPU with
row sort can avoid useless multiplications by zero
by omitting them out of the rendering area. There-
fore the proposed technique of row sort and lim-
ited rendering proved to be efficient for matrices
with the varying number of non-zero components
per row that usually arise from FEM with unstruc-
tured mesh.

5 Discussions

Applicability: Nvidia Corporation, the manufac-
turer of Geforce series GPUs, has announced a
new programming language called CUDA, and
CUDA ver.1.0 has been available since June,
2007. CUDA is a high-level language spe-
cialized for GPGPU, and it is somewhat sim-
ilar to the standard C language. AMD Inc.,
the manufacturer of RADEON series GPUs, has
also announced a new programming language
called CTM, Close To Metal, which is not pub-
licly available yet. CUDA makes it possible
to write GPGPU codes running on GPUs with-
out using graphics APIs, such as OpenGL and
DirrectX. This surely makes GPGPU program-
ming for some applications much easier for users.
But CUDA only supports Geforce 8x00 GPUs or
later, and it does not support any GPUs of AMD
and Geforce 7 series or earlier GPUs of Nvidia.
This is inconvenient for developing application
programs.

In contrast to this, shader code written by using
OpenGL and OpenGL shading language is the de
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facto standard under the present circumstances.
Using OpenGL and GLSL as the programming
language for GPGPU ensures us that the applica-
tion code can run on most GPUs irrespective of
their manufacturer. Though CUDA and/or CTM
will become more and more popular for GPGPU,
using a graphics API and a shader language will
survive as an alternative because of its broad ap-
plicability to various GPUs.

All codes developed in this research are written in
OpenGL and GLSL and they can run not only on
the GeForce 7800GTX but also on other GPUs.
Authors have also tested the wave propagation
code of Section 4.2 on three other GPUs and an-
alyzed the CASES of Section 4.3. Specifications
of the tested GPUs, GeForce 7800GTX, GeForce
7900GTX, GeForce 8800GTX and GeForce 6600
of Nvidia, are summarized in Table 5. They are
tested under equal conditions, i.e. the same CPU,
the same memory and the same motherboard.
These tests were done with the same source code,
in other word no modification to the source code
was needed.

3.0 e
[ oo T ]
~ RS
o R
—~ 2.0 R i ]
o . R ; :
3 3K
© L XXX
g o
N 3RS
3RS
RN i
sl XXX
@ 0o
2 SRS
L R 3
ot 25
“2 1.0 R - RIRRIIRRN. rsrsses +~- -
8 R
Dode! %
3 %S
. Q2
o XX
255
0K | SR0RKXRRA | RIXRIIKA | n
Doderede
3RS
L doSode!
QRS
L KX
[ KA ; :
% ; ;
0.0 R | I

8800GTX 7900GTX 7800GTX 6600
Figure 17: Speed Comparison of several GPUs

Fig.17 shows the measured speed of four GPUs
tested. The vertical axis represents the rela-
tive speed of each GPU compared to that of
GeForce7800GTX, which is normalized to the
unit. From Fig.17, it can be expected that the code
written in OpenGL and GLSL will work on many

GPUs and will be able to perform much better on
newer GPUs than the present one without making
any modification on the code.

Double Precision: No GPU available today sup-
ports double precision. This is a major drawback
of today’s GPU for CAE applications. Therefore
GPUs should only be used for applications that
don’t require double precision rigorously. There
also exists an research to overcome this drawback
[Goddeke, Strzodka and Turek (2007)]. In the
near future, however, computing in double preci-
sion will be supported by GPUs.

Concurrency: Measured performance of GPU
doesn’t seem overwhelming in comparison to that
of CPU. GPU is, however, not for replacing CPU
but for helping CPU: GPU can work concurrently
with CPU. We can use GPU and CPU as a multi-
processor system suitable for parallel processing.
In this context, even GPUs with computational
ability comparable to CPU are sufficiently useful
as processors in a multiprocessor system consist-
ing of CPUs and GPUs.

Multiple GPUs: Memory on a graphics board is
limited in size. This also limits the size of the
problem that can be analyzed on a GPU. Paral-
lel processing using multiple GPUs can overcome
this limit. We are developing a parallel FEM
code based on the domain decomposition tech-
nique [Trindade and Pereira (2007), Ha, Seo and
Sheen (2006)] for a multiple-GPU system, such
as a GPU cluster.

6 Conclusion

GPU is utilized for the finite element analyses of
dynamic problems. Two kind of computation are
implemented to the GPU, one is the construction
of element stiffness/mass matrices and the other
is the calculation of time integration based on the
explicit scheme. Their basic performance is tested
through sample analyses, and the following re-
sults are obtained.

1. GPU can calculate a large number of element
stiffness matrices twice as fast as CPU.

2. GPU can calculate a large number of lumped
mass matrices several times as fast as CPU.
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Table 5: Tested GPUs

Number of Shaders Clock Rate

Memory BandWidth (bit)  Available

(MHz) (MB) since
8800GTX 32 1350 384 Nov. 2006
7900GTX 24 650 256 Mar. 2006
7800GTX 24 430 256 Jun. 2005
6600 8 300 128 Aug. 2004

3. For the explicit time integration scheme in
the wave propagation simulation based on
FEM, GPU can perform as fast calculation
as CPU. With row-sort technique, GPU can
perform as fast calculation as CPU even for
matrices obtained from unstructured mesh
where the number of non-zero components
per row in the matrices seriously varies row
by row.

These results indicate the feasibility of the GPUs
for practical dynamic FEM problems.
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