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Local RBF Collocation Method for Darcy Flow

G. Kosec1 and B. Šarler1

Abstract: This paper explores the application
of the mesh-free Local Radial Basis Function
Collocation Method (LRBFCM) in solution of
coupled heat transfer and fluid flow problems
in Darcy porous media. The involved tempera-
ture, velocity and pressure fields are represented
on overlapping sub-domains through collocation
by using multiquadrics Radial Basis Functions
(RBF). The involved first and second derivatives
of the fields are calculated from the respective
derivatives of the RBF’s. The energy and momen-
tum equations are solved through explicit time
stepping. The pressure-velocity coupling is cal-
culated iteratively, with pressure correction, pre-
dicted from the local continuity equation viola-
tion. This formulation does not require solu-
tion of pressure Poisson or pressure correction
Poisson equations and thus much simplifies the
Kassab and Divo formulation [Divo and Kassab
(2007)]. The solution procedure is represented
for a steady natural convection problem in a
rectangular cavity, filled with Darcy porous me-
dia. The numerical examples include studies with
different uniform discretization for differentially
heated boundaries at filtration Rayleigh numbers
RaF =25, 50, 102, 103, 104, and aspect ratios
A = 1/2, 1, 2. The solution is assessed by com-
parison with reference results of the fine mesh fi-
nite volume method (FVM) in terms of mid-plane
velocities, mid-plane and insulated surface tem-
peratures, mid-point streamfunction and Nusselt
number. The advantages of the method are sim-
plicity, accuracy and straightforward applicability
in non-uniform node arrangements.
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1 Introduction

Understanding of transport phenomena in the
porous media is of great importance in science
and engineering. Ever since the original work of
[Darcy (1856)], these phenomena have been stud-
ied both experimentally and theoretically [Sahimi
(1995)]. Despite the development of very sophis-
ticated and relevant analytical techniques [Ragha-
van and Ozkan (1992)] a great majority of porous
media models could be solved only by using
discrete approximate solutions. These solutions
in parallel with the development of computers
nowadays allow the evaluation of physically very
complex situations. However, the diversity of
the involved length scales, inhomogeneities, and
anisotropies, together with the justification of us-
ing different classical models (Darcy, Brinkman,
Forcheimer) in a specific situation still represents
a largely unresolved problem. An elaboration
of the state-of-the-art in respective theoretical,
experimental, and computational developments
can be found in the comprehensive book [Ka-
viany (1995)]. A frequently encountered phys-
ical situation is the porous media natural con-
vection problem, extensively treated by [Nield
and Bejan (1999)]. The problem of natural con-
vection in porous media was first studied by
[Chan, Ivey and Barry (1994)] by using the Fi-
nite Difference Method (FDM). A similar study
was performed approximately a decade ago by
[Hickox and Gartling (1981)] by using the Fi-
nite Element Method (FEM). [Prasad and Ku-
lacky (1984)] pioneered the use of the Finite Vol-
ume Method (FVM) for solving this problem.
[Jecl, Škerget and Petrešin (2001)] were the first
to solve the problem by the Boundary Domain In-
tegral Method (BDIM). In recent years, a number
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of mesh-free methods [Atluri and Shen (2002),
Atluri (2004), Liu (2003), Liu and Gu (2005)]
have been developed to circumvent the prob-
lem of polygonisation encountered in the men-
tioned methods. In mesh-free methods, approx-
imation is constructed entirely in terms of a set
of nodes. A class of such methods is based
on collocation with radial basis functions [Šar-
ler (2007)]. These functions [Buhmann (2000)]
have been first under intensive research in mul-
tivariate data and function interpolation [Franke
(1982)]. Kansa used them for scattered data ap-
proximation [Kansa (1990a)] and than for solu-
tion of PDEs [Kansa (1990b)]. The key point
of the Radial Basis Function Collocation Method
(RBFCM) or Kansa Method (KM) for solving the
PDEs is the approximation of the fields on the
boundary and in the domain by a set of global ap-
proximation functions. The discretization is, re-
spectively, represented only by grid-points (poles
of the global approximation functions) in contrast
to FEM, FVM, BDIM methods where appropri-
ate polygonisation needs to be generated in ad-
dition, or FDM, where points are constrained to
the coordinate lines. The main advantage of us-
ing the RBFCM for solution of partial differential
equations is its simplicity, applicability to differ-
ent PDEs, and effectiveness in dealing with arbi-
trarily dimension and complicated domains. The
method recently started to be applied in many sci-
entific and engineering disciplines. It has been
first used in the heat transport context by [Zer-
roukat, Power and Chen (1998)]. The method has
been applied to the classical De Vahl Davis nat-
ural convection problem [Chantasiriwan (2006)]
by asymmetric collocation in [Šarler, Perko, Chen
and Kuhn (2001)] and by the symmetric and mod-
ified collocation in [Šarler (2005)]. The main dis-
advantage of the mentioned method represent the
related full matrices that are very sensitive to the
choice of the free parameter in RBFs and are dif-
ficult to solve for problems of the order of 103

unknowns or larger. The solution of related prob-
lem has been attempted by domain decomposi-
tion [Mai-Duy and Tran-Cong (2002)], multi-grid
approach and compactly supported RBFs [Chen,
Ganesh, Golberg and Cheng (2002)] which all
represent a substantial complication of the orig-

inal simple method. The radial basis functions
have been first put into context of porous media
flow by [Šarler, Gobin, Goyeau, Perko and Power
(2000)] where the natural convection problem in
Darcy porous media, and later Darcy-Brinkman
porous media [Šarler, Perko, Gobin, Goyeau and
Power (2004)] have been solved by the dual
reciprocity boundary element method (DRBEM).
This method belongs to the semi-mesh-free meth-
ods, because the domain fields are approximated
by the global interpolation with the RBFs and the
boundary fields by the boundary elements (poly-
gons). The truly mesh-free RBFCM has been for
the first time used for solution of Darcy porous
media in [Šarler, Perko and Chen (2004)]. A
substantial breakthrough in the development of
the RBFCM was its local formulation LRBFCM.
This formulation was first developed for diffu-
sion problems [Šarler and Vertnik (2006)], than to
convection-diffusion problems with phase-change
[Vertnik and Šarler (2006)], to industrial appli-
cation of continuous casting [Vertnik, Založnik
and Šarler (2006)], to solid-solid phase transfor-
mations [Kovačević and Šarler (2005)] and to
solution of Navier Stokes equations [Divo and
Kassab (2007)]. A similar local quadrature based
RBF approach was developed by [Mai-Duy, Mai-
Cao and Tran-Cong (2005), Shu, Ding and Yeo
(2005)]. The RBF’s can be used in solution of the
solid mechanics problems [Le, Mai-Duy, Tran-
Cong and Baker (2007), Mai-Duy, Khennane and
Tran-Cong (2007)] as well. The main issue of the
local version of the RBFCM is the collocation on
a sub-set of, in general, overlapping sub-domains,
which drastically reduces the collocation matrix
size on the expense of solving many small matri-
ces instead of a large one. Since the method does
not experience significant accuracy drawback in
comparison with the global one, it represents a
practical choice also for solving very large prob-
lems. The pressure correction algorithm, used by
Divo and Kassab has been substantially simplified
in [Kosec and Šarler (2007)]. This algorithm is in
the present paper tested for solution of the Darcy
natural convection in porous media. The main in-
citement of the present research was the extension
of the LRBFCM method to physically new situa-
tions and testing of the new pressure correction
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algorithm for Darcy porous media flow with the
slip boundary conditions.

2 Governing equations

The steady-state problem of the natural convec-
tion problem in the Darcy medium is described
with following system of equations

∇ ·v = 0 (1)

∇P = −μ
K

v+ f (2)

∇ · (ρcpT v) = ∇ · (λ ∇T ) (3)

f = ρ(T)g; ρ(T) =
[
1−βB(T −Tref)

]
ρ0 (4)

with v, P, T , λ , cp, g, ρ0, βB, Tref, K and f
standing for Darcy velocity, pressure, tempera-
ture, thermal conductivity, specific heat, gravi-
tational acceleration, density, coefficient of ther-
mal expansion, reference temperature for Boussi-
nesq approximation, permeability and body force,
respectively. The problem is solved on a fixed
domain Ω with boundary Γ where Dirichlet and
Neumann boundary conditions for temperature
and non-permeable conditions for velocity are
used. The steady-state solution for different cav-
ity aspect ratios and different filtration Rayleigh
numbers is sought.

3 Solution procedure

In order to solve the problem, the time dependent
variant of equations (2) and (3) is employed. The
explicit time scheme is adopted to calculate the
time derivative. To couple the momentum equa-
tion (2) with the mass continuity equation (1) the
local pressure velocity coupling algorithm is used
where the pressure correction is predicted from
the mass continuity violation. In the first step, the
velocity is estimated from the discretized form of
equation (2)

v̂ = v0 +
Δt

ρ0ac

[
−∇P0 − μ

K
v0 +ρ(T )g

]
(5)

where v̂ denotes velocity at time t0 +Δt, v0, P0 de-
notes velocity and pressure at time t0 and Δt de-
notes time-step. The ac denotes acceleration coef-
ficient, needed in order to pose a time-dependent

Darcy equation as suggested in [Nield and Be-
jan (1999)]. The acceleration coefficient is set to
unity in all numerical cases. The calculated ve-
locity v̂ does not satisfy the mass continuity equa-
tion in general and therefore a velocity correction
v̌ has to be added in a sense that the mass conti-
nuity holds

∇ · (v̂+ v̌) = 0 (6)

It is assumed that the velocity correction is af-
fected only by the effect of the pressure correction

v̌ = − Δt
ρ0ac

∇P̌ (7)

where P̌ stands for the pressure correction. By
applying the divergence to the equation (7) one
gets pressure correction Poisson equation.

∇ · v̌ = − Δt
ρ0ac

∇2P̌ (8)

Poisson equation (8) can be solved with proper
pressure correction boundary conditions [Divo
and Kassab (2007)]. Instead of solving the Pois-
son equation, an important assumption is adopted,
as follows. The pressure correction is assumed
to be linearly related to the Laplace of pres-
sure correction. This assumption forms a basis
for iteration used to project the velocity into the
divergence-free space. The iteration begins by
setting the initial values to

vm = v̂,

Pm = P0
; m = 1 , (9)

where m stands for the iteration index. In the sec-
ond step, the pressure correction is calculated us-
ing the assumption of linearly correlated Laplace
of pressure correction and pressure correction

P̌ ≈ L2∇2P̌ = L2 ρ0

Δt
∇ ·vm (10)

where L stands for characteristic length. In the
third step, the intermediate pressure and velocity
are corrected as

Pm+1 = Pm +β P̌ (11)

vm+1 = vm −β
Δt

ρ0ac
∇P̌ (12)
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where β stands for the relaxation parameter. If the
mass conservation criteria

∇ ·vm+1 < εv (13)

is not met than the iteration returns back to the
equation (10), else pressure-velocity iteration is
completed and the calculation proceeds to the
next step. In the fourth step, the time dependent
variant of energy equation is solved

T = T0 +
Δt

ρ0cp
[∇ · (λ ∇T0)−∇ · (ρ0cpT0v0)] (14)

where T0 and T denote temperature at time levels
t0 and t0 + Δt. The steady-state is achieved when
the criteria

|T−T0|
|T0| < εT ; T0 �= 0

T < εT ; T0 = 0
(15)

is met. If the criteria (15) is not met, the body
force is updated and calculation returns back to
the equation (5). The simulation flowchart is rep-
resented in Figure 1.

Boundary 

Interior 

Problem domain

Corner

Figure 1: The calculation flowchart

4 Radial basis function collocation method

The pressure, velocity and temperature fields are
interpolated on the same grid points by LRBFCM
where Hardy’s multiquadrics are used as basis
functions. The arbitrary function θ is represented
on a local sub-domain (Figure 2) as

θ (p) ≈
N

∑
n=1

αnΛn (p) (16)

with p, Λn, αn and N standing for position vector,
basis function, collocation coefficient and number
of collocation points, respectively. Hardy’s multi-
quadrics basis functions are defined as

Λn (p) =
√

r2
n (p)+c2r2

0; r2
n = (p−pn) · (p−pn)

(17)

where c represents a dimensionless shape param-
eter. The scaling parameter r2

0 is set to the maxi-
mum nodal distance in the local sub-domain. The
collocation coefficients are obtained from a collo-
cation condition in the nodal points where equa-
tion (16) holds. In case when the number of nodes
is the same as the number of the terms in the series
(16), the system simplifies to

θ (pi) = θi =
N

∑
n=1

αnΛn (pi) (18)

⎡
⎣Λ11 · · · Λ1N

· · · · · · · · ·
ΛN1 · · · ΛNN

⎤
⎦

⎡
⎣α1

· · ·
αN

⎤
⎦ =

⎡
⎣θ1

· · ·
θN

⎤
⎦ (19)

where Λni = Λn(pi). The collocation coefficients
αn are obtained by solving the system (19). The
spatial derivatives of the function θ can be easily
obtained through

∂
∂ pσ

θ (p) ≈
N

∑
n=1

αn
∂

∂ pσ
Λn (p) (20)

∂ 2

∂ 2 pσ
θ (p) ≈

N

∑
n=1

αn
∂ 2

∂ 2 pσ
Λn (p) (21)

where pσ=x,y stand for Cartesian coordinates. All
necessary derivatives to construct the involved di-
vergence, gradient and Laplace operators can be
calculated from equations (20) and (21). The in-
tegral of function θ over pσ (needed in the calcu-
lation of the streamfunction) can be evaluated as
well

∫
θ (p)dpσ =

N

∑
n=1

αn

∫
Λn (p)dpσ (22)

In this paper only the simplest local sub-domain
of five collocation points is used with the overlap-
ping collocation sub-domain strategy (Figure 2).
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The points denoted with cross over the circle
are the points where values of interest are cal-
culated. At the interior points the derivates are
calculated at the central sub-domain points while
at the boundary points with Neumann boundary
condition the values of function are calculated.
At the boundary collocation points with the Neu-
mann boundary conditions the derivative instead
of the function value is known. In such points the
equation (18) is replaced with

∂
∂ pσ

θ (pi) =
N

∑
n=1

αn
∂

∂ pσ
Λn (pi) (23)

where index i stands for index of a point where
the derivative is known. The overlapping sub-
domain strategy is schematically represented for
two neighboring interior points in Figure 2, as
well. All interior points at time level t0 + Δt are
evaluated first. Afterwards, the calculation con-
tinues with the Neumann boundary points at time
level t0 + Δt. The five pointed local sub-domain
strategy is used to solve all cases. The conver-
gence with respect to the sub-domain selection
has been studied in our previous work ...[Šarler
and Vertnik (2006)], where the results with five-
and nine-point sub-domains were compared for
diffusion problems. These results do not differ
much (the relative difference is below 0.1%), but
the implementation on the boundary is much more
complex and less stable, therefore only the sim-
plest five pointed sub-domain has been used in the
present work.

Boundary 

Interior 

Problem domain

Figure 2: Five-noded collocation sub-domain and
total space discretization schematics

5 Numerical examples

The natural convection in a rectangular enclosure
is taken as a benchmark due to its well known so-
lution. The vertical walls are differentially heated
while horizontal walls are isolated. All walls are
non-permeable and due to Darcy’s law the slip
boundary condition applies. The normal velocity
is zero (Figure 3).

Figure 3: The problem domain

All results are stated in Cartesian coordinates and
standard dimensionless form

x =
x

W
y =

y
W

u =
uLρcp

λ
v =

vLρcp

λ

τ =
T −TC

TH −TC

(24)

where x, y stand for dimensionless coordinates,
u,vstand for dimensionless horizontal and verti-
cal velocity components, and τ stands for dimen-
sionless temperature. Filtration Rayleigh number
is defined as

RaF =
ρ2cpKgβ (TH −TC)B

λ μ
(25)

Nusselt number is calculated by equation

Nu(x,y) = −∂τ(x,y)
∂x

+u(x,y)τ(x,y) (26)
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Figure 4: Temperature contour plot and streamlines
for A = 1, RaF = 50

Figure 5: Temperature contour plot and streamlines
for A = 1, RaF = 100

Figure 6: Temperature contour plot and streamlines
for A = 1, RaF = 103

Figure 7: Temperature contour plot and streamlines
for A = 1, RaF = 104
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Figure 8: Temperature contour plot and streamlines
for A = 1/2, RaF = 50

Figure 9: Temperature contour plot and streamlines
for A = 1/2, RaF = 100

Figure 10: Temperature contour plot and stream-
lines for A = 1/2, RaF = 103

Figure 11: Temperature contour plot and stream-
lines for A = 2, RaF =50, 100 103
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Figure 12: Mid-plane velocities comparison with
reference FVM solution
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Figure 13: Hot-side Nusselt number comparison
with reference FVM solution
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and the streamfunction is calculated by integrat-
ing a velocity component

ψ(x,y) =
y∫

H=0

u(x,y′)dy′ (27)

Three different cavity height-width aspect ra-
tios were tested (A = H/W), A = 0.5, A = 1
and A = 2 for filtration Rayleigh numbers up to
104. The results were compared with (a) [Šar-
ler, Gobin, Goyeau, Perko and Power (2000)], (b)
[Ni and Beckermann (1991)], and (c) [Prax, Sadat
and Salagnac (1996)] where good agreement was
achieved (Table 1). The streamlines and tempera-
ture contour plots of the present work are shown
in Figures 4-11. The temperature contour step is
for all cases 0.005 while streamline step varies
(from 0.5 for RaF = 50 to 5 for RaF = 104) in
the tackled cases.

Additional result comparison with reference FVM
solution, previously used in [Šarler, Gobin,
Goyeau, Perko and Power (2000)], for mid-plane
velocities (Figure 12), hot-side Nusselt number
(Figure 13), mid-plane and top temperature pro-
files (Figure 14) is done for case with A = 1 and
filtration Rayleigh number RaF = 100.

6 Numerical implementation and result dis-
cussion

All numerical procedures are written in C++ lan-
guage and compiled with Intel C++ compiler 9.1.
The LAPACK routines are used to solve the LU
decomposition. All calculations are done with In-
tel Xeon processor with 4 CPU cores. The results
for low filtration Rayleigh numbers agree well
with other works. In addition to previously treated
cases in quoted works, results for RaF = 103 and
RaF = 104 are represented in this work. The
pressure-velocity coupling algorithm was tested
for up to 400× 400 uniformly distributed nodes
and it behaves convergent. The initial fields have
been set to zero in all calculations. The time step
and pressure-velocity iteration criteria is stated in
(Table 2) for all calculated cases. For all cases the
relaxation parameter β has been set to the same
numeric value as the time step. The RBF free pa-
rameter in equation (17) was found to give best

results around c = 30. All calculations require
less than an hour of CPU time to reach the steady-
state, where the steady-state criteria εT < 10−5 is
used in all cases.

7 Conclusions

This paper describes the initial attempts at solv-
ing the problem of Darcy natural convection in
porous media by the LRBFCM. Results are ob-
tained for rectangular cavities with aspect ratio
0.5, 1 and 2, and filtration Rayleigh numbers 50,
102, 103 and 104. The method is structured on
the local version of the Hardy’s multiquadrics.
The main advantage of the method represents the
polygon-free discretization, simple numerical im-
plementation, which is very similar in 2D and
3D problems, and no numerical integration in-
volved. Present work employs a new, entirely
local approach, for solving the pressure-velocity
coupling without the need to solve the pressure
Poisson or pressure Poisson correction equations.
It was successfully tested for Darcy porous me-
dia flow. The algorithm is simple to implement
and it needs a small number of operations per it-
eration cycle. The solver is completely explicit
and therefore it is trivial to parallelize it. The
method is potentially competitive because of the
obvious man-power reduction in grid generation.
The developed method represents a substantial
step forward with respect to the global RBFCM
[Šarler, Perko and Chen (2004)] one, because of
its capabilities to solve problems with large de-
gree of unknowns. Further investigations follow
in the optimum relaxation parameter analysis, the
time-dependent and non-uniform [Perko and Šar-
ler (2007)] nodes configuration, and testing of
the algorithm in more complex physical situations
(solidification, multi layer domains, more com-
plex geometries, ...).
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Table 1: Comparison of the results

RaF A vmax umax Nu ψmid ref /discretization

50 1

1.979 2.863 (a)
18.112 11.174 1.941 2.860 101×101
17.928 11.214 1.962 2.853 201×201
17.845 11.236 1.975 2.848 401×401

102 1

35.889 17.380 3.101 4.375 (a)
3.103 (b)
3.010 (c)

37.454 17.500 3.040 4.510 101×101
37.055 17.562 3.071 4.607 201×201
36.873 17.603 3.086 4.655 401×401

103 1

13.42 (b)
441.771 72.560 13.044 17.062 101×101
435.107 74.741 13.455 18.791 201×201
432.335 75.577 13.529 19.658 401×401

104 1
4946.968 257.394 36.720 35.436 101×101
4880.108 287.375 44.295 49.235 201×201
4880.197 287.375 44.295 49.310 401×401

50 0.5
2.135 2.148 (a)

23.402 16.562 2.130 2.090 101×201
102 0.5 52.136 27.109 3.720 3.509 101×201
103 0.5 732.806 120.724 22.452 15.928 101×201

50 2
1.386 2.639 (a)

11.710 7.039 1.367 2.608 201×101
102 2 23.283 10.779 11.944 4.630 201×101
103 2 241.218 45.111 7.250 19.576 201×101
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Figure 14: Mid-plane and top temperature profiles
comparison with reference FVM solution

Table 2: Pressure-velocity iteration criteria εv

and time-step Δt.

Ra A εv Δt discr.
50 1 0.01 1e-04 100×100
102 1 0.1 1e-04 100×100
103 1 1 1e-04 100×100
104 1 1 5e-06 100×100
50 2 0.1 1e-05 200×100
102 2 1 1e-05 200×100
103 2 1 1e-05 200×100
50 0.5 0.1 1e-04 100×200
102 0.5 1 1e-05 100×200
103 0.5 1 1e-05 100×200
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