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Topology-optimization of Structures Based on the MLPG Mixed
Collocation Method

Shu Li1 and S. N. Atluri2

Abstract: The Meshless Local Petrov-Galerkin
(MLPG) “mixed collocation” method is applied
to the problem of topology-optimization of elas-
tic structures. In this paper, the topic of compli-
ance minimization of elastic structures is pursued,
and nodal design variables which represent nodal
volume fractions at discretized nodes are adopted.
A so-called nodal sensitivity filter is employed,
to prevent the phenomenon of checkerboarding in
numerical solutions to the topology-optimization
problems. The example results presented in the
paper demonstrate the suitability and versatility of
the MLPG “mixed collocation” method, in imple-
menting structural topology-optimization.
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1 Introduction

The quantity of engineering literature on the
topology-optimization has grown very rapidly in
the last two decades, starting with the so-called
homogenization method for structural topology
[Bendsøe and Kikuchi (1988)]. The topology op-
timization problem is usually described as a ma-
terial distribution design problem, a so-called 0-
1 problem in nature. By optimizing an objec-
tive function, subject to constraints on the design
domain, one can employ topology-optimization
techniques to engineer load-bearing structures
with high strength, light weight and high fracture
resistance [Chiandussi, Gaviglio and Ibba (2004),
Hansen and Horst(2008)]. Topology optimization
has been identified as one of the most challenging
and potentially useful techniques in the field of
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structural design. Most research work on topol-
ogy optimization for continuum structures con-
cerns new topology models, solutions of ill-posed
problems, Optimality Criteria, etc. The earlier de-
velopments in the field of topology-optimization
were described in an overview paper [Eschenauer
and Olhoff(2001)], and in a monograph [Bendsøe
and Sigmund (2003)]. Recently, with the increase
of interest in this field, various models and meth-
ods for structural topology optimization were ex-
plored, with goals of improving the computational
efficiency, and alleviating numerical instabilities
[Norato, Bendsøe, Haber and Tortorelli (2007),
Vemaganti and Lawrence (2005), Cisilino(2006),
Wang and Wang (2006b,c), Wang, Lim, Khoo
and Wang (2007a, b, c, 2008), Zhou and Wang
(2006)].

In practice, discretization and the use of numer-
ical methods are unavoidable in order to design
a complex and practical structure. Typically, ap-
proaches for solving topology optimization prob-
lems have been mostly based on the traditional
element-based methods. Almost all of the ap-
proaches presented in prior literature employ fi-
nite element methods to discretize the topolog-
ical domain. An exhaustive list of publications
on subject of the topology and shape optimiza-
tion of structures, using the finite element and
boundary element techniques, is given in [Mack-
erle (2003)]. However, the use of finite ele-
ment methods within the optimization procedures
often leads to numerical instabilities, such as
mesh-dependencies, etc [Sigmund and Petersson
(1998)]. It is well known that topology optimiza-
tion is a far more time-consuming task, because
of its complicated evolutionary procedure and re-
finement of mesh density.

In recent years, substantial efforts have been
made in the development of the meshless meth-
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ods, especially the MLPG method [Atluri and
Zhu(1998), Atluri and Shen(2002a, 2002b), and
Atluri(2004)]. These meshless methods have
inherent advantages over the element-based ap-
proaches, due to the elimination of the mesh, and
the ease with which a high-order continuity of the
trial functions is achieved. Atluri, Liu, and Han
(2006) have recently proposed a very attractive
and promising method which they call the MLPG
“mixed collocation” method. In this method, a
very simple formulation is achieved, and the com-
puter implementation is very convenient. These
benefits are realized, without any numerical inte-
gration either over a local domain or over the lo-
cal boundary. This method improves the compu-
tational efficiency and the ease of implementation
of the meshless method, especially for topology-
optimization.

The present paper is dedicated to topology-
optimization of continuum structures using the
MLPG “mixed collocation” method. The main
features of this paper are: the use of the MLPG
“mixed collocation” method to discretize the de-
sign domain, and the choice of nodal volume
fractions as the optimization design variables, in-
stead of the element volume fractions. We em-
ploy the widely used density-like function called
SIMP (Solid Isotropic Material with Penaliza-
tion) model for the penalization. The objective
of topology-optimization is to minimize the com-
pliance for an optimal layout of structures, under
a given set of loads and boundary conditions. The
method of Optimality Criteria (OC) is employed
to solve the topology optimization problem. Here,
structural volume fractions become a function of
the nodal volume fractions. Compared with the
element-based methods such as in [Guest, Prévost
and Belytschko (2004)], these nodal values need
not be interpolated or projected onto the element,
in order to obtain the familiar element-wise vol-
ume fractions which can determine the topology
of structures. The numerical examples presented
here demonstrate that the MLPG mixed colloca-
tion method renders the solution of the optimiza-
tion problem to be highly accurate and computa-
tionally efficient.

The framework of this paper is as follows: Section

2 briefly reviews the major aspects of the MLPG
mixed collocation method. Section 3 gives a
formulation for the structural topology optimiza-
tion, a heuristic scheme of the optimality criteria
(OC) method, and the filtering principle. Section
4 presents some examples. Finally, we present
some conclusions in Section 5.

2 MLPG Mixed Collocation Method

2.1 The moving least squares (MLS)

The moving least squares (MLS) approximation
is often chosen as the interpolation function in
a meshless approximation of the trial function.
The MLPG Mixed Collocation Method adopts the
MLS interpolation to approximate a function u(x)
over a number of nodes randomly spread within
the domain of influence. The approximated func-
tion u(x) can be written as [Atluri (2004)]

u(x) = pT(x)a(x) (1)

where pT(x) is a monomial basis which can be ex-
pressed as pT(x) = [1,x1,x2] for two-dimensional
problems and pT(x) = [1,x1,x2,x3] for three di-
mensional problems, respectively. a(x) is a vec-
tor of undetermined coefficients, which can be
obtained by minimizing the weighted discrete L2

norm, defined as

J(x) =
m

∑
I=1

wI (x)
[
pT (xI)a(x)− ûI]2 (2)

where {xI} , (I = 1,2, . . .,m) are scattered local
points (nodes) to approximate the function u(x),
wI are the weight functions and ûI are the ficti-
tious nodal values. After the coefficient vector
a(x) is obtained, we substitute it into Eq. (1). The
function u(x) can be approximated by these ficti-
tious nodal values, as

u(x) =
m

∑
I=1

ΨI (x) ûI (3)

where ûI is the virtual nodal value at node I, and
ΨI (x) is the shape function. The detailed formu-
lations and discussions for the MLS interpolation,
using the true nodal values can be found in Atluri
(2004).
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Generally speaking, the MLS shape function does
not have the Dirac Delta property, namely

uI ≡ u(xI) =
m

∑
J=1

ΨJ (x) ûI �= ûI (4)

However, with the mapping relationship between
the virtual and true nodal values [Eq. (4)], it is
straightforward to establish the trial functions in
the true nodal-values space as

u(x) =
m

∑
I=1

ΦI (x)uI (5)

2.2 Equilibrium equations

We consider a linear elastic body Ω undergo-
ing infinitesimal deformations. The equilibrium
equation can be expressed as

∇ ·σσσ + f = 0 (6)

subject to the boundary conditions:

u = u on Γu

t = n ·σσσ = t on Γt
(7)

In whichσσσ is the stress tensor, ∇is the gradient
vector, f is the body force vector; u is the displace-
ment vector, t is the traction vector, and n is the
outward unit normal to the boundary Γ.

Within the general MLPG framework
[Atluri(2004)], one may choose the Dirac
Delta function as the test function for the un-
symmetric local weak form, and apply it to each
nodal point. The momentum balance equation is
enforced at the nodal points, as

[∇ ·σσσ ]
(
xI)+ f

(
xI)= 0 (8)

where
{

xI
}

, (I = 1,2, . . .,N) are the distributed
nodes, and N is the number of total distributed
nodes in the solution domain. In the present
mixed scheme, we interpolate the displacement
vector u(x) and the stress tensor σσσ (x) indepen-
dently, using the same shape functions obtained
from the MLS approximation [Eq. (3)], namely

u(x) =
m

∑
J=1

ΦΦΦJ (x)uJ (9)

σσσ (x) =
m

∑
J=1

ΦΦΦJ (x)σσσ J (10)

Here, uJ and σσσ J are the nodal displacement vector
and stress vector [note that the stress tensor is now
symbolically re-written as a stress-vector] at node
J, respectively. In the case of the isotropic lin-
ear elastic problem, the relation between the stress
vector σσσ and the strain vector εεε can be written as

σσσ = D ·εεε (11)

εεε = L∗ ·u (12)

where, L∗ a differential operator, for the present
2D problem,

D =
E

1−ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦

with E the Young’s modulus, ν the Poisson’s ra-
tio. Upon substituting the stress interpolation Eq.
(10) into Eq. (8), we have

m

∑
J=1

∇ ·ΦΦΦJ
(
xI
) ·σσσ J + f

(
xI
)

= 0;

for I = 1,2, . . .,N (13)

It clearly shows that there are no second deriva-
tives of the shape functions for the displacements
involved in the system equations, due to the inde-
pendent interpolation of the stress variables. It is
well known that in the meshless approximation,
specifically the MLS, usually results in a very
complex form of the second derivatives. The Eq.
(13) has less number of equations than the number
of the independent stress variables, because the
nodal stress variables are more than the displace-
ment ones. Therefore, we need to establish some
more equations in addition to Eq. (11) through the
stress displacement relation. The standard collo-
cation method may be applied to enforce the stress
displacement relation at each nodal point. For lin-
ear elasticity problems, this relation can be writ-
ten as

σσσ
(
xI)= D ·εεε (xI)= D ·L∗ ·u(xI) (14)
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After substituting the displacement interpolation
Eq. (9) into Eq. (14), we have

σσσ J =
m

∑
J=1

DBJ (xI)uJ (15)

where

BJ (xI)=

⎡
⎣ΦJ

,x

(
xI
)

0
0 ΦJ

,y

(
xI
)

ΦJ
,y

(
xI
)

ΦJ
,x

(
xI
)
⎤
⎦ (16)

σσσ J =
[
σ J

x σ J
y τJ

xy

]T

uJ =
[
uJ

x uJ
y

]T
Eq. (13) and Eq. (14) can be rewritten in the form
as follows, respectively:

KS ·σσσ = fb (17)

σσσ = T ·u (18)

In which fb is the body force vector.

We set BIJ = BJ
(
xI
)
, thus

KS =

⎡
⎢⎢⎢⎣

BT
11 BT

12 · · · BT
1n

BT
21 BT

22 · · · BT
2n

...
...

...
...

BT
n1 BT

n1 · · · BT
nn

⎤
⎥⎥⎥⎦

T = D ·

⎡
⎢⎢⎢⎣

B11 B12 · · · B1n

B21 B22 · · · B2n
...

...
...

...
Bn1 Bn1 · · · Bnn

⎤
⎥⎥⎥⎦

and

σσσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σσσ1

σσσ2

...
σσσJ

...
σσσN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...
uJ

...
uN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let

K = KS ·T (19)

which yields the well known formulation of equi-
librium equation

Ku = fb (20)

where

KIJ =
m

∑
K=1

BT
IKDBKJ (21)

2.3 Boundary Conditions

The traction boundary conditions are enforced at
each of the traction boundary nodes K, as:

nK ·σσσK = tK
, for K = 1, . . . ,S (22)

where S is the number of total traction boundary
nodes, the matrix nK is the transformation matrix
between the coordinates, as

nK =
[

nK
x 0 nK

y

0 nK
y nK

x

]

and

σσσK =
[
σK

x σK
y τK

xy

]T
, tK =

[
tK
x tK

y

]T
Assuming σσσ1 and σσσ2 represent the known and un-
known stress vectors, respectively. Hence Eq.(20)
can be written as

K1 ·σσσ 1 +K2 ·σσσ2 = fb (23)

where

σσσ1 = T1 ·u (24)

σσσ2 = T2 ·u (25)

Premultiplying Eq. (22) by the penalty number α
and the transpose of the transformation matrix n,
we obtain:

αnT ·n ·σσσ 1 = αnT · t (26)
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where

n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1 0
n2

. . .
nK

. . .
0 nS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

σσσ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σσσ 1

σσσ 2

...
σσσK

...
σσσS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1

t2

...

tK

...
tS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easy to obtain

σσσ1 +αnT ·n ·σσσ 1 = T1 ·u+αnT · t (27)

and

σσσ1 =
(
I+αnT ·n)−1 (

T1 ·u+αnT · t) (28)

where I is unit matrix.

Let

Q =
(
I+αnT ·n)−1

(29)

then

σσσ1 = Q ·T ·1 u+αQ ·nT · t (30)

By substituting Eq. (30) into Eq.(23), we can ob-
tain a discretized system which is expressed as

K ·u = f (31)

where

K = K1 ·Q ·T1 +K2 ·T2

f = fb −αK1 ·Q ·nT · t (32)

3 Topology optimization problem

3.1 Problem formulation

Topology-optimization implies the optimal distri-
bution of material in a structure, so as to mini-
mize its compliance, subject to the specified con-
straints of the total material to be used. Here,

‘compliance’ is defined as the product of the ex-
ternal loads and the corresponding displacements.
According to Eq.(31), the mean compliance of a
structure is formulated as follows:

C = fT ·u (33)

where u is the global displacement vector, f is the
force vector. Also, the above expression can also
be written, for linear response, as:

C = uTKu (34)

In practice, Eq.(34) is discretized using the MLPG
Mixed Collocation Method. The design domain
Ω (Fig.1) is partitioned into N nodes. For an arbi-
trary node i, if the number of nodes around point
i which influence the trial function at node i is r, a
sub-system consists of these r nodes. In this sub-
system, we have

kiui = fi (35)

where ui is the displacement vector and ki is the
“stiffness” matrix constructed in the same way as
Eq.(19). The discretized formulation of Eq.(34)
becomes

C =
N

∑
i=1

uT
i kiui (36)

uΓ  Displacement boundary 

Void
(  =0) Solid

(  = 1) 

Design domain 

tΓ  Traction boundary 

Figure 1: Two-dimensional design domain for
topology optimization

If we consider the nodal volume fractions ρias the
design variables, then the topology optimization
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problem for minimizing the compliance can thus
be stated, with the volume constraint V ∗ as fol-
lows:

min
ρρρ

C (ρρρ) = uTKu =
N

∑
i=1

uT
i kiui

subject to V (ρρρ) =
N

∑
i=1

ρiVi = V ∗

Ku = f

0 < ρmin ≤ ρi ≤ 1

(37)

where ρρρ is the vector consisted of design variable
ρi , ρmin is the minimum allowable relative vol-
ume fractions (non-zero to avoid singularity), N is
the number of nodes to discretize the design do-
main, and V ∗ is the prescribed volume. V (ρ) is
the total volume of material.

Setting ρmin to a positive value keeps the “stiff-
ness” matrix ki from becoming singular. The ar-
tificial variable ρi is considered as an indicator of
the local material volume Vi. The final material
volume V ∗ is linearly related to the design vari-
ables.

To avoid intermediate volume fraction values ρi

(between 0 and 1), a SIMP-like model (Solid
Isotropic Microstructure with Penalty) is adopted
in the proposed topology optimization method. In
this SIMP-like model, the penalized “stiffness”
matrix ki is given by

ki = (ρi)
p k0

i (38)

k0
i is the initial value of the matrix ki, p is the pe-

nalization power (typically p = 3). Fig.2 displays
the relative “stiffness” ratio vs. volume fraction
values ρi, for different values of the penalization
power p.

Due to the asymmetry of the matrix K in the
MLPG “Mixed Collocation” method, the sensitiv-
ities of the compliance respect to design variable
ρi can be derived from the expression of Eq.(33),
as follows:

∂C
∂ρi

= fT · ∂u
∂ρi

= (Ku)T ∂u
∂ρi

= uTKT ∂u
∂ρi

= uT
i kT

i
∂ui

∂ρi

(39)

Figure 2: SIMP-like model for different values of
the penalization power p

We consider the discretized formulations kiui = fi

and C =
N
∑

i=1
uT

i kiui. Because the derivative of fi

with respect to ρi is null, we can obtain:

∂ki

∂ρi
ui = −ki

∂ui

∂ρi
(40)

Substituting Eq.(38) into Eq.(40), we have

p(ρi)
p−1 k0

i ui = −(ρi)
p k0

i
∂ui

∂ρi

i.e.

∂ui

∂ρi
= − 1

ρi
pui (41)

Finally, the expression of Eq.(39) is written as

∂C
∂ρi

= uT
i kT

i
∂ui

∂ρi

= uT
i

(
(ρi)

p k0
i

)T
(
− 1

ρi
pui

)

= −p(ρi)
p−1 uT

i

(
k0

i

)T
ui

(42)

3.2 The optimally criteria (OC) method

The discrete topology optimization problem (39)
usually has a large number of design variables. It
is natural to use iterative optimization methods for
such a problem. Here, we choose the popular Op-
timality Criteria (OC) method for iterative opti-
mization. Optimality Criteria methods seek the
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optimum in the space of the Lagrange multipliers
relevant to the active constraints based upon the
Kuhn-Tucker (K-T) Conditions. These K-T Con-
ditions are an extension of the Lagrangian theory
to solve the general classical single-objective non-
linear programming problem. They provide pow-
erful tools to search optimal solutions. The com-
putational time of the OC method is highly depen-
dent on the number of active constraints. In this
paper, the optimality criteria (OC) was formulated
in a form suitable for incorporation in the mesh-
less method codes.

The Lagrangian for the optimization problem
[Eq.(39)] is defined as

L(ρρρ) = C +λ1

(
N

∑
i=1

ρiVi−V ∗
)

+ΛΛΛT (Ku− f)

+
N

∑
i=1

μ i
1 (ρmin −ρi)+

N

∑
i=1

μ i
2 (ρ i −1) (43)

where λ1 andμi are Lagrange multipliers for the
equality and inequality constraints, respectively.
ΛΛΛ is the Lagrange multiplier vector. The neces-
sary conditions for optimality can be obtained by
using the Kuhn–Tucker conditions as follows:

∂L
∂ρi

= 0, i = 1,2, . . .,N

Differentiating (43) with respect to ρi and ma-
nipulating the terms, the Kuhn-Tucker optimality
condition can be written for problems [Eq.(37)]
subject to multiple constraints as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂ρi

= ∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

−μ1 + μ2 = 0

V (ρρρ) =
N
∑

i=1
ρiVi −V ∗ = 0

(the equality constraints )
Ku = f (the equality constraints )
ρρρmin −ρρρ i ≤ 0 (the inequality constraints )
ρρρ i −1 ≤ 0 (the inequality constraints )
μ1 (ρmin −ρi) = 0

μ2 (ρi −1) = 0

μi ≥ 0 i = 1,2

(44)

Note: λ1 and ΛΛΛ are unrestricted in sign, corre-
sponding to the equality constraints. It is clear
that the efficiency of the OC method is determined
mainly by the number of active constraints. If
ρmin < ρi < 1, the lower and upper bounds of the
design variables are inactive, then we have μ1 =
μ2 = 0. If ρi = ρmin, the lower bound of the design
variables are active, then we have μ1 ≥ 0,μ2 = 0.
If ρi = ρmax, the upper bound of the design vari-
ables are active, then μ1 = 0,μ2 ≥ 0. and (44)
yields:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

= 0 if ρmin < ρi < 1
∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

≥ 0 if ρi = ρmin
∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

≤ 0 if ρi = ρmax

V (ρρρ) =
N
∑

i=1
ρiVi −V ∗ = 0

(the equality constraints )
Ku = f (the equality constraints )
μi ≥ 0 i = 1,2

(45)

The above sensitivity of a node is dependent on
several surrounding points. For different posi-
tions, the number of nodes around one point may
different. So the sensitivity analysis is more com-
plex and time consuming when compared with the
case of element-based methods.

To derive the iterative formulation more conve-
niently, only the equality cases in Eq.(45) are used
in the present illustration, i.e.

∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT
(

∂K
∂ρi

u+K
∂u
∂ρi

)
= 0

Utilizing the expression Ku = f, it is easy to ob-
tain

∂K
∂ρi

u+K
∂u
∂ρi

= 0

then

−p(ρi)
p−1 uT

i

(
k0

i

)T
ui +λ1Vi = 0 (46)

Set

Bi =
p(ρi)

p−1 uT
i

(
k0

i

)T ui

λ1Vi
= 1 (47)
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Eq.(47) is regarded as an Optimally Criteria (OC)
based on the discretization of the MLPG Mixed
Collocation Method. Thus, we can update the de-
sign variables as follows:

ρnew
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(ρmin,ρi −m)
if ρiB

η
i ≤ max (ρmin,ρi −m)

ρiB
η
i

if max(ρmin,ρi −m) < ρiB
η
i

< min(1,ρi +m)
min(1,ρi +m)

if min(1,ρi +m)≤ ρiB
η
i

(48)

Where m is the limit ([Bendsøe and Kikuchi
(1988)]), which represents the maximum allow-
able change in the relative nodal volume fractions
ρi in the OC iteration. η is the damping coeffi-
cient. This updating scheme was often adopted in
many presented papers. The values of m and η in-
fluence the convergence of the scheme, and they
are chosen by experience ([Bendsøe and Kikuchi
(1988)]).

The penalty parameter p is set to be 3, and the nu-
merical damping coefficient η is set to 0.5. The
Lagrange multiplier for the volume constraint λ1

is determined at each OC iteration using a bi-
sectioning algorithm, as in the paper [Sigmund
(2001)].

3.3 Filtering principle

Here we describe the principle of suppressing
checkerboard patterns, which is a familiar prob-
lem in topology optimization when numerical
stability is not guaranteed. The appearance of
checkerboarding causes difficulties in interpret-
ing and fabricating topology-optimized structural
components. Sigmund (1994, 1997) developed
a sensitivity filter method for preventing numer-
ical instabilities from occurring. Filtering tech-
niques have become quite popular in topology op-
timization [Wang; Lim, Khoo and Wang (2008)].
To tackle checkerboarding, a scheme similar to
the filtering method is incorporated in the opti-
mization algorithms based on the meshless dis-
cretization. In this scheme, we modify the de-

sign sensitivity of any specific node depending on
a weighted average of the node sensitivities in a
connected neighborhood. The principle works by
modifying the nodal sensitivities as follows

ˆ∂C
∂ρi

=
1

ρi

m
∑

f=1
Ĥ f

m

∑
f=1

Ĥ f ρ f
∂C
∂ρ f

(49)

Here, the convolution operator (weight factor) is
written as

Ĥ f = rmin −dist (n, f )
{ f ∈ M |dist (n, f ) ≤ rmin},

n = 1, · · · ,m (50)

and the operator dist(n, f ) is defined as the dis-
tance between node n and node f . The convolu-
tion operator Ĥ f is zero outside the filter area, and
decays linearly with the distance from node f .

4 Numerical examples

In this section, we present several numerical ex-
amples (cantilever and MBB-beams). They are
used to illustrate the suitability of the MLPG
Mixed Collocation Method for solving topology
optimization problems with volume constraints.
All the following examples are treated here as be-
ing dimensionless.

4.1 Verification of the validity and convergence

The topology-optimization problem is an ill-
posed problem, with a lack of proof existence of
solutions, since it often results in a complex ma-
terial distribution [Eschenauer and Olhoff(2001)].
The convergence of solutions can not be guaran-
teed numerically. The validity and convergence
are the important areas of concern for the solution
of the topology optimization problem. We want
to compare the results by the present method with
the ones by finite element method (FEM).

Example 1:

The first example is that of a short cantilever beam
as shown in Fig. 3. The design domain is fixed
along the left edge and a concentrated vertical
load P is applied at the bottom corner of the free
(right) end of the beam.
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L

H

P
Figure 3: Cantilever beam I (L=H)

To determine an optimum structural layout, the
square ‘design domain’ (L=H) is discretized by
the MLPG Mixed Collocation Method using
20×20, 40×40, 80 × 80 uniformly distributed
nodes, respectively.

The same problem is also solved by using the fi-
nite element method (FEM) by Sigmund(2001)
for mesh refinements of 20×20, 40×40, 80× 80
elements. The optimized topology results using
the meshless method and finite element method
are shown in Fig. 4 and Fig.5, respectively. It can
be seen that for this example, the similar topolo-
gies were obtained by two different algorithms.

Example 2:

The second case is the so-called MBB beam
[Zhou and Rozvany 1991] which only the right
half-domain (Fig.7) is used for the analysis. The
design domain is discretized into 60×20, 90×30,
120×40 uniformly distributed nodes in the half-
domain, respectively. The left bottom is assumed
to be fixed, and the right one is assumed to be
on a roller. The concentrated load P is applied at
the middle of the top of the beam. As a compari-
son, the considered problem was also investigated
by using finite element method (FEM). The mesh
refinements are of 60×20, 90×30, 120×40 ele-
ments in the half-domain, respectively. The so-
lutions are given in Fig.8 and Fig.9. After com-
paring these solutions, it can be seen from that

(a) MLPG 20x20        

(b) MLPG 40x40     

(c) MLPG 80x80       

        (a)  FEM 20x20

      (b) FEM 40x40

         (c) FEM 80x80 

Figure 4: Topology op-
timization results of the
cantilever beam by the
MLPG Mixed Colloca-
tion Method

Figure 5: Topology op-
timization results of the
cantilever beam by FEM
methods

similar topologies can be obtained in the MLPG
“Mixed Collocation” method, as in the FEM.

Fig.6 and Fig.10 give three curves of convergence
of the cantilever and MBB beams’ mean com-
pliance, respectively. The almost monotonic and
uniform convergence can be observed from these
figures. The mean compliances steadily decrease
as the iteration number is increased. Their conver-
gence characteristics are very similar. Note that
for both the above examples, the iterative perfor-
mances of the discretization differ very little.

The validity and convergence of the present topol-
ogy optimization method are verified by the ex-
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Figure 6: Convergence history of the cantilever
beam compliance using the present method

P

Figure 7: MBB beam (right half-domain)

cellent agreement between the results of mesh-
less method and FEM. However, when FEM does
converge to the same topology, the phenomena
of mesh-dependency appears (Fig.10(c)) although
a filter is applied. The appearance of mesh de-
pendence is a common problem in topology op-
timization, wherein the solution to the topology
optimization changes qualitatively as the mesh is
refined. Fortunately, no phenomenon of mesh-
dependence is found in the case of MLPG Mixed
Collocation Method.

4.2 Effectiveness of filtering

Checkerboard patterns are another common prob-
lem which are often present in optimal topolo-
gies generated by continuum topology optimiza-

(a) MLPG 60X20              

(b) MLPG 90X30              

(c) MLPG 120x40              

                (a)FEM 60X20 

               (b) FEM 90X30

               (c) FEM 120x40

Figure 8: Optimal
configuration of MBB
beam (halves) by the
MLPG Mixed Colloca-
tion Method

Figure 9: Optimal con-
figuration of MBB beam
(halves) by FEM meth-
ods

Figure 10: Convergence history of the MBB beam
compliance using the present method

tion methods. Sigmund (1994) suggested a fil-
tering method, which is shown to be effective in
suppressing the formation of checkerboard pat-
terns. To illustrate the filtering effect, we consider
a cantilever beam in Fig. 11 and a MBB beam in
Fig.14.

Example 3:

This example is also that of a short cantilever
beam which has the rectangular ‘design domain’
(L=2H) as shown in Fig. 11. The load P is applied
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at the middle of the right end.

L

H

P

Figure 11: Cantilever beam II (L=2H)

The design domain is discretized using 40 x 20,
60 x 30, 80 x 40 uniformly distributed nodes, re-
spectively. For the considered beam, topologies
are given in Fig. 12 and Fig.13.

We can see the effects of the filter. A sample
MLPG solution with checkerboarding is shown in
Fig.12. Fig.13 shows the final optimal layouts of
the short cantilever beam after filtering. It can be
seen that the checkerboard pattern disappears and
optimal configurations became more clear. The
filtering properties of the present method are thus
verified.

(a) 40x20                       

(b) 60x30                        

 (c) 80x40                      

                       (a) 40x20

                        (b) 60x30 

                       (c) 80x40 

Figure 12: Optimal con-
figuration before filter-
ing

Figure 13: Optimal con-
figuration after filtering

Example 4:

We now solve another simple topology opti-
mization problem for various discretization cases,
i.e. 40×20, 60×30, 80×40 uniformly distributed
nodes, respectively. The domain and boundary
conditions for the problem chosen are shown in
Fig. 14. In this case, the beam is of given length
L and depth H, and both the ends are simply sup-
ported. The remaining volume ratio is 30%.

P

L

H

Figure 14: MBB-beam

Fig.15 shows that the algorithm finds a typical
bar-design, The results are found to be similar to
those in [Eschenauer and Olhoff(2001)]. In this
example, we find that the optimum structural lay-
outs are polluted by so-called checkerboard pat-
terns. Figs.16 show that the checkerboards can be
completely eliminated by the present nodal sensi-
tivity filter. This example shows that the filter is
good for eliminating checkerboarding. As a result
of this, it is desirable to suppress the formation of
checkerboard patterns in continuum topology op-
timization.

4.3 Comparison of topology with different “re-
maining volume” ratio

Example 5:

The example is that of an MBB beam as in Fig.
17. This case is a bridge-structure with same
boundary conditions and different load location
as the MBB beam in Example 4. The beam has
length L and depth H with ratio L/H=2.

These optimal designs have the “remaining vol-
umes” of 60%, 50%, 40%, 30%, 20% and 10 % of
the initial volume, respectively. The final topolo-
gies of MBB beam are shown in Fig.18. This de-
sign finds a classic Michell type structure and a
typical bar-design. The same results can be ob-
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(a) 40X20                            

(b) 60X30                         

(c) 80X40                           

                           (a) 40X20 

                       (b) 60X30 

                          (c) 80X40 

Figure 15: Optimal con-
figuration before filter-
ing

Figure 16: Optimal con-
figuration after filtering

P

L

H

Figure 17: MBB-beam

tained by using Sigmund’s 99 line code in Matlab
[Sigmund (2001)].

Example 6:

In this example, we consider the initial design of
a bridge structure for a prescribed (hatched) area
subject to uniformly distributed load (Fig.19).
The two points at the bottom surface corners are
simply supported. The bridge-structure has a 2:1
ratio for the length:width. The whole structure is
modelled by 60×30 nodes. The hatched part is
the required minimum thickness at the top of the
bridge, which is specified as a non-design domain.
We obtain the initial optimal designs for different
“remaining volume” limits of 70, 60, 50, 40, 30
and 20 % of the initial volume.

Fig.20 displays an optimal design for the bridge

(a)  V=60%                                                  (b)  V=50%

(c)  V=40%                                                (d)  V=30% 

(e)  V=20%                                               (f)  V=10% 

Figure 18: The final topologies of MBB beam
with different volume

L

H

P Nondesign
domain

Figure 19: Bridge structure

structure using the conventional MLPG mixed
collocation method. When the remaining mate-
rial volume is less than 50%, the topologically
optimized structure is becoming a typical arch
truss system. This is a perfect construction that
transfers the loads to the supports very efficiently
through a reasonable path.

5 Conclusions

The MLPG method is implemented to solve the
topology optimization problem. In this paper, de-
sign domains are discretized by using the MLPG
mixed collocation method, and the material distri-
bution problem becomes one of finding the opti-
mal values of the relative nodal volume fractions.
A node with zero relative nodal volume fraction
represents a void and a node with a relative nodal
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(a) V=70%                                                 (b) V=60% 

(c)  V=50%                                                  (d)  V=40%

(e) V=30%                                                          (f) V=20%

Figure 20: The final topologies of bridge structure
with different volume

volume fraction of 1 represents a solid node. The
goal is to find a distribution of relative nodal vol-
ume fractions that minimizes a compliance objec-
tive function, subject to volume constraints. To
solve such a topology optimization problem, the
popular optimality criteria (OC) method is em-
ployed with an iterative heuristic scheme for up-
dating the design variables.

In this paper, we show several numerical exam-
ples to demonstrate the validity and convergence
of the present method. We examine the effect of
filtering on the resulting topology. We compare
the various numerical results in solving topol-
ogy optimization problems. Summarizing our re-
search, the present method has the following ad-
vantages:

The filtering technique is not certain in general to
suppress the mesh-dependency problem in the fi-
nite element method. The present method does
not use a mesh of elements. The numerical in-
stability problems related to mesh do not exist. It
need not cost extra CPU-time to deal with such
the numerical instabilities. The filtering technique
is highly suitable for the present MLPG method.

The nodal values are used as the design variables.
It can be seen, by comparing with the element-

based methods, that it is not necessary to inter-
polate or project those design variables onto an
element space.

The formulation of the MLPG mixed collocation
method is established at the nodal points. It is
unnecessary to integrate over the design domain,
during the optimization procedure. So the imple-
mentation becomes very convenient and efficient.
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