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A NURBS-based Parametric Method Bridging Mesh-free and Finite
Element Formulations

Amit Shaw1, B. Banerjee1 and D Roy1,2

Abstract: A generalization of a NURBS based
parametric mesh-free method (NPMM), recently
proposed by Shaw and Roy (2008), is consid-
ered. A key feature of this parametric formula-
tion is a geometric map that provides a local bi-
jection between the physical domain and a rect-
angular parametric domain. This enables con-
structions of shape functions and their deriva-
tives over the parametric domain whilst satisfying
polynomial reproduction and interpolation prop-
erties over the (non-rectangular) physical domain.
Hence the NPMM enables higher-dimensional B-
spline based functional approximations over non-
rectangular domains even as the NURBS basis
functions are constructed via the usual tensor
products of their one-dimensional counterparts.
Nevertheless the method still lacks the univer-
sality that the FEM enjoys. In particular, for
many non-simply connected domains, the geo-
metric map may not be locally bijective every-
where and this severely restricts the general ap-
plicability of the NPMM. In this paper, a piece-
wise form of the NPMM is proposed, wherein the
domain is decomposed into a collection of simply
connected sub-domains or element patches (anal-
ogous to the FEM). The NPMM is then employed
over each sub-domain without affecting the conti-
nuity of approximated functions across inter-sub-
domain boundaries. This is quite unlike the usual
FEM. The proposed procedure not only possesses
the generality of the FEM, it is also equipped with
higher order, globally smooth and interpolating
basis functions. It may thus be interpreted as a
seamless bridge between the FEM and mesh-free
methods. In the context of weak implementations
of the piecewise NPMM, we propose a confor-
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mal knot-grid integration scheme. Finally, we il-
lustrate these schemes for weak numerical solu-
tions of a few linear and nonlinear boundary value
problems of engineering interest.
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1 The Introduction

In any engineering analysis the accuracy and the
cost of computation may get affected by the pro-
cedure employed for domain and functional dis-
cretizations. In the context of the FEM, these
requirements are generally not adequately at-
tended to because of a crude approximation of
the original geometry, an expensive mesh gener-
ation especially for a complicated geometry, and
a poor element-wise approximation of the field
variable(s) with a loss of inter-element continu-
ity. A way out of some of these drawbacks
is however possible with mesh-free methods - a
more recent development. These methods, un-
like classical forms of the FEM, do not require
an element-based mesh generation for the dis-
cretization of domain geometries. The entire do-
main is discretized by a set of grid points (also
called nodes or particles). Constructions of mesh-
free shape functions have been well researched
over the last two decades. Mention may, in
particular, be made of the smooth particle hy-
drodynamics (SPH), (Lucy 1977; Gingold and
Monaghan 1977, Monaghan 1992), diffuse ele-
ment method (DEM) (Nayrole et al. 1992), el-
ement free Galerkin method (EFG) (Belytschko
et al. 1994, Lu et al. 1994), reproducing ker-
nel particle method (RKPM) (Liu et al. 1995a,
1995b), moving least square reproducing kernel
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(MLSRK) method (Liu et al. 1997), partition
of unity method (PUM) (Babuška and Melenk
1997, Melenk and Babuška 1996), h− p clouds
(Duarte and Oden 1997), mesh-free local bound-
ary integral equation method (LBIE) (Zhu et al.
1998), mesh-free local Petrov–Galerkin method
(MLPG) (Atluri and Zhu 1998, Atluri and Shen
2002, Atluri et al. 1999, 2004, 2006a, b), point
interpolation method (Liu and Gu 2001a, b, c),
boundary point interpolation methods (Gu and
Liu 2001), radial point interpolation method (Dai
et al. 2004), reproducing kernel element method
(Liu et al. 2004, Li et al. 2004, Lu et al. 2004,
Simkins et al. 2004), reproducing kernel inter-
polating method (2007b), error reproducing ker-
nel method (ERKM) (Shaw and Roy 2007a), er-
ror reproducing and interpolating kernel method
(ERIKM) (Shaw et al. 2008) and several others.
For a comprehensive review of mesh-free meth-
ods, readers are suggested to refer (Li and Liu
2002, Fries and Matthies 2004).

However, despite the ability to dispense with the
discretization through elements, the evaluation of
mesh-free shape functions and their use in con-
structing the trial and test spaces (as in a Galerkin
formulation) may lead to some other computa-
tional as well as numerical difficulties. First, since
most mesh-free shape functions do not satisfy the
Kronecker delta property and fail to vanish at the
essential boundaries, the imposition of essential
boundary conditions is not as trivial (Fernández-
Méndez and Huerta 2004), unlike the FEM. Sec-
ond, there may be a misalignment of the support
of a shape function with the integration cell (re-
quired for evaluating the integrals in the weak
form) which makes the method non-conforming.
Third, most mesh-free schemes are based on a dis-
crete and approximated form of the integral ker-
nel representation of a function. Generally the
user needs to optimize the size of the kernel (win-
dow) function based on some numerical experi-
ments. A mesh-free approximation with automat-
ically and uniquely obtainable support size (for a
given nodal distribution) has so far been elusive.

In an effort to address some of these difficulties,
Shaw and Roy (2007a) have recently proposed
a NURBS (non-uniform rational B-spline) based

error reproducing kernel method (ERKM). In
ERKM, the target function is first approximated
via NURBS basis functions. Then the error (re-
mainder) function, resulting from the NURBS ap-
proximation of the target function, is reproduced
(within a finite-dimensional polynomial space)
through a non-NURBS family of basis functions
and added to the NURBS approximation of the
target function. Error reproducing and interpolat-
ing kernel method (ERIKM), an interpolating ver-
sion of ERKM based on Kriging, has also been
developed (Shaw et al. 2008). The ERKM and
ERIKM have several attractive features owing to
the usage of NURBS, such as near-insensitivity
to support sizes of the window functions and the
ability to represent sharp changes (such as shocks)
without numerical instability. Unfortunately since
NURBS in higher dimension (> 1) is constructed
via the tensor product of one dimensional func-
tions, it is only defined over a d-dimensional hy-
percube (square in R2 and a cuboid in R3). Hence,
in most problems of practical interest, the geo-
metric complexity of the domain prevents mak-
ing use of NURBS in the ERKM/ERIKM. In or-
der to realize the objective of dealing with a do-
main with irregular geometry, a NURBS-based
parametric mesh-free method (NPMM) has been
proposed (Shaw and Roy 2008). Here, NURBS
basis functions are constructed over a paramet-
ric space Ω = [0, 1]n (n is the dimension of the
domain) such that reproduction and interpolation
properties are satisfied over the (non-rectangular)
physical domainΩc = Ω ∪ ∂Ω and the geomet-
ric map F : Ω → Ωc is simultaneously preserved.
Needless to say, the geometric map F plays a cru-
cial role in the parametric formulation. However,
for many (probably most) physical domains of
practical interest, a bijective may not exist. This
severely restricts the applicability of the NPMM.

As a way out of these difficulties and towards fur-
ther generalization of the method, we presently
explore a spatially piecewise form of the NPMM.
The first key step is to decompose the physical
domain Ωc = Ω∪ ∂Ω ⊂ Rn into a finite number
of sub-domains or element patches {Ωe

c}Ne

e=1 such
that there is a family of local bijections Fe : Ωe →
Ωe

c∀e ∈ [1,Ne]. Here Ω = [0, 1]d ⊂ Rd (d ≤ n) is
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the so-called parametric domain, a d-dimensional
hypercube. Then each parametric domain Ωe

is
discretized (into NURBS cells), which is trans-
ferred to the element patch Ωe

c via Fe. Once the
physical domain is discretized, a set of NURBS-
based basis functions are constructed over Ωe

so
that polynomial reproduction properties are satis-
fied over each Ωe

c without affecting the continuity
of approximated functions across the boundaries
of the element patches. However, like any other
numerical scheme, improper implementations of
the piecewise NPMM may affect the accuracy and
convergence of the solution. In particular, we
consider the interpolation and integration issues.
In order to enforce essential boundary conditions,
the concept of primitive and enrichment function
(Chen et al. 2003) is used. To start with, we em-
ploy Lagrange polynomials in order to construct
the primitive functions. However, whilst La-
grange polynomials work well for smaller orders
of polynomial reproduction (p ≤ 2), oscillations
are observed in the shape functions as p increases.
Accordingly, for higher consistency, we use inter-
polating (Deslauriers-Dubuc) wavelet basis as the
primitive function. A conformal knot-grid inte-
gration scheme is also proposed such that the in-
tegrals appearing in the weak form are (numeri-
cally) integrated over a grid formed by the knot
vectors. Since B-spline basis functions are com-
pactly supported between knot points (Ni,p(ξ )= 0
∀ξ /∈ [ξi, ξi+p+1) where Ni,p(ξ ) is the B-spline
basis function of degree p defined over the knot
vector Ξ = {ξ1,ξ2,ξ3, . . .,ξn+p+1|ξi ∈ R} and n is
the number of basis functions), supports of these
basis functions always remain aligned with the
grid formed by knot vectors. Consequently the
non-conformability owing to the misalignment of
support domains and background mesh is effort-
lessly bypassed. Finally we illustrate the numer-
ical performance of the proposed method in the
context of weak solutions of a few boundary value
problems of relevance in solid mechanics.

While a ⊗ b indicates the standard tensor prod-
uct of two vectors, a · b indicates the dot prod-
uct and a × b the cross product of a and b.
For convenience, the multi-index notation is
adopted throughout this article. Thus defining

α = (α1,α2, . . .,αn) (with n > 0) to be an n-
tuple of non-negative integers α j, α is referred
to as the multi-index and its length is defined

as |α | =
n
∑

i=1
αi. The α th (Fréchet) derivative

of the function u(x) is expressed as Dαu(x) =
∂ α1

x1
∂ α2

x2
. . .∂ αn

x3
u(x). We define α! = α1!α2! . . .αn!

and xα = xα1
1 xα2

2 . . .xαn
n . The rest of the paper is

organized as follows. In sections 2, the piece-
wise NPMM is briefly outlined. Various aspects
of interpolation and numerical integration are dis-
cussed respectively in sections 3 and 4. A few test
cases are provided in section 5 to bring forth the
efficacy of the proposed scheme. Conclusions are
drawn in section 6.

2 The Piecewise NPMM

Consider an open and bounded domain Ω ⊂
Rn with a Lipschitz continuous boundary ∂Ω ⊂
Rn−1. We denote by Ωc = Ω∪∂Ω the closure of
Ω. The construction of piecewise NPMM shape
functions involves three main steps described be-
low.

2.1 Construction of the Geometric Map

In the FEM, a major portion of the computational
time is consumed in modeling and discretization
of the domain geometry. It is then desirable to
have a less costly representation of a complicated
domain with the added requirement that, when-
ever required, the original geometry can be repro-
duced precisely. NURBS is a mathematical tool
that provides a parametric representation of both
analytic and free-form surfaces. It is generally
defined by its order, control points, weights as-
sociated with control points and knot vectors (see
Piegl and Tiller 1995 for details of B-spline and
NURBS).

In an effort to exploit the parametric representa-
tion of the original geometry via NURBS in en-
gineering analysis, Shaw and Roy (2007b) have
recently proposed the NPMM. Here a paramet-
ric domain Ω = [0, 1]n (n denotes the physical
dimension of the domain Ωc = Ω ∪ ∂Ω) is so
defined that there is a local bijection F : Ω →
Ωc (figure 1). The transformation F , called the
geometric map, is constructed through NURBS.
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Figure 1: (a) Parametric domain and knot vectors; (b) physical domain and control points {Pi}14
i=1
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Figure 2: (a) Discretization
{
{xi}NP

i=1

}
⊂ Ω of the parametric domain; (b) corresponding discretization{

{xi}NP
i=1

}
⊂ Ωc of the physical domain
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Figure 3: A triangular domain where the geometric map is not one-to-one; (a) discretization of the paramet-
ric space; (b) projection of the discretized parametric space on the physical space
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Given F , the parametric domain Ω is discretized

by a set of grid points
{
{xi}NP

i=1

}
⊂ Ω (figure 2a)

and the corresponding discretization
{
{xi}NP

i=1

}
⊂

Ωc of the physical domain (figure 2b) is uniquely
obtained viaF . Then the shape function and its
derivatives are so constructed over Ω that poly-
nomial reproduction and interpolation properties
are satisfied over Ωc and the geometric map F is
simultaneously preserved.

The NPMM provides a relief form several compu-
tational pitfalls (e.g. dealing with a complicated
geometry, choosing an optimal support size of
the window function, choosing a conformal back-
ground mesh for accurate integration etc.) present
in many other mesh-free methods. Nevertheless,
bijective geometric maps may not exist for many
(probably most) geometrical objects of practical
importance (see figure 3). This imposes a severe
restriction on the applicability of the NPMM and
the situation may be sharply contrasted with the
universality of the FEM.

In order to remove this restricted applicability
and further generalize the method, we consider a
piecewise form of the NPMM wherein the domain
Ωc is decomposed into Ne simply connected sub-
domains (element patches) {Ωe

c}Ne

e=1 such that the
following conditions hold.

1. Ωe
c is closed and has a non-empty interior Ωe

2. Ωc =
Ne⋃

e=1
Ωe

c

3. Ωi
c∩Ω j = φ for i 
= j where Ω j is the interior

of Ω j
c

4. There is a bijection Fe : Ωe → Ωe
c for ∀e ∈

[1,Ne] where Ωe = [0, 1]n ⊂ Rn is the para-
metric element associated with Ωe

c.

For further illustration, consider a triangular do-
main shown in figure 4a. The domain Ωc is de-
composed (Figure 4b) into three (Ne = 3) element
patches {Ωe

c}3
e=1. Now, for each Ωe

c, define a para-
metric element Ωe

= [0, 1]n ⊂ Rn such that the
image of any point x ∈ Ωe

in Ωe
c may be obtained

as:

x =
Ne

CP

∑
i=1

Reg
i,p(x)Pe

i ∀x ∈ Ωe
c (1)

Here Reg
i,p(x) are the NURBS basis functions,

{Pe
i }Ne

CP
i=1 is a set of control points and Ne

CP is the
number of control points associated with Ωe

c (car-
dinality of the set). Equation (1) provides the ge-
ometric map Fe : Ωe → Ωe

c. For all Ωe
c, e ∈ [1,3],

NURBS basis functions Reg
i,p(x) are constructed

over the knot space Ξe × ϒe ⊂ [0, 1]2 with two
B-spline basis functions over the real line defined
over Ξe = {0, 0, 1, 1} and ϒe = {0, 0, 1, 1}.

In order to formalize the procedure within a more
general setting, now consider a non-simply con-
nected domain shown in figure 5a. The domain is
decomposed (figure 5b) into 4 (Ne = 4) element
patches {Ωe

c}4
e=1 such that there exist a bijection

Fe : Ω → Ωe
c, for e ∈ [1,4].

Once the geometric map is obtained, each element
patch may be discretized separately by transform-
ing the discretization of its parametric domain
to the physical domain. However, before we
progress further, a few important issues related to
the numbering system and the compatible domain
decomposition criteria need to be put in place.

2.1.1 The Numbering System

The numbering system that we have presently
adopted is shown in figure 6.

2.1.2 Control Vertices, Control Edges and Con-
trol Faces

If the parametric domain Ωe ⊂ Rn is considered
as a polytope, then the images of the polytope
vertices, polytope edges and polytope faces in
the physical domain are referred to as control
nodes, control edges and control faces respec-
tively. In figure 4, for instance, {1, 2, 5, 4},
{2, 3, 6, 5} and {5, 6, 7, 4} are the control
vertex numbers; {1−2, 2−5, 5−4, 4−1},
{2−3, 3−6, 6−5, 5−2} and
{5−6, 6−7, 7−4, 4−5} are the control
edge numbers for elements Ω1

c, Ω2
c and Ω3

c
respectively. Similarly, {6, 5, 1, 2}, {3, 7, 6, 2},
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Figure 4: (a) Physical domain; (b) the same is decomposed into 3 sub-domains (element patches) Ω1
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Figure 5: (a) Physical domain; (b) the same is decomposed into 4 element patches
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Figure 6: (a) Numbering system for different parametric domains; (a) line Ω = [0, 1]; (b) plane Ω = [0, 1]2

and (c) solid Ω = [0, 1]3 (see Table 1 for edge and face numbering for solid)
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Table 1: Edge and surface numbering for parametric domain in R3

Edge Surface
Edge ID Node number Surface ID Node number
9 1-2 21 1-2-3-4
10 2-3 22 1-2-6-5
11 3-4 23 2-3-7-6
12 4-1 24 3-4-8-7
13 5-6 25 4-1-5-8
14 6-7 26 5-6-7-8
15 7-8
16 8-5
17 1-5
18 2-6
19 3-7
20 4-8

{3, 4, 8, 7} and {8, 4, 1, 5} are the control ver-
tex numbers and {6−5, 5−1, 1−2, 2−6},
{3−7, 7−6, 6−2, 2−3},
{3−4, 4−8, 8−7, 7−3} and
{8−4, 4−1, 1−5, 5−8} are the control
edge numbers for element patches Ω1

c , Ω2
c, Ω3

c

and Ω4
c respectively for the physical domain

shown in figure 5.

2.2 Compatible Domain Decomposition

We define:

ℑe =
{

i ∈ [1, Ne] : Ωe
c ∩Ωi

c 
= φ
}

(2)

Now let V e, Ee and Fe respectively denote the set
of control vertices, control edges and control faces
associated with Ωe

c. Then the sub-domain Ωe
c is

said to be compatible with respect to
{

Ωi
c

}
i∈ℑe if

it satisfies at least one of the following conditions:

1. V e ∩V i ⊆ Ωe
c ∩Ωi

c, i ∈ ℑe

2. Ee ∩Ei ⊆ Ωe
c ∩Ωi

c, i ∈ ℑe

3. Fe ∩Fi ⊆ Ωe
c ∩Ωi

c, i ∈ ℑe

The implication of the above compatibility condi-
tions is as follows. If any two element patches
intersect, then the control vertex, control edge
and control face of one element patch will in-
tersect respectively with control vertex, control

edge and control face of another. To make mat-
ters clearer, a typically incompatible domain de-
composition and a couple of typically compatible
ones are shown in figure 7.

2.3 Discretization

We discretize the parametric domain Ωe
by the

set of grid points
{
{xe

i }Ne
P

i=1

}
⊂ Ωe

and denote{
{xe

i }Ne
P

i=1

}
to be the corresponding image set in

Ωe
c obtained via the transformation Fe (equation

1). Figures 8 and 9 show the discretization of
Ωe

and the corresponding image in Ωc for the do-
mains shown in figures 4 and 5 respectively.

2.4 The Piecewise NPMM Approximation

Let u(x), x ∈ Rn be an L∞ (sufficiently smooth)
function defined on an open set containing Ωc

and
{
{xi}NP

i=1

}
⊂ Ωc be a discretization of the

physical domain Ωc. This enables us to define
the set of discretized (point-wise) function values

{ui
Δ= u(xi)}NP

i=1. Consider any point x ∈ Ωe
c with

x ∈ Ωe
denoting the pre-image of x. Let ℵe ⊂ Rn

be the knot space associated with Ωe
and Re

i,p+1(x)
be the NURBS basis function of degree p+1 (re-
quired to achieve pth order consistency; see sec-
tion 3) defined over ℵe. Define Se(x) as:

Se(x) =
{

i : Re
i,p+1(x) > 0

}
. (3)



38 Copyright © 2008 Tech Science Press CMES, vol.26, no.1, pp.31-57, 2008

               (a)               (b)              (c)  

1

11 12

3 4 65

8 97 10

Ω3
c

Ω4
c Ω2

c

1
cΩ

1 2

7 8

3 4

5 6

Ω4
c

1
cΩ

Ω2
c

Ω3
c

1

13 16

5 6 87

10 119 12

Ω7
c

Ω4
c Ω5

c

Ω2
c

14 15 

42 3

Ω6
c

Ω1
c

Ω8
c

Ω3
c

Figure 7: (a) Incompatible domain decomposition; (b) – (c) compatible domain decomposition
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Figure 8: (a) Discretization of the parametric domain Ωe = [0, 1]2; (b) projection in the physical domain
Ωc ⊂ R2
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Shaw and Roy (2008) have demonstrated that,
while constructing the parametric mesh-free
shape function, we need to choose ℵe properly in
order to satisfy the regularity condition. This may
be achieved by taking a few knots outside the do-
main Ωe

. For example, in the one-dimensional
(n = 1) case, one may use ℵe ⊂ [−εx, 1 + εx].
Similarly, we have, for higher dimensions:

ℵe ⊂ [−εx, 1+εx]× [−εy, 1+εy] for n = 2

and

ℵe ⊂ [−εx, 1+εx]× [−εy, 1+εy]× [−εz, 1+εz]
for n = 3.

Here εx, εy and εz are parameters to be so chosen
that

card(Se(x)) ≥ (p+n)!
p!n!

∀x ∈ Ωe
(4)

where card(·) denotes the cardinality of the set (·).
Towards maintaining a simple exposition with the
least diversion, we presently assume a uniform
particle distribution over Ωe

and also takeεx =
εy = εz = ε . Now define two scaled parametric

spaces Ω̃
e

and Ω̂
e

(figure 10a) obtained respec-
tively by the geometric expansion and contraction
of the parametric space Ωe

as:

Ω̃
e
= [−ε , 1+ε ]n ⊂ Rn (5)

Ω̂
e
= [ε , 1−ε ]n ⊂ Rn (6)

We also define Ω̃e
c and Ωe

c as the projections of

Ω̃
e

and Ω̂
e

respectively onto the physical domain
(figure 10b). Figures 11a through 11d show pro-
jections of the scaled parametric domains in the
physical domain for each element patch corre-
sponding to the examples shown in figures 4 and
5.

Depending on the nodal coordinates, we may have
following two cases.

Case 1:

If x ∈ Ω̂e
c (⇒ x ∈ Ω̂

e
) then it does not have

any interaction (in terms of approximations of
the field variables at that point getting affected
by the shape function corresponding to another

point) with other element patches and the piece-
wise NPMM shape function simply reduces to the
parametric mesh-free shape function (Shaw and
Roy 2008) applied overΩe

c. The reproducing con-
dition may be written as:

NP

∑
i=1

Ψi(x)xα
i =xα , |α | ≤ p

⇒
NP

∑
i=1

Ψi(x)H(x−xi) =H(0) (7)

H(x) = {xα}T
|α |≤p is a set of monomial basis func-

tions and α is the multi-index. From equation (7),
we may write:

x =
Ne

CP

∑
i=1

Reg
i,p(x)Pe

i

x−xi =
NCP

∑
k=1

Reg
k,q(x)Pe

k −
NCP

∑
k=1

Reg
k,q(xe

i )P
e
k

(8)

⇒

H(x−xi) =
NCP

∑
k=1

[
Reg

k,q(x)−Reg
k,q(xe

i )
]
Pe

k = H(xe
i ,x)

(9)

Now Ψi(x) may be written as:

Ψi(x) = H
T (xe

i ,x)b(x)Re
i,p+1(x) (10)

b(x) is the vector of unknown coefficients. Using
equations (7) and (10), we may write:

⇒
NP

∑
i=1

H(xe
i ,x)b(x)Re

i,p+1(x)H(xe
i ,x) = H(0) (11)

⇒ M(x)b(x) = H(0) (12)

⇒ b(x) = M
−1(x)H(0) (13)

M(x) is the parametric moment matrix given by:

M(x) =
NP

∑
i=1

H(xe
i ,x)H

T (xe
i ,x)Re

i,p+1(x) (14)

Using equations (10), (11) and (13), the paramet-
ric mesh free shape function Ψi(x) may be ex-
pressed as:

Ψi(x) = HT (0)M−1(x)H(xe
i ,x)Re

i,p+1(x),

i ∈ Se(x) (15)
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Figure 10: (a) Scaled parametric spaces; (b) projections on the physical domain
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Similarly derivatives of the parametric basis func-
tion may be obtained based on the premise that
the β th derivative of the basis function would ex-
actly reproduce the β th derivative of an arbitrary
element of the space Pp of polynomials of degree
p ≥ |β |. Thus, following Shaw and Roy (2007b),
the β th derivative of the parametric mesh-free ba-
sis function may be obtained as:

Ψ(β)
i (x) =

(−1)|β |HT (β)(0)M−1(x)H(xe
i ,x)Re

i,p+1(x),

i ∈ Se(x) (16)

Case 2:

If x ∈ Ω̃e
c\Ω̂e

c (⇒ x ∈ Ω̃
e\Ω̂

e
) then the piecewise

NPMM shape function at x ∈ Ωe
c will have inter-

actions with all other element patches overlapping
Ωe

c. As the first step in capturing such interac-
tions, we define:

Γe
i =

{
j ∈ [1, NP] : xi ∈ Ωe

c ∩Ω j
c

}
(17)

Let x̃e j ∈ Ω̃
j
, j ∈ ℑe, be the pre-image of x (see

figure 11). The procedure for finding x̃e j ∈ Ω̃
j

is
discussed in section 2.4. Now the NURBS ap-
proximation of any function u(x) may be written
as:

ua(x) = ∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

wiR
j
i,p(x̃ j)ui (18)

where

wi =
1

card(Γe
i )

. (19)

Since NURBS does not reproduce polynomials
beyond first order, we introduce a correction func-
tion into the approximation. Then the piecewise
NPMM approximation of the function u(x) may
be written as:

u(x) = ∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

Ci(x)R j
i,p(x̃ j)ui (20)

where

R
j
i,p(x̃ j) = wiR

j
i,p(x̃ j) (21)

The correction term Ci(x) may be obtained via the
following reproducing condition:

xα = ∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

Ci(x)R
j
i,p(x̃ j)(xi)α (22)

Putting Ci(x) = HT (x− xi)b(x) in equation (22),
we arrive at the following identity:

xα = ∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

HT (x−xi)b(x)R
j
i,p(x̃ j)(xi)α

(23)

HT (x−xi) is the set of monomial basis and b(x) is
the vector of unknown coefficients. Now equation
(23) may be written as:

∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

HT (x−xi)b(x)R
j
i,p(x̃ j)H(x−xi)

= H(0) (24)

⇒ ∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

H(x−xi)HT (x−xi)R
j
i,p(x̃ j)b(x)

= H(0) (25)

⇒ MNSFEM(x)b(x) = H(0) (26)

⇒ b(x) = M−1
NSFEM(x)H(0) (27)

where MNSFEM(x) is the NSFEM moment matrix
given by:

MNSFEM(x) =

∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

H(x−xi)HT (x−xi)R
j
i,p(x̃ j) (28)

Similarly the β th derivative of the piecewise
NPMM approximation may be written as:

uβ (x) = ∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

HT (x−xi)bβ(x)R
j
i,p(x̃ j)ui

(29)

bβ (x) is the coefficient vector for derivative cal-
culation and may be obtained form the derivative
reproduction condition as:

b(β)(x) = (−1)|β |M−1
NSFEM(x)HT(β)(0) (30)
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where MNSFEM(x) is the moment matrix given by
equation (28) and H(β) is the β th derivative of the
monomial basis. We emphasize that the ability of
the shape functions (in case 2) to reproduce poly-
nomials up to a desired degree plays a crucial role
in maintaining the globally smooth nature (to any
desired order) of the shape functions, even across
the boundaries of the patches.

2.5 Local Parametric Assembly (LPA)

The concept of local parametric assembly (LPA)
is introduced in the doctoral thesis of Shaw (2007)
in order to find the parametric coordinate x̃e j ∈
Ω̃

j
corresponding to the physical coordinate xfor

each sub-domain Ω j
c where j ∈ ℑe. The paramet-

ric assembly of any two sub-domains is the equiv-
alent assembly of the corresponding sub-domains
in their parametric spaces. For example, consider
once more the triangular domain shown in figure
4. Figure 12 shows the numbering of the con-
trol nodes and control edges for each sub-domain
with respect to their parametric spaces. The local
parametric assemblies of Ω1

c with Ω2
c and Ω3

c are
shown in figures 13a and 13b respectively.

Once the local parametric assembly of Ωe
c with

Ω̃
j
, j ∈ ℑe, is identified, x̃e j ∈ Ω̃

j
may be ob-

tained as the coordinate of x ∈ Ω̃
e

with respect

to Ω̃
j
. For example, in figure 13, the coordinates

of x = (ξ ,η)∈ Ω̃
1

(indicated by a black dot) with

respect to Ω̃
2
and Ω̃

3
may be obtained as,

x̃2 = (ξ 2,η2) = (1−η,1+ξ )

x̃3 = (ξ 3,η3) = (1+ξ ,1+η)

For each local parametric assembly, we assign
a number (LPA ID) according to the following
scheme.

For node-node assembly (n ≥ 1):
LPA ID = Control node number of Ωe

c – Control
node number of Ω j

c

For edge-edge assembly (n ≥ 2):
LPA ID = Control edge number of Ωe

c – Control
edge number of Ω j

c

For face-face assembly (n ≥ 3):
LPA ID = Control face number of Ωe

c – Control
face number of Ω j

c

Different parametric assemblies in one and two
dimensions have been provided in (Shaw 2007).

3 The Interpolation

The piecewise NPMM shape function, discussed
in section 2.3, does not satisfy the Kronecker
delta property and fails to vanish at the essen-
tial boundaries. Therefore the imposition of es-
sential boundary conditions is not as trivial as in
the FEM. Shaw and Roy (2008) have proposed a
couple of scheme viz. the point inverse method
and another via Kriging, to bring in the interpola-
tion property in the parametric mesh-free method.
In the point inverse method, interpolation prop-
erty is achieved by multiplying the basis func-
tions by an inverse transformation. Though the
method is quite straightforward, use of the inverse
transformation induces the bandwidth of the dis-
cretized system to become larger than that obtain-
able through the basis without the nodal interpo-
lation property. This increases the size of the in-
fluence domain and may even affect the accuracy
of the solution, especially when the targeted re-
sponse is spatially localized. In Kriging-based
interpolation schemes, interpolating basis func-
tions are obtained by minimizing the squared vari-
ance of the finite dimensional approximation with
the reproduction property (of any desired level of
consistency) as constraints. Though the reproduc-
tion and the interpolation properties are simulta-
neously achieved in the Kriging-based interpola-
tion scheme, its use demands more computational
effort due to the larger size (depends on the num-
ber of particles in the influence domain) of the
coefficient matrix. Moreover, since we need to
specify the support size of the semivariogram, the
issue of choosing an optimal support size still re-
mains.

In the context of the piecewise NPMM, we
presently use the concept of primitive and en-
richment functions (Chen et al. 2003) in or-
der to enforce the essential boundary condition.
The essence of the method is to use an arbitrary
function, called the primitive function, that satis-
fies the Kronecker delta property at the boundary
nodes (or wherever interpolation is required) and
then an enrichment function is added to the prim-
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Figure 12: Control node and control edge numbers for each sub-domain for the triangular domain shown in
figure 8

itive function in order to achieve the necessary
consistency condition. Now mesh-free approxi-
mation of u(x) ∈ C(Ωc) may be written as:

ua(x) =
NP

∑
i=1

Ψi(x)ui (31)

Ψi(x), along with its constituent basis function
may be written as:

Ψi(x) = Ψ̃i(x)+Ψi(x)

where Ψ̃i(x) is the primitive functions that satis-
fies the Kronecker delta property and Ψi(x) is the
enrichment functions. Ψi(x) may be obtained by
satisfying the pth order reproducing condition:

NP

∑
i=1

[Ψ̃i(x)+Ψi(x)]xα
i = xα , |α | ≤ p (32)

⇒
NP

∑
i=1

[Ψ̃i(x)+Ψi(x)]H(x−xi) = H(0) (33)

⇒
NP

∑
i=1

Ψi(x)H(x−xi)= H(0)−
NP

∑
i=1

Ψ̃i(x)H(x−xi)

(34)

Following equation (33) and section 2.3 the inter-
polating basis may be obtained as:

Case 1: x ∈ Ω̂e
c (⇒ x ∈ Ω̂

e
)

Ψi(x) =

[
H(0)−

NP

∑
i=1

Ψ̃i(x)H(xe
i ,x)

]T

M−1(x)H(xe
i ,x)Re

i,p+1(x), i ∈ Se(x) (35)

Ψ(β)
i (x) = (−1)|β |

[
H(0)−

NP

∑
i=1

Ψ̃i(x)H(xe
i ,x)

]T(β)

(0)M−1(x)H(xe
i ,x)Re

i,p+1(x), i ∈ Se(x) (36)

Case 2: x ∈ Ω̃e
c\Ω̂e

c (⇒ x ∈ Ω̃
e\Ω̂

e
)

u(x) = ∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

HT (x−xi)b(x)R
j
i,p(x̃ j)ui

(37)
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b(x) = M−1
NSFEM(x)

[
H(0)−

NP

∑
i=1

Ψ̃i(x)H(xe
i ,x)

]

(38)

Similarly the β th derivative of the piecewise
NPMM approximation may be written as:

uβ (x) = ∑
j∈ℑe(x)

∑
i∈S j(x̃ j)

HT (x−xi)bβ(x)R
j
i,p(x̃ j)ui

(39)

bβ (x) is the coefficient vector for derivative cal-
culation and may be obtained form the derivative
reproduction condition:

b(β)(x) = (−1)|β |M−1
NSFEM(x)[

H(0)−
NP

∑
i=1

Ψ̃i(x)H(xe
i ,x)

]T (β)

(40)

In Chen et al. (2003), a cubic spline is used as
the primitive function Ψ̃i(x). In order to satisfy
the Kronecker delta property, the support size of
Ψ̃i(x) is chosen very small (less than the small-
est distance between two successive grid points
over which the enrichment functions are defined)
so that the supports do not cover any neighbor-
ing points. A major difficulty with this approach
is as follows. As the number of discretization
points increases (leading to progressively smaller
support sizes of the primitive functions), solu-
tions are likely to have spurious oscillations espe-
cially in the higher order derivatives. Presently,
we first attempt using Lagrange polynomials in
order to construct Ψ̃i(x). Numerical tests read-
ily verify that even as Lagrange polynomials work
well for smaller p(≤ 2), spurious oscillations in
the shape functions appear as p increases. For
higher consistency, the interpolating (Deslauriers-
Dubuc) wavelet basis appears to offer a good op-
tion as the primitive function. A brief description
of the Deslauriers-Dubuc interpolating wavelet is
provided in the Appendix A. However, for a more
detailed account, we refer to (Donoho 1992).

3.0 Numerical Integration in the Piecewise
NPMM

Methods based on any weak (e.g. Bubnov-
Galerkin) formulation require (numerical) evalua-

tion of integrals. In the context of numerical inte-
gration to be performed during a weak implemen-
tation of the mesh-free method, we must account
for two sources of difficulties/errors. Firstly,
mesh-free shape functions and their derivatives
are of more complex nature, especially at the sup-
port boundaries, than polynomial-like shape func-
tions commonly used with the FEM. As reported
in the literature, this appears to entail an (abnor-
mally) larger number of integration points for suf-
ficiently “accurate” evaluations of the integrals in
the weak form (Belytschko et al. 1994). Use
of such exceedingly high order quadrature rules
not only violate the a-priori error estimates, but
also lead to extremely high computational over-
head vis-à-vis the FEM. Secondly, while evaluat-
ing the integrals in the weak form, a hidden cell
structure (often called the background mesh) is
employed in mesh-free methods. The background
mesh is generally constructed independent of the
particle distribution. In the process, there may
be misalignments of supports of shape functions
with respect to the integrations cells – an aspect
that makes the method non-conforming (see fig-
ure 14). The non-conformability of support do-
mains and the background mesh may lead to sub-
stantial numerical errors and thus affect the con-
vergence of solutions (Dolbow and Belytschko
1999). Whilst the numerical difficulties arising
out of the complicated nature of shape functions
cannot possibly be bypassed, we can address, to a
great extent, the issue of non-conformability by
appropriately choosing cells for numerical inte-
gration. In the piecewise NPMM, this may, in par-
ticular, be accomplished by integrating the func-
tional in the weak form over a grid formed by the
knot vectors. B-spline basis functions are com-
pactly supported between two (appropriately cho-
sen) knot points and hence the support of B-spline
basis functions is always aligned with the grid
formed by such knot vectors. For further illus-
tration, first consider a one dimensional domain
Ω ∈ R discretized by NP = 9 nodes as shown
in figure 15. pth degree B-spline basis func-
tions are constructed over the knot vector Ξ =
{ξ1,ξ2, . . .,ξNP+p+1}. Suppose that the domain
Ω is divided uniformly into five integration cells
(see figure 16). Figure 16 also shows two typi-
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cal B-spline basis functions, defined over Ξ. We
observe that the supports of B-spline basis func-
tions do not coincide with the boundary of the in-
tegration cells (shown by “|” in figure 16a). On
the other hand, if we take the grid formed by the
knot vector as the set of integration cells (shown
in figure 16b), then the supports of B-spline basis
functions remain precisely aligned with the back-
ground mesh.

For an elucidation in the higher dimension, con-
sider a domain Ω ∈ R2. The discretization and the
background mesh, generally employed in the ele-
ment free Galerkin method, and the grid formed
by the knot-grid approach are shown in figure 17.
We readily observe that, in contrast to the EFG,
the support of the window function is perfectly
aligned with the background mesh in the piece-
wise NPMM.

Even as the numerical integration using the knot-
grid scheme makes the method conforming, we
have observed through some numerical experi-
ments that the accuracy of solutions may also get
affected by the choice of knot positions. Uni-
form knot distribution over the parametric space
(as shown in figures 18a and 19a) should be an
obvious choice. However this may not always
work, especially if the particle distribution does
not follow a uniform grid structure. Our numeri-
cal experiments, some of which are reported in the
following section, suggest that the knot-grid inte-
gration may work better if nodal points are chosen
as knot points (see figures 18b and 19b).

Towards a numerical demonstration of the con-
formability of the piecewise NPMM, we consider
Poisson’s equation in two dimensions:

u,xx +u,yy =
1
2
(x2 +y2)−1

in Ω = (−1, 1)× (−1, 1) (41a)

with u = x on ∂Ω (41b)

The exact solution is:

u(x,y) =
1
4
(1−x2)(1−y2)+x (42)

A detailed theoretical analysis of the proposed
method (including an a-priori error estimate) is

still to be undertaken. However, given the glob-
ally smooth nature and boundedness of the piece-
wise NPMM shape functions, we presently use
the following error estimate (Han and Meng
2001) in order to study the numerical conver-
gence:

||u−uR||L2 ≤ chp+1 (43)

||u−uR||H1 ≤ chp (44)

Here h is the spatial step size and uR is the mesh-
free solution of a second order elliptic bound-
ary value problem with Dirichlet boundary con-
ditions, u ∈ H p+1(Ωc) is the exact solution and
H p+1(Ωc) is a Lebesgue (Sobolev) space with
square integrable (p + 1)th derivatives. In equa-
tion (34), the relative norms || · ||L2 and || · ||H1 are
defined as:

||u−uR||L2 =

(∫
Ω

(
u−uR

) · (u−uR
)

dΩ
)1/2

(∫
Ω

u2dΩ
)1/2

(45)

||u−uR||H1 =
(∫

Ω

{(
u−uR) · (u−uR)

+
(
u′−u′R

) · (u′−u′R
)}

dΩ
)1/2

/⎛
⎝∫

Ω

(
u2 +u′2

)
dΩ

⎞
⎠

1/2

(46)

The weak solution of equation (40) is obtained
with Ne = 4 and p = 1. A few h-convergence re-
sults in relative L2 and H1 error norms via quadra-
ture rules of different orders are shown in figure
20. The optimum rate of convergence (2 in L2

norm and 1 in H1 norm for p = 1) is achieved
even with a 2-point Gauss quadrature. The con-
vergence rate remains about the same irrespective
of the quadrature rule.

4 Numerical Examples

In this section, the proposed method is explored
in the context of few boundary value problems
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Figure 16: (a) Background mesh commonly used in mesh-free method; (b) knot-grid used as the background
mesh in the piecewise NPMM
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Figure 17: A typical discretization, support domains and background mesh (knot-grid) in the piecewise
NPMM
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Figure 18: Typical node and knot distributions in the piecewise NPMM in one dimension; (a) uniform knot
vector irrespective of the particle distribution; (b) knot points and nodal points are taken the same

(of relevance in solid mechanics) with arbitrary
domain geometries. In all the examples involv-
ing weak formulations, 2-point Gauss quadrature
is used for numerical integration. Details of the
geometric data (e.g. knot vectors, control points
and the associated weights) for all the examples
are provided in Appendix B.

Example 1: Poisson’s equation over a triangu-
lar domain

As the first example, the same Poisson equation
(40) over a triangular domain (shown in figure 21)

is considered. Since the geometric map for the
entire domain is not one-to-one (see figure 3), the
domain is decomposed into three (Ne = 3) sub-
domains as shown in figure 4. Each sub-domain
is discretized by Ne

P = 11×11 = 121nodes, which
lead to a total of NP = 331nodes over the entire
domain. Errors in the solution are shown in figure
21.

Example 2: A 3D arch subjected to vertical
load

As the second example, a 3D arch subjected ver-
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vector irrespective of the particle distribution; (b) knot points and nodal points are taken the same
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Figure 22: A 3D arch under vertical load

tical load as shown in figure 22 is considered.
Dimensions and material constants are given in
Table 2. Discretization and corresponding inte-
gration cells are shown in figure 23. Note that
we use just a single sub-domain for this prob-
lem and thus the piecewise NPMM reduces to the
usual NPMM. 3D NPMM shape functions are em-
ployed. Results are shown in figure 24.

Example 3: Hollow cylindrical cantilever beam
subjected to vertical load at tip

As the last example, a hollow cylindrical can-
tilever subjected to a vertical load at the tip is

Table 2: Parameters for example 2

Parameter Value
L 4.0
R 2.0
r 0.2
P 110

Young’s modulus (E) 2×105

Poisson ratio (ν) 0.3

considered (figure 24). Dimensions and material
constants are given in Table 3. The physical do-
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Figure 23: Discretization and the corresponding integration cells

main is decomposed into 4 sub-domains (figure
25) and 3D shape functions are again employed.
Discretization and corresponding integration cells
are shown in figure 26. Results are shown in fig-
ure 27.

Table 3: Parameters for example 3

Parameter Value
L 2
R 0.075
r 0.150
P 10
E 2×105

ν 0.3

5 The Closure

The piecewise NPMM, considered in this study,
is aimed at serving as a seamless bridge be-
tween the FEM and mesh-free methods. The
method provides a relief from many computa-
tional difficulties or limitations present in the
FEM (e.g. inaccurate representations of compli-
cated domains, absence of higher order global
continuity of shape functions etc.) and most
mesh-free methods (choosing an optimal sup-
port size of the window function). Yet another
noteworthy feature of the piecewise NPMM is
that the shape functions as well as the geomet-
ric map (over each sub-domain) is constructed

using NURBS, which enables higher order ap-
proximations with reduced numerical instability.
We also propose novel schemes for endowing the
shape functions with the interpolation property
and this, in turn, enables enforcement of essen-
tial boundary conditions. The interpolating ap-
proximation consists of a summation of prim-
itive and NURBS (enrichment) functions such
that supports of both the functions coincide. We
have attempted using Lagrange polynomials and
Deslauriers-Dubuc interpolating wavelets to con-
struct the primitive function. While Lagrange
polynomial works well for smaller consistency
(p ≤ 2), it exhibits oscillations in the shape func-
tion as p increases. For achieving higher consis-
tency, we use interpolating wavelet basis as the
primitive function. Finally, a knot-grid confor-
mal integration scheme for weak implementations
of the piecewise NPMM is also proposed. The
essence of the scheme is that the functional in
the weak form is integrated over a grid formed
by the knot vectors. Since B-spline basis func-
tions (a main constituent of NPMM shape func-
tions) are compactly supported between two ap-
propriate knot points (depending on the polyno-
mial order of B-splines), supports of B-spline ba-
sis functions are always perfectly aligned with the
grid formed by the knot vectors. Consequently the
non-conformability arising out of a possible mis-
alignment of support domains and the background
mesh is bypassed with very little effort.
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-0.78 -0.7 -0.62 -0.54 -0.46 -0.38 -0.3 -0.22 -0.14 -0.06

(a)

-1.105 -0.955 -0.805 -0.655 -0.505 -0.355 -0.205 -0.055

(b)
Figure 24: Contour plots for (a) horizontal displacements u and (b) vertical displacements v
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rR

P

L

Figure 25: Hollow cylindrical cantilever beam sub-
jected to a vertical load at the tip

Ω1
Ω4

Ω3

Ω2

Figure 26: Decomposition of the physical domain
(see figure 24) into 4 sub-domains

Figure 27: Discretization and corresponding integration cells; Ne
P = 7× 7× 21 = 1029 for e ∈ [1, 4] and

NP = 3528
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Appendix A: Interpolating Wavelets

In this appendix, we briefly recall the properties
of wavelets (especially interpolating wavelets).
Wavelets are characterized by the translation and
dilation of a single function ψ(x). Wavelets can
be real or complex functions. The wavelet func-
tion ψ(x) is generated by another function called
scaling function φ (x). In case of Daubechies fam-
ily, neither the scaling function nor the wavelet
has a closed-form expression. They are both
finitely (compactly) supported; i.e., they are iden-
tically zero outside of a finite interval. Compactly
supported wavelets are differentiable and form a
set of orthonormal basis functions with localiza-
tion and scaling properties.

The Daubechies scaling function φ (x) of rank 2
and genus N is defined by the two-scale relation
(Daubechies, 1988, 1992):

ϕ(x) =
2N−1

∑
k=0

pkϕ(2x−k) j,k ∈ Z . . . (A-1)

Here pk’s are the filter coefficients. The support
of φ (x) and is supp[0, 2N-1]. A similar expres-
sion can be obtained for the wavelet function as
well. The interpolating wavelet is obtained by tak-
ing the convolution of the scaling function with
itself. The Deslauriers-Dubuc interpolating func-
tion (Deslauriers and Dubuc 1989), which is the
autocorrelation function of the Daubechies scal-
ing function, can be obtained as:

θ (x) =
∫ +∞

−∞
ϕ(y)ϕ(y−x)dx . . . (A-2)

The function θ (x) has following properties.

• Compact support between [-2N+1, 2N-1]

• Satisfies the two scale relation (1) i.e. θ (x) =
2N−1

∑
k=−2N+1

hkθ (2x−k)

• Has vanishing moments of all orders up to
(2N-1), which implies that linear combina-
tion of θ (x)can represent polynomials with
degree up to 2N-1
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• The approximating bases through dilations
and translations of θ (x) form a set of inter-
polating bases, i.e. θ (xk) = δk,0

hk’s are the filter coefficients obtained through the
discrete convolution of Daubechies filter coeffi-
cients as:

hk =
2N−1

∑
m=0

pm pm−k for k ≥ 0 and h=k = hk. . .

(A-3)

The derivative of the scaling function may be ob-
tained as:

θ d(x) = (−1)d
∫ +∞

−∞
ϕ(y)ϕd(y−x)dx . . . (A-4)

Any square integrable function f (x) can be ap-
proximated in the wavelet basis as:

f (x) =
+∞

∑
j=−∞

+∞

∑
k=−∞

b( j,k)2 j/2θ (2 jx−k) . . .

(A-5)

b( j,k) is the discrete wavelet transform (DWT)
at scale j and the above expression represents the
inverse discrete wavelet transform (IDWT). The
formal definition of DWT is given by:

b( j,k) = 2 j/2

+∞∫
−∞

f (x)θ (2 jx−k)dx

=
+∞∫

−∞

f (x)θ j,kdx . . .

(A-6)

Basically, the function f (x) is approximated by
translates of the wavelet bases through an infinite
summation over all possible scales.

Appendix B: Geometric Data for NURBS
Model Used in Section 5

See Tables B-1, B-2 and B-3.
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Figure A-1: Deslauriers-Dubuc (N = 2) (a) inter-
polating wavelet and (b) its first derivative
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Table B-1: Geometric data for example 1

Patch Control Points Knot vector and B-spline 

1Ωc 1 3(3 / 2,1)   (3 / 2,3)P P= =

2 4(9 / 4,3 / 2)   (3 / 4,3 / 2)P P= =

Linear  B-spline over 
{ }1 0,0,1,1gΞ =

Linear B-spline over 
{ }1 0,0,1,1g℘ =

1 1 1g g gℵ = Ξ ×℘

1 2 3 4 1w w w w= = = =

2Ωc 1 3(0,0)   (3 / 2,1)P P= =

2 4(3 / 2,0)   (3 / 4,3 / 2)P P= =

Linear  B-spline over 
{ }2 0,0,1,1gΞ =

Linear B-spline over 
{ }2 0,0,1,1g℘ =

2 2 2g g gℵ = Ξ ×℘

1 2 3 4 1= = = =w w w w

3Ωc 1 3(3 / 2,0)   (9 / 4,3 / 2)P P= =

2 4(3,0)   (3 / 2,1)P P= =

Linear  B-spline over 
{ }3 0,0,1,1gΞ =

Linear B-spline over 
{ }3 0,0,1,1g℘ =

3 3 3g g gℵ = Ξ ×℘

1 2 3 4 1= = = =w w w w

Table B-2: Geometric data for example 3

Sub-domain Control Points Knot vector and B-spline 

1
cΩ

1 (0,1.8,0) P = 7 (0,1.8,4) P =

2 (1,1.8,0)P = 8 (1.8,1.8, 4)P =

3 (1.8,0,0) P = 9 (1.8,0, 4) P =

4 (0, 2,0) P = 10 (0, 2, 4) P =

5 (2, 2,0)P = 11 (2, 2,4)P =

6 (2,0,0) P = 12 (2,0, 4) P =

Quadratic  B-spline over 
{ }3 0,0,0,1,1,1Ξ =

Linear B-spline over 
{ }3 0,0,1,1℘ =

Linear B-spline over 
{ }3 0,0,1,1=P

3 3 3 3ℵ = Ξ ×℘ ×P

1 3 4 6 1w w w w= = = =

7 9 10 12 1w w w w= = = =

2 5 8 11 1 2w w w w= = = =
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Table B-3: Geometric data for example 3

Sub-domain Control Points Knot vector and B-spline 

1
cΩ

1 (0, 0.075,0) P = −

7 (0, 0.075,2) P = −

2 ( 0.075, 0.075,0)P = − −

8 ( 0.075, 0.075, 2)P = − −

3 ( 0.075,0,0) P = −

9 ( 0.075,0, 2) P = −

4 (0, 0.150,0) P = −

10 (0, 0.150, 2) P = −

5 ( 0.150, 0.150,0)P = − −

11 ( 0.150, 0.150, 2)P = − −

6 ( 0.150,0,0) P = −

12 ( 0.150,0, 2) P = −

Quadratic  B-spline over 
{ }1 0,0,0,1,1,1Ξ =

Linear B-spline over 
{ }1 0,0,1,1℘ =

Linear B-spline over 
{ }1 0,0,1,1=P

1 1 1 1ℵ = Ξ ×℘ ×P

1 3 4 6 1w w w w= = = =

7 9 10 12 1w w w w= = = =

2 5 8 11 1 2w w w w= = = =

2
cΩ

1 ( 0.075,0,0) P = −

7 ( 0.075,0,2) P = −

2 ( 0.075,0.075,0)P = −

8 ( 0.075,0.075, 2)P = −

3 (0,0.075,0) P = 9 (0,0.075,2) P =

4 ( 0.150,0,0) P = −

10 ( 0.150,0, 2) P = −

Quadratic  B-spline over 
{ }2 0,0,0,1,1,1Ξ =

Linear B-spline over 
{ }2 0,0,1,1℘ =

Linear B-spline over 
{ }2 0,0,1,1=P




