
Copyright c© 2008 Tech Science Press CMES, vol.25, no.3, pp.133-147, 2008

Parallel 3-D SPH Simulations

C. Moulinec1, R. Issa2, J.-C. Marongiu3 and D. Violeau4

Abstract: The gridless Smoothed Particle Hy-
drodynamics (SPH) numerical method is prefer-
ably used in Computational Fluid Dynamics
(CFD) to simulate complex flows with one or sev-
eral convoluted free surfaces. This type of flows
requires distorted meshes with classical Eulerian
mesh-based methods or very fine meshes with
Volume of Fluid method. Few 3-D SPH simula-
tions have been carried out to our knowlegde so
far, mainly due to prohibitive computational in-
vestment since the number of particles required in
3-D is usually too large to be handled by a sin-
gle processor. In this paper, a parallel 3-D SPH
code is presented. Parallelisation validation is
discussed as well as promising results regarding
speed up of the code. The results of quantitative
validations for 2 academic test cases, i.e. a 3-D
closed channel flow and a 3-D periodic hill flow
are also shown. The code is then applied to a more
industrial case, namely a 3-D dam breaking flow
impinging on an obstacle. SPH results are satis-
factorily compared to experimental data.

Keyword: SPH, parallelism, speed-up, 3-D
closed channel flow, 3-D hill flow, 3-D dam
breaking dam.

1 Introduction

The Smoothed Particle Hydrodynamics (SPH)
numerical method is successfully applied in fluid
mechanics to simulate strongly distorted free sur-
face flows (dam breaking, wave flumes, etc.)
in situation where classical Eulerian approaches
would fail because of grid steepness. SPH is very
efficient for rapid, convection dominated flows.

1 INCKA, France.
2 EDF R&D, France. Corresponding author. Email:

reza.issa@edf.fr
3 ECL, France.
4 EDF R&D, France.

Few 3-D SPH simulations have been performed
to our knowledge so far, mainly due to their high
computational cost, because a large number of
particles is necessary to simulate such flows and
because of the nature of classical SPH which re-
quires homogeneous initial particle distribution
for incompressible flows. However, most realis-
tic environmental or/and industrial problems in-
volve 3-D phenomena. In order to handle those
problems while reducing computational time, a
parallel 3-D SPH code, namely Spartacus-3D, has
been developped and is presented here. After de-
scribing the methodology, some SPH principles
and the numerics used in Spartacus-3D, the par-
allelisation technique is explored. The code is
then applied to two academic test cases, a 3-D
closed channel flow for which an analytical so-
lution exists and a 3-D periodic hill where results
are compared to data from a widely validated Eu-
lerian code (Code_Saturne [Archambeau, Méchi-
toua, and Sakiz (2004)]), and finally to a 3-D dam
breaking flow impinging on an obstacle, where re-
sults are compared to experimental data ([Kleefs-
man, Fekken, Veldman, Iwanowski, and Buchner
(2005)]).

2 Methodology

The pseudo-compressible Navier-Stokes equa-
tions written in Lagrangian form for Newtonian
fluids and incompressible and laminar flows read:

{
du
dt = − 1

ρ ∇p+∇ · (ν∇u)+Fe

dρ
dt = ρ∇ ·u (1)

where u is the velocity vector, t the time, ρ the
density, p the pressure, ν the molecular viscosity
and Fe an external force, such as gravity, or any
other force driving the flow. ’∇’ and ’∇·’ are re-
spectively the gradient and divergence operators.

134 Copyright c© 2008 Tech Science Press CMES, vol.25, no.3, pp.133-147, 2008

The system made of 4 equations in 3-D (see Eq.
1) is not closed, because u, p and ρ are all un-
knowns. To close it, the pressure is expressed in
function of the density following a state equation
[Monaghan (1992)], as:

p =
ρ0c2

0

γ

[(
ρ
ρ0

)γ
−1

]
(2)

where ρ0 is a reference density (1,000 kg.m−3 for
water for instance), c0 a numerical speed of sound
and γ a constant coefficient equal to 7 for water. In
order to simulate an incompressible flow, c0 must
be at least ten times larger than the maximal ve-
locity of the flow. The nearly-incompressible as-
sumption used here implies that the Mach num-
ber M has to be less than 0.1. Consequently, the
relative variation of density, which scales as M2,
is less than 1%. Through Eq. 2, it comes that
the pressure automatically goes to zero when den-
sity equals the reference density. This ensures the
zero pressure condition at a free surface. Fully in-
compressible algorithms would be more suitable
to ensure a better pressure field accuracy [Cum-
mins and Rudman (1999), Lee, Moulinec, Xui,
Violeau, Laurence, and Stansby (2008)], but are
not considered here.

Particle position is updated at each temporal iter-
ation by the following integration:

dr
dt

= u (3)

Eqs. 1, 2 and 3 are discretised explicitly in time
and SPH approach is used to perform spatial dis-
cretisation.

3 The SPH method

The key idea of SPH is that any flow property A
can be expressed in any point of the fluid domain,
localised by r, by a convolution product with the
Dirac distribution δ , following the interpolation
formula (4), as:

A(r) =
∫

Ω
A(r′)δ (r−r′)dr′ (4)

where Ω is the whole fluid domain.

For numerical reasons, the Dirac distribution δ is
approximated by a smoothing function wh called
kernel, as:

A(r) =
∫

Ω
A(r′)wh(r−r′)dr′+O

(
h2) (5)

The interpolating function wh plays an important
role in SPH, as it is used for the transition from the
continuous form of the Navier-Stokes equations
to the discrete form.

In SPH formalism, the fluid is discretized by a fi-
nite number of macroscopic fluid volumes called
’particles’. Each particle a is always characterised
by a mass ma, a density ρa, a pressure pa, a veloc-
ity vector ua and a position vector ra. Other quan-
tities might play a role for turbulent flows, for in-
stance. Note that wh depends on the distance be-
tween two particles (for a spherical kernel) and of
a parameter h called the smoothing length, which
is function of the initial particle distribution.

The move towards a discrete set of equations is
achieved by approximating the integral of Eq. (5)
by a Riemann summation, as follows:

A(r) = ∑
b

mb

ρb
Abwh(|r−rb|)+O(h2) (6)

where Ab denotes the value of A for particle b.
The summation is now discrete and the elemental
volume dr′ (see Eq. 5) is calculated as the parti-
cle volume defined from the mass and the density
as mb/ρb. The sum is in theory performed over
all the particles b of the domain. However, the
use of kernel compact supports of radius ht , pro-
portional to the smoothing length h allows to re-
duce the number of particles b which contribute to
the sum in Eq. 6 and, thus to reduce the compu-
tational time. Consequently, only particles b lo-
cated in the sphere (a circle in 2-D) of radius ht

and centered in a contribute to the evaluation of
the function A relative to particle a (see Fig. 1
(left)). Kernel general expressions are given in
[Monaghan (1992), Morris, Fox, and Zhu (1997),
Vignjevic, Vuyst, and Gourma (2001)] as well as
kernel improvement regarding consistency in [Vi-
gnjevic, Reveles, and Campbell (2006)]. In most
SPH codes, spline kernels are used. A fourth or-
der spline kernel is used in this work, represented
in Fig. 1 (right) in 2-D for simplicity.

Parallel 3-D SPH Simulations 135

ht = α h

a
b

−0.05

0

0.05

−0.05

0

0.05

0

200

400

600

800

1000

1200

1400

1600

x
ab

z
ab

w
h4

Figure 1: Left: 2-D neighbours of particle a contained in a kernel compact support. Right: 2-D plot of the
fourth order spline kernel.

The spatial discretisation of the momentum and
continuity equations is presented hereafter.

An SPH form of the continuity equation reads:

dρa

dt
= ∑

b

mbuab ·∇awab (7)

where uab = ua − ub, rab = |rab| = |ra − rb| and
wab = wh(rab). ∇awab is the gradient of the kernel
with respect to a. d/dt is a Lagrangian derivative
obtained by following particle motion. The SPH
momentum equation reads

dua

dt
=

−∑
b

mb

(
pa + pb

ρaρb
−16

ν
ρa +ρb

uab · rab

r2
ab

)
∇awab

+ Fe
a (8)

where Fe
a is the external force applied to parti-

cle a. Considering the expression of a Gaussian
kernel, it can easily be shown that the pressure
gradient term written in SPH formalism corre-
sponds to a central repulsive force between par-
ticle pairs, which behaves the same way inter-
molecular forces act between small fluid volumes.
Note that the pressure gradient expression se-
lected here is anti-symmetric with respect to a and

b subscripts as well as the viscous term. This en-
sures momentum conservation and allows to re-
duce computational cost, because the contribution
of particle b can be always be deduced from the
contribution of particle a, when calculating the in-
teraction between particles a and b.

4 Numerics

4.1 Brief presentation of Spartacus-3D code

The Spartacus-2D code has been developed since
1999 at EDF R&D mainly for coastal and en-
vironmental applications such as spillways, dam
breaking, breaking waves [Issa and Violeau
(2007)]. Based on this 2-D version, a 3-D one
has been developped [Marongiu (2007)]. Eqs 1-3
are solved, based on Eqs 7-8 and 3.

4.2 Conditions on the time step

Equations are integrated in time by the classical
first order Euler explicit scheme with a variable
time step δ t calculated as:

δ t = min(δ tCFL,δ t f orces,δ tvisc) . (9)

The CFL condition δ tCFL reads:

δ tCFL = 0.4
h
c0

(10)

136 Copyright c© 2008 Tech Science Press CMES, vol.25, no.3, pp.133-147, 2008

and imposes the time step δ tCFL to be less than
or equal to the convection time on the length h
relative to the spatial discretisation.

The condition on the forces δ t f orces reads:

δ t f orces = 0.25min
a

√
h
|fa| (11)

and ensures that particles do not get too close to
each other during the integration of their move-
ment [Morris, Fox, and Zhu (1997)]. fa denotes
the internal and external forces associated to par-
ticle a (i.e. the magnitude of the r.h.s. of Eq. 8).

The condition on the viscous forces δ tvisc reads:

δ tvisc = 0.125
h2

ν
(12)

This viscous criterion must be taken into account
to make the time step inferior to the viscous
phenomenon time scale [Morris, Fox, and Zhu
(1997)].

4.3 Link list

Eqs 7 and 8 show that SPH operators are ex-
pressed as differences or sums of contribution of
particles a and b, with a sum on b. Due to the par-
ticle motion, the search for particles b has to be
performed at each temporal iteration. The CPU
time would scale as NPART5/2 (in 3-D) where
NPART denotes the particle total number, if the
search would be carried out over the whole set
of particles. Since spline kernels have a compact
support, each particle a is only linked to its closest
neighbours b for which rab < ht . It is thus impor-
tant to optimise the construction of the link list
relative to particle connections at each temporal
iteration: for each particle a, all its closest neigh-
bours b are detected according to the following
algorithm:

1. The whole fluid domain is embedded in a
coarse homogeneous Cartesian grid which
cell size is ht , where ht is the kernel compact
support size. This grid is used to reduce the
computational cost while looking for the par-
ticles interacting with particle a (see Fig. 2).

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������
������

������
������
������
�����������

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������
������

������
������
������
�����������

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������������

������
������
������

������
������
������
������������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����������

������
������

������
������
������ ������

������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����������

������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����������

������
������
������

������
������
������
������

������
������
������

������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����������

������
������

������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
�����������

�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������

������
������
�����������

�����
�����

�����
�����
�����

h

ht

t
a

b

h= α ht

Figure 2: Localisation of particle a neighbours in-
volved in the calculation of SPH operators (2-D
view).

2. The index of the cube acube where particle a
is located is stored.

3. The coarse grid is built in such a way that for
each particle a (cube size equal to ht), neigh-
bouring particles referenced by b are located
in one of the 33−1 = 26 neighbouring cubes
of acube, referenced by bcube. The search for
particle a links is then restricted to a search
within 27 cubes and only particles which sat-
isfy rab < ht are considered as neighbours of
particle a and their index is stored.

4.4 Periodic conditions

Special treatment is required when periodic
boundary conditions apply. For simplicity of the
presentation, they are set in the streamwise direc-
tion x, the domain going from xmin to xmax (see
Fig. 3). Those conditions apply in order to avoid
truncated compact supports (truncated spheres)
compared to compact supports for particles lo-
cated in the inner domain (entire spheres), those
particles being located at a distance larger than ht

from boundaries. It is assumed that particles a for
which xmin ≤ xa ≤ xmin + ht (respectively xmax −
ht ≤ xa ≤ xmax) which naturaly interact with par-
ticles b such that xmin + ht ≤ xb ≤ xmin + 2ht (re-
spectively xmax−2ht ≤ xb ≤ xmax +ht), also inter-
act with particles b such that xmax−ht ≤ xb ≤ xmax

(respectively xmin ≤ xb ≤ xmin + ht), as if they
would be shifted by xb + (xmax − xmin) (respec-

Parallel 3-D SPH Simulations 137

tively xb − (xmax − xmin)), all their characteritics
but their abscissae being conserved. The cubes
adjacent to particle a are therefore completed
by those located in the vicinity of the opposite
boundary. Consequently, the code considers that
particles b located in the vicinity of xmin (see Fig.
3) are copied and translated to xb − (xmax −xmin)
and particles b then become a neighbour of parti-
cle a. The same process applies for particles lo-
cated in the vicinity of the boundary defined by
xmax.

minzx ,()maxminzminx ,()

b

x

z

a

ht

����
����
����

����
����
����

�����
�����
�����
�����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

����
����
����

����
����
��������
����
����

����
����
��������

����
����
����
����
����
����

����
����
����
����
����
����

����
����
��������
����
����

����
����
����

����
����
����
����
����
����
����
����

����
����
����

����
����
��������
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

�����
�����
�����
����� �����

�����
�����

�����
�����
����������
�����
�����
�����

����
����
����
����

�����
�����
�����
�����

����
����
����
����

�����
�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����

�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����

�����
�����
����� ����

����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
����� ����

����
����

����
����
����

�����
�����
�����
�����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
����������

�����
�����
�����

����
����
����

����
����
��������

����
����

����
����
����

�����
�����
�����
�����

����
����
����

����
����
��������
����
����

����
����
����

�����
�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

Figure 3: Adjacent cells relative to a periodic flow
with respect to x-direction in 2-D. They are high-
lighted by the black dashed strips.

4.5 Wall modelling

Walls are modelled by solid particles called ’wall
particles’. Moreover, in order to ensure the im-
permeability of the wall, three layers of so-called
’fictitious particles’ are added under each wall.
They are built by extrusion of the wall parti-
cles. The density of wall and fictitious particles
is calculated in function of the contribution of the
fluid particles through the continuity equation (7).
When the fluid particle a is linked to the fictitious
particle b, the contribution of particle b to the evo-
lution of the density of particle a is equal to (see
Eq. 7)

mbuab ·∇awab (13)

As particle b is also linked to fluid particle a, the
contribution of particle a to the evolution of den-
sity of particle b is also given by Eq. 13, since
the continuity equation (Eq. 7) is symmetric with
respect to a and b subscripts. The pressure of
wall and fictitious particles are then computed by
the state equation and these particles are involved
in the pressure gradient relative to fluid particles
in the equation of motion. These wall conditions
also enable a perfect impermeability of the wall in
rapid dynamic conditions such as dam breaking.
Contrary to the repulsive forces commonly used
in SPH to represent walls [Monaghan (1995)],
the present formulation does not introduce any ad
hoc coefficient. Moreover, in contrast to tradi-
tional mirror particles used in most SPH codes,
the method proposed here considers fixed parti-
cles and can easily be implemented even for non
flat walls. It is also suitable for modelling moving
walls, following what is done in 2-D in [Issa and
Violeau (2007)].

5 Parallelisation

Parallelisation is fundamental to enable SPH
codes to compute 3-D flows efficiently in terms
of CPU time. A profiling of the serial version of
Spartacus-3D shows that the search for particle
a’s links (see Paragraph 4.3) is the most expen-
sive part of a temporal iteration, consumming up
to 50% of the CPU time. While running parallel
instead of serial, another part could take a lot of
time, which consists in rebuilding the list of parti-
cles by re-numbering them at each temporal itera-
tion, in order to minimise the communications be-
tween processors while searching the links. This
re-numbering is compulsory because fluid parti-
cles move at each temporal iteration.

In the parallel version of Spartacus-3D, three
main steps are then carried out per temporal it-
eration. At the (n + 1)th iteration, for instance it
yields (see Fig. 4):

• Step 1: Generation of the new particle list,

• Step 2: Search for particle links,

• Step 3: Resolution of the equations.

138 Copyright c© 2008 Tech Science Press CMES, vol.25, no.3, pp.133-147, 2008

End (Iteration n+1)

Generation for Iteration n+1 of

the newly updated Particle Positions

Search for the Particle Links

Resolution of the Equations, per processor
STEP 3

STEP 2

Begin (Iteration n+1)

STEP 0

STEP 1

the newly updated Particle Positions
the previous Particle List and of
Knowledge from Iteration n of

from the newly optimised Particle List

which corresponds to
an optimised Particle List

from the newly optimised Particle List

Figure 4: Simplified parallel algorithm.

Step 1, 2 and 3 are detailed in the following. Note
that Spartacus-3D communications are based on
MPI library and are mainly global communica-
tions.

5.1 Step 1. List of particles per processor

Assuming that the total number of processors
is NPROCS and that the total number of par-
ticles is NPART , the general idea is to allo-
cate NPARTPROC ≈ NPART/NPROCS particles
a per processor to ensure node balancing, while
reducing the number of processors containing the
neighbours b of the NPARTPROC particles a.

• The Cartesian grid is generated as explained
in Paragraph 4.3 (see Fig. 5) and the cubes
denoted by Ci (i = 1,NCUBES) are linerarly
ordered in an array of dimension NCUBES,
where NCUBES is the whole number of
cubes. The loop is carried out over NCUBES
in this operation.

• Denoting the number of particles per cube Ci

as NPCi, a temporary array DISPT Bi is built
from the NPCi’s as the accumulated number
of particles contained in the cubes already
listed until cube of index ’i’, i.e. DISPT Bi =

C3C
2

C1 C C
NCUBES−1NCUBES−2

C
NCUBES

Figure 5: Coarse Cartesian grid embedding a fluid
domain in 2-D. The cubes are linearly ordered.

∑i
j=1 NPCj (see Fig. 6). The loop is carried

out over NCUBES.

C3C
2

C1 C C
NCUBES−1NCUBES−2

C
NCUBES

Ci

DISPTBDISPTB
i NCUBES1

DISPTB DISPTB
3

Figure 6: Construction of the temporary array
DISPT Bi.

• NPROCS blocks BLOl are built from
DISPT Bi, with the condition of hav-
ing approximately NPARTPROC ≈
NPART/NPROCS particles per block
(and not per processor, as the notion of
distribution per processor does not exist
at iteration n + 1 yet). The loop is over
NCUBES.

• This step consists of detecting which parti-
cles (which index is defined in the list corre-
sponding to iteration n) located on a given
processor PROCk belong to a given block
BLOl as defined in the previous item. At the
end of this operation, each processor has ac-
cess to the number of its particles located on
block BLOl , and to the local list of its own
particles per block. Both arrays are not com-
plete as the loop is performed over the parti-
cles present on each processor PROCk at it-
eration n, and not over the total number of
particles NPART .

Parallel 3-D SPH Simulations 139

• Communications are now required to build
up the complete local list per processors.
This loop is over all the blocks, i.e NPROCS.

• The complete local list assembled on the
master node is then broadcast to the other
processors.

• The global list is built up from the local list.
The loop is over the new number of particles
per processor, i.e the number of particles per
processor at iteration n + 1. The number of
particles per processor is also known at iter-
ation n+1 (see Fig. 7).

Figure 7: Particle distribution on 4 processors.

5.2 Step 2. Link generation

Links between particles a and their neighbouring
particles b used in the calculation of the operators
are established by processors, taking into account
the cube structure. The first loop goes over parti-
cle a present on processor PROCk and the second
one on the neighbouring cubes of the cube con-
taining particles a.

5.3 Step 3. Resolution

As in the serial version of the code, the equations
are solved explicitly. However, the operators are
built per processors in the parallel version, with
loops going over the list of particles on PROCk at
iteration n + 1, and not over the total number of
particles.

5.4 Parallelisation validation

The test case of a 3-D dam breaking described in
2-D in [Violeau and Issa (2007)] and extruded in
the third direction is simulated in order to validate
the parallelisation procedure. 6 particles used as
probes are tracked in time during 1,000 tempo-
ral iterations. Spartacus-3D is first ran serial and

then parallel. Axial velocity, density and number
of neighbours relative to each tracked particle are
compared in both configuration. The evolution in
time of the difference between serial and parallel
on those quantities is of the order of machine pre-
cision and is not plotted here. Parallel and scalar
versions of Spartacus-3D hence give the same re-
sults. Figure 8 shows particle distribution on 4
processors in a (x, z) section of the dam breaking
case. The repartition is done by layers.

Figure 8: Distribution of the particles per proces-
sors (4 processors in total).

The speed up (defined as the ratio between serial
and parallel CPU times) is plotted after running
several computations with various number of pro-
cessors, going from 1 to 16, on one of EDF R&D
clusters (IBM, 64 nodes of 2 processors each. 4
Gb and 2.6 GHz Mono-Core processors). Table 1
shows CPU time and speed-up in function of the
number of processors used.

The speed-up of the code is satisfactory up to 8
processors with this amount of particles (see Fig.
9). With 16 processors, the speed-up is not op-
timal anymore, probably due to the low particle
number of particles allocated per processor. Fur-
ther tests will be carried out with 2,000,000 par-
ticles for the same geometry.

140 Copyright c© 2008 Tech Science Press CMES, vol.25, no.3, pp.133-147, 2008

Table 1: CPU time with respect to the number of
processors used.

Number of processors CPU time (s) Speed-Up
1 4,332 1.00
2 2,160 2.01
4 1,116 3.88
8 576 7.52
16 322 13.45

Number of Processors

S
pe

ed
-U

p

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Spartacus-3D
Theory

Figure 9: Spartacus-3D speed up.

6 Laminar flow in a 3-D straight closed chan-
nel

This Poiseuille flow case is computed to investi-
gate the accuracy of Spartacus-3D in a case where
an analytical solution is available.

6.1 Geometry of the system

The geometry consists of a 3-D channel. The sys-
tem is represented in Fig. 10.

6.2 System modelling

A laminar flow characterised by a Reynolds num-
ber of 200 based on the mean bulk velocity of
1.0 m.s−1 and on the channel height H = 2m is
computed. The system discretization is described
in Table 2. The initial distance between particles
is δ r = 20.83 mm.

Particles are initially distributed on a regular lat-
tice with zero velocity. The fictitious particle ve-

x

z

y

L = 0.5m

l=0.5m

H=
2m

Figure 10: Geometry of the 3-D channel.

Table 2: Fluid, wall and fictitious particle discreti-
sations for the 3-D channel flow.

Fluid particles 59,375
Wall particles 1,250

Fictitious particles 5,000
Total particle number 65,625

Particle initial spacing (mm) 20.83

locities do not evolve during the calculation but
they contribute to the calculation of the fluid par-
ticle viscous term. Periodic conditions are applied
with respect to x− and y−direction. The gravity
is neglected and the fluid is driven by an external
horizontal force Fe updated at each temporal iter-
ation in order to impose the correct mass flow rate
[Issa, Lee, Violeau, and Laurence (2005)]. The
smoothing length value h/δ r = 1.2 has been de-
termined through numerical tests. 100,000 itera-
tions are carried out, which means that a particle
moving with a velocity equal to the bulk veloc-
ity has been transported on a distance equal to 48
times the geometry length.

6.3 Results

The simulation has been carried out in 28 CPU hrs
on 8 processors. Streamwise velocity profiles are
plotted against y-direction. The agreement with
the analytical solution is very good.

Spartacus-3D hence shows its ability to produce
accurate results for this academic flow.

Parallel 3-D SPH Simulations 141

Figure 11: Comparison of Spartacus-3D veloc-
ity profile with the analytical Poiseuille parabolic
profile.

7 Laminar flow in a 3-D hill channel

This test case is simulated to show the ability
of Spartacus-3D to simulate recirculating flows.
The validation is carried out comparing SPH re-
sults with results obtained by an Eulerian finite
volume based software, Code_Saturne [Archam-
beau, Méchitoua, and Sakiz (2004)].

7.1 Geometry of the system

The geometry consists of a 2-D hill channel
extruded in the third direction (y). It has
been defined in ERCOFTAC workshops [Mellen,
Froelich, and Rodi (2000), Uribe and Laurence
(2000)] to run Large-Eddy Simulations. The sys-
tem is represented in Fig. 12 where H, which is
the hill height is equal to 28 mm.

7.2 System modelling

A laminar flow characterised by a Reynolds num-
ber of 50 based on a mean bulk velocity of
1,785.10−3 m.s−1 for water is computed. The
system discretization is given in Table 3.

Particles are initially distributed on a regular
lattice with zero velocity. Periodic conditions
are once again applied with respect to x− and
y−direction and an external force drives the flow.

Table 3: Fluid, wall and fictitious particle discreti-
sations for the 3-D hill flow.

Fluid particles 315,008
Wall particles 8,096

Fictitious particles 12,384
Total particle number 355,488

Particle initial spacing (mm) 1

The gravity is neglected. A smoothing length
value h/δ r = 1.2 has been determined through
numerical tests. 50,000 iterations are carried out,
which means that a particle moving with a veloc-
ity equal to the bulk velocity has been transported
on a distance equal to 5 times the channel length.

7.3 Results

The simulation has been carried out in 48 CPU
hrs on 16 processors. Some of the probes choosen
in an ERCOFTAC workshop [Uribe and Laurence
(2000)] are used for comparison and represented
in Fig. 13. Since no analytical solution exists for
this problem, the results obtained with Spartacus-
3D are compared to those obtained by the Eule-
rian software Code_Saturne [Archambeau, Mé-
chitoua, and Sakiz (2004)]. Figure 13 shows
that axial velocity profiles obtained by Spartacus-
3D are in excellent agreeement with those of
Code_Saturne. Moreover, no spanwise averaging
is performed to smooth SPH data at the probe lo-
cations, which shows that SPH solution is homo-
geneous enough in the spanwise y-direction.

Spartacus-3D is then able to compute recirculat-
ing flows.

8 3-D dam breaking flow impinging on an ob-
stacle

The dam breaking case is very popular for vali-
dation, because it shows strong free surface de-
formation although its set-up is easy: no special
in- or outflow conditions are needed, for instance.
It is chosen as well to demonstrate the ability of
Spartacus-3D to compute 3-D free surface flows.
Several experiments have been performed for dam
breaking flows by the MAritime Research Insti-
tute Netherlands (MARIN). One of them, used in

142 Copyright c© 2008 Tech Science Press CMES, vol.25, no.3, pp.133-147, 2008

z

x

direction
Vertical

Axial direction
of the flow

y direction
Spanwise

P P P P P P1 2 3 4 5 6

2H H/2

H

9H
Figure 12: Geometry of the 3-D hill channel.

u (m/s)
0 0.0005 0.001 0.0015 0.002

0.02

0.04

0.06

0.08

P
6

x/h = 8.

u (m/s)

z
(m

)

0 0.0005 0.001 0.0015 0.0020

0.02

0.04

0.06

0.08

P
5

x/h = 5.

z
(m

)

0

0.02

0.04

0.06

0.08

Code_Saturne

Spartacus-3D

P
3

x/h = 2.

z
(m

)

0.03

0.04

0.05

0.06

0.07

0.08

P
1

x/h = 0.05

0.02

0.04

0.06

0.08

P
2

x/h = 1.

0

0.02

0.04

0.06

0.08

P
4

x/h = 3.

Figure 13: Comparison of Spartacus-3D results with data obtained from the Eulerian code, Code_Saturne.

Parallel 3-D SPH Simulations 143

Figure 14: Geometry of the dambreak. Left: measurement positions for water heights in the dambreak
experiment [Kleefsman, Fekken, Veldman, Iwanowski, and Buchner (2005)]. Right: zoom of the box.

H 1 H 3 H 4H 2

H 1 H 2
H 3 H 4

x

y

z

x

1.000

1.2281.248

0.55

0.161

0.161

1.000

0.161

0.403

0.295

0.295

0.744

0.496 0.496 0.496 1.150

Box

Box Fluid

Fluid

Figure 15: General description of the system. Top: top view. Bottom: side view.

[Kleefsman, Fekken, Veldman, Iwanowski, and
Buchner (2005)], consists of a large tank of 3.22×
1× 1 m with an open roof. The right part (see
Fig. 14 for 2 m ≤ x ≤ 3 m) of the tank is locked
by a door. 0.55 m of water is waiting behind the
door to flow into the tank when the door is opened.
This is done by releasing a weight, which almost
instantaneously pulls the door up. A box has been

put in the tank. During the experiment, measure-
ments on water heights have been performed. As
shown in Fig. 14, four vertical height probes have
been used: one in the reservoir and the three oth-
ers in the tank.

144 Copyright c© 2008 Tech Science Press CMES, vol.25, no.3, pp.133-147, 2008

8.1 Geometry of the system

The geometry of the system is described in Fig.
15 where Hi correspond to the vertical water
height probes used in the experiment. All dimen-
sions are in meters.

8.2 System modelling

Table 4 recalls the system discretisation.

Table 4: System discretization (fluid and walls)
for the 3-D dam breaking simulation.

Fluid particles (x,y, z) 67×54×30
Bottom wall particles (x,y) 183×62

Side wall particles (x, z) 183×55
Side wall particles (y, z) 54×55

Particle initial spacing: δ r (cm) 55/30

The box is also discretized by wall particles and
filled by fictitious particles (see Table 5).

Table 5: Box discretisation for the dambreaking
simulation.

Top wall particles (x,y) 8×21
Side wall particles (x, z) 10×9
Side wall particles (y, z) 21×9

The numbers of particles used for this test case are
gathered in Table 6.

Table 6: General particle discretization.

Fluid particles 108,540
Wall particles 38,142

Fictitous particles 113,592
Total 260,274

A 3-D view of the discretized system is given in
Fig. 16 (in order to facilitate visualization, some
wall and fictitious particles are not plotted on Fig.
16).

8.3 Results

In order to simulate a physical time of 6 s to
compare with the experiments, 30,000 iterations

Figure 16: 3-D view of discretized system.

Figure 17: Comparison between experiment (top)
and Spartacus-3D (bottom) at 0.32 s.

have been run, which requires 32 hours of CPU
time on 16 processors of the previously men-
tionned cluster. Figs. 17-19 qualitatively compare
Spartacus-3D results to experimental snapshots at
three physical times t, i.e t = 0.32 s, t = 0.64 s

Parallel 3-D SPH Simulations 145

Figure 18: Comparison between experiment (top)
and Spartacus-3D (bottom) at 0.64 s.

and t = 2 s. Spartacus-3D reproduces quite well
the global motion of the fluid.

As shown in Fig. 20, the water elevation simu-
lated by Spartacus-3D is very close to experimen-
tal results until 2.5 s. This part corresponds to
the collapse of the water column. Between 2.5 s
and 6 s, Spartacus-3D results are similar to experi-
mental ones but are shifted of approximately 0.5 s
in time. The water level increase between 2.5 and
3 s is directly linked to the return of the flow after
impingement on the front wall. It hence seems
that the friction at the wall is overestimated by
Spartacus-3D. This could be linked to the spatial
discretization and will be investigate more care-
fully in the future.

9 Final Remarks-Perspectives

Parallel 3-D SPH software has been developed
and has shown its ability to produce accurate re-

Figure 19: Comparison between experiment (top)
and Spartacus-3D (bottom) at 2.0 s.

Physical Time (s)

W
at

er
H

ei
gh

ta
tH

2
(m

)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Spartacus-3D
Experiment

Figure 20: Comparison of water elevation at H4

versus time.

sults compared to analytical solution (Poiseuille
flow), to compute recirculating flows (3-D peri-

146 Copyright c© 2008 Tech Science Press CMES, vol.25, no.3, pp.133-147, 2008

Physical Time (s)

W
at

er
H

ei
gh

ta
tH

2
(m

)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Spartacus-3D
Experiment

Figure 21: Comparison of water elevation at H2

versus time.

odic hill) and to simulate a complex 3-D free sur-
face flow (dam breaking impacting an obstacle).
The performance in terms of parallelisation is cur-
rently good up to 16 processors.

To improve parallelisation performance and to be
able to get a good scaling while running on more
than 16 processors, more local communications
are required. This is now under investigation.
This work done in collaboration with IBM should
lead to the development of an efficient massively
parallelised code able to perform simulations on
thousands of processors.

Acknowledgement: The authors would like to
thank Theresa Helmolt-Kleefsman from MARIN
institute (NL) for providing them with dam break-
ing data.

References

Archambeau, F.; Méchitoua, N.; Sakiz, M.
(2004): Code_Saturne: a finite volume code for
the computation of turbulent incompressible flows
- Industrial applications. International Journal on
Finite Volumes, vol. 1, pp. 1–62.

Cummins, S. J.; Rudman, M. (1999): An SPH
projection method. J. Comp. Phys., vol. 152, pp.
584–607.

Issa, R.; Lee, E. S.; Violeau, D.; Laurence, D.
(2005): Incompressible separated flows simu-
lations with the Smoothed Particle Hydrodynam-
ics gridless method. International Journal for
Numerical Methods in Fluids, vol. 47, pp. 1101–
1106.

Issa, R.; Violeau, D. (2007): Modelling a plung-
ing breaking solitary wave with eddy-viscosity
turbulent SPH midels. CMC: Computers, Ma-
terials and Continua, pg. To be published.

Kleefsman, K. M. T.; Fekken, G.; Veldman,
A. E. P.; Iwanowski, B.; Buchner, B. (2005):
A volume-of-fluid based simulation method for
wave impact problems. J. Comp. Phys., vol. 206,
pp. 363–393.

Lee, E.; Moulinec, C.; Xui, R.; Violeau, D.;
Laurence, D.; Stansby, P. (2008): Comparisons
of weakly compressible and truly incompressible
algorithms for the SPH mesh free particle method.
JCP, vol. Second Review.

Marongiu, J. (2007): Parallel 3-D develop-
ments involving the Smoothed Particle hydrody-
namics method. PhD thesis, PhD Thesis of ECL,
2007.

Mellen, C.; Froelich, J.; Rodi, W. (2000):
Large Eddy Simulation of the flow over periodic
hills. In 16th IMACS World Congress, Switzer-
land.

Monaghan, J. J. (1992): Smoothed Particle Hy-
drodynamics. Annu. Rev. Astron. Astrophy., vol.
30, pp. 543–574.

Monaghan, J. J. (1995): Simulating gravity cur-
rents with SPH III Boundary forces. Mathematics
Reports and Preprints, vol. 95/5.

Morris, J. P.; Fox, P. J.; Zhu, Y. (1997):
Modelling low Reynolds Number Incompressible
Flows Using SPH. J. Comp. Phys., vol. 136, pp.
214–226.

Uribe, J.; Laurence, D. (2000): 10th Er-
coftac/IAHR Workshop on Refined Turbulence
Modelling. In 10th joint ERCOFTAC (SIG-
15)/IAHR/QNET-CFD Workshop on Refined Tur-
bulence Modelling.

Parallel 3-D SPH Simulations 147

Vignjevic, R.; Reveles, J. R.; Campbell, J.
(2006): SPH in a Total Lagrangian Formalism.
CMES: Computer Modeling in Engineering and
Sciences, vol. 14, pp. 181–198.

Vignjevic, R.; Vuyst, T. D.; Gourma, M. (2001):
On interpolation in SPH. CMES: Computer Mod-
eling in Engineering and Sciences, vol. 2, pp.
319–336.

Violeau, D.; Issa, R. (2007): Numerical
modelling of complex turbulent free-surface flows
with the sph method: an overview. International
Journal For Numerical Methods in Fluids, vol.
53, pp. 277–304.

