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On Numerical Modeling of Cyclic Elastoplastic Response of Shell Structures

Zdenko Tonković1, Jurica Sorić1,2 and Ivica Skozrit1

Abstract: An efficient numerical algorithm for
modeling of cyclic elastoplastic deformation of
shell structures is derived. The constitutive model
includes highly nonlinear multi-component forms
of kinematic and isotropic hardening functions
in conjunction with von Mises yield criterion.
Therein, the closest point projection algorithm
employing the Reissner-Mindlin type kinematic
model, completely formulated in tensor notation,
is applied. A consistent elastoplastic tangent
modulus ensures high convergence rates in the
global iteration approach. The integration algo-
rithm has been implemented into a layered as-
sumed strain isoparametric finite shell element,
which is capable of geometrical nonlinearities
including finite rotations. Numerical examples,
considering the symmetric and nonsymmetric
loading controlled tests, illustrate the ratcheting
effect and stabilization of the load-displacement
response. Accuracy and robustness of the pro-
posed algorithms are demonstrated.

Keyword: Shell structures; Finite element anal-
ysis; Cyclic elastoplasticity; Nonlinear kinematic
hardening; Integration algorithm; Tensor formu-
lation

1 Introduction

Numerical simulation of materially and geomet-
rically nonlinear behavior of thin shell structures
subjected to complex loading histories, and de-
termination of collapse loading constitute a re-
search area which have been still attracting con-
siderable interest. In many cases, cyclic nonlin-
ear analysis has been used to control incremen-
tal collapse of the structures, where the model-
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ing of hysteresis loops and the cycling harden-
ing are very important. Experimental data and
approximate theoretical predictions of deforma-
tion processes of metal structures under different
types of cyclic loading conditions have been pre-
sented in a large variety of literature [Amstrong
and Frederick (1966); Mroz (1967); Krieg (1975);
Dafalias and Popov (1976); Chaboche (1986);
Watanabe and Atluri (1986a)]. However, numer-
ical prediction of deformation response and col-
lapse of structures can replace more expensive ex-
perimental studies. An accurate modeling of non-
linear hardening responses represents the key for
describing realistic material behavior. To inte-
grate elastoplastic constitutive model and to ob-
tain the actual state of stress and plastic inter-
nal variables, many efficient computational strate-
gies have been developed [Doghri (1993); Hart-
mann and Haupt (1993); Lubliner, Taylor and Au-
ricchio (1993); Hopperstad and Remseth (1995);
Chaboche and Cailletaud (1996); Le van and Le
Grognec (2001); Sainsot, Jacq and Nélias (2002);
Akamatsu, Nakane and Ohno (2005); Providakis
(2007)]. In most of them, investigations have
mainly been concerned with the plane stress and
plane strain plasticity.

An algorithm which enables numerical model-
ing of cyclic elastoplastic deformation of shell
structures is proposed in Sorić, Tonković and
Krätzig (2000). The present paper is a contin-
uation of that work where the ratcheting effect
and stress stabilization have been detailed ana-
lyzed. The low-cycle loading conditions are as-
sumed, which may be extended to the simulation
of cyclic plasticity-fatigue phenomena. The mate-
rial model employs the multi-component forms of
nonlinear isotropic and kinematic hardening with
material functions obtained experimentally for
ductile metals [Hopperstad and Remseth (1995)].
Since the elastoplastic cyclic responses generally
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are not connected with large elastoplastic strains,
small strains are assumed in this contribution. In
addition, an associative flow rule is adopted and
only isothermal process is considered. The inte-
gration algorithm, completely formulated in ten-
sor notation, employs the closest point projection
strategy proposed in Sorić, Montag and Krätzig
(1997a). In order to preserve the numerical effi-
ciency of the global iteration procedure, a consis-
tent elastoplastic tangent operator is applied. The
computational procedure is based on the compu-
tational strategy presented in Krätzig (1997). The
numerical algorithms were implemented into the
four-noded isoparametric, assumed strain layered
finite element [Basar and Montag (1993)]. The
finite element formulation employs the Reissner-
Mindlin type shell theory and material nonlinear-
ity can be combined with geometrically nonlin-
ear analyses assuming finite rotations. The nu-
merical examples demonstrate cyclic responses of
the shell structures considered, where robustness
and efficiency of the applied numerical algorithms
have been illustrated.

2 Material model

The present material model, described in detail in
this section, employs an associative flow rule with
multi-component form of evolution laws for hard-
ening variables in which the material functions
are experimentally determined [Hopperstad and
Remseth (1995)]. The total strain rate ε̇i j of this
concept is decomposed into the reversible elastic
part ε̇e

i j and the irreversible plastic part ε̇ p
i j, as fol-

lows

ε̇i j = ε̇e
i j + ε̇ p

i j. (1)

Herein the Latin indices take the values 1, 2 and
3, in contrast to the Greek indices used in the later
considerations, which take the numbers 1 and 2.
The rate of stress tensor is defined by the relation

σ̇ i j = Ci jkl ε̇kl, (2)

where Ci jkl abbreviates the constitutive tensor de-
scribing the material response. The von Mises-
type yield condition is written in the form

F
(
σ i j,ρ i j,a

)
=

1
2

(
Si j −ρ ′ i j

)(
Si j −ρ ′

i j

)− 1
3

k2(a) ≤ 0, (3)

where ρ i j denotes the back stress tensor com-
ponents describing kinematic hardening, a is the
internal isotropic hardening variable, while Si j

and ρ ′i j stand for the deviatoric components of
the stress and back stress tensors. According to
Hopperstad and Remseth (1995), the following
isotropic hardening model is adopted

k = σY +a, (4)

where σY is the initial uniaxial yield stress. The
plastic strain rate is expressed in an associative
form

ε̇ p
i j = λ̇

∂F
(
σ i j,ρ i j,a

)
∂σ i j , (5)

where λ represents the plastic multiplier. The
nonlinear kinematic hardening rule initially pro-
posed by Armstrong and Frederick (1966) is ex-
pressed by the following evolutionary equation

ρ̇ i j = 2ζ λ̇ η i j −3χε̇ p
eqvρ i j. (6)

This hardening mechanism represents the
Prager’s equation extended by the second term,
which introduces an evanescent strain memory
effect [Lemaitre and Chaboche (1990)]. In Eq.
(6) ζ and χ are the material functions which are
assumed to be constant in this contribution. η i j

represents the components of the relative stress
tensor defined as

η i j = σ i j −ρ i j, (7)

and ε̇ p
eqv denotes the equivalent plastic strain rate

which is expressed by the relation

ε̇ p
eqv =

√
2
3

ε̇ p
i jε̇ pi j. (8)

As follows from Chaboche and Rousselier (1983)
and Watanabe and Atluri (1986b), an efficient
hardening model may be derived when several
models of the same type are superimposed. Ac-
cordingly, the following multi-component form of
the kinematic hardening function is adopted

ρ i j =
2

∑
m=1

ρ i j
m (9)
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where ρ̇ i j
m is expressed by Eq. (6). The internal

variable in Eq. (4) describing the isotropic hard-
ening phenomenon is also obtained by addition of
two identical hardening functions

a =
2

∑
m=1

am (10)

with

ȧm = bm (Qm −am) ε̇ p
eqv, (11)

in which bn and Qn denote material constants.

Introducing the relative stress deviator

η
′i j = S

i j −ρ
′i j (12)

and its second invariant

J2 =
1
2

η
′i jη ′

i j , (13)

the yield criterion (3) can be rewritten as

F = J2 − 1
3

k2(a) = 0. (14)

The components of the relative stress deviator
may be expressed in terms of the relative stress
components by the relations

η
′i j = μ i j

kl η
kl, η ′

i j = μi jklηkl, (15)

where μ i j
kl and μi jkl represent the following trans-

formation tensors [Sorić, Montag and Krätzig
(1997a)]

μ i j
kl = δ i

kδ j
l −

1
3

aklai j, μi jkl = aika jl − 1
3

ai jakl.

(16)

In Eq. (16), δ i
k represents the Kronecker delta,

while akl and ai j are the covariant and contravari-
ant components of the metric tensor [Basar and
Krätzig (1985)]. In this formulation the compo-
nents of the metric tensor aα3 and aα3 are equal
zero and a33 = a33 = 1. Analogously to Eqs. (15),
the deviatoric components of the stress and the
back stress tensors are expressed as

Si j = μ i j
klσ

kl, Si j = μi jklσ kl, (17)

ρ
′i j = μ i j

klρ
kl, ρ ′

i j = μi jklρkl. (18)

Using Eqs. (13), (15) and (16), the second invari-
ant of the relative stress deviator takes the follow-
ing form

J2 =
1
2

μi jklη i jηkl. (19)

According to Eq. (5) and after differentiation of
the yield function, the plastic strain rate may be
then expressed in the form

ε̇ p
i j = λ̇ μi jklηkl. (20)

Connecting Eqs. (8) and (20), the equivalent plas-
tic strain can be expressed in terms of the plastic
multiplier and the isotropic hardening function

ε̇ p
eqv =

2
3

λ̇ k. (21)

Now, the expression for the back stress tensor
components can finally be transformed into the
following relation

ρ̇ i j
m = 2λ̇ ζmη i j −2χmλ̇ kρ i j

m , (22)

where the material functions are expressed in
terms of the experimentally obtained material pa-
rameters Cρm and Qρm

ζm =
1
3

CρmQρm, (23)

χm =
1
3

Cρm. (24)

By means of Eqs. (11) and (21), the evolution law
for the isotropic hardening variable transforms
into

ȧm =
2
3

bm (Qm −am)kλ̇ . (25)

During the elastoplastic deformation process the
following consistency condition must be fulfilled

Ḟ =
∂F

∂σ i j σ̇ i j +
∂F

∂ρ i j ρ̇ i j +
∂F
∂a

ȧ = 0. (26)

Finally, the loading/unloading criterion is ex-
pressed by the Kuhn-Tucker condition [Simo and
Hughes (1998)] as follows

F
(
σ i j,ρ i j,a

)≤ 0, λ̇ ≥ 0, λ̇ F
(
σ i j,ρ i j,a

)
= 0.

(27)
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3 Numerical formulation

3.1 Closest point projection algorithm for
Reissner-Mindlin shell kinematics

To integrate the elastoplastic constitutive model a
computational strategy based on the closest point
projection scheme has been applied. The updated
values of the state variables

( nσ i j, nρ i j, na
)

at
the end of the time step

( n−1t, sidesetnt
)

have
to be found for given values of the incremental

strain tensor components
+

nεi j and the state vari-
ables

( n−1σ i j, n−1ρ i j, n−1a
)

at time n−1t which
are all known. In the following numerical formu-
lation, the rates of all measures are replaced by
their incremental values noted by

(
+. . .
)

according
to Krätzig (1997). For notational simplicity, the
sign plus over the plastic multiplier, denoting its
increment, is omitted.

The updating algorithm relies on the following re-
lations in which all measures are again expressed
by tensor components:

nεi j = n−1εi j +
+

nεi j, (28)

nε p
i j = n−1ε p

i j +
nλ μi jkl

nη kl, (29)

nε p
eqv = n−1ε p

eqv +2
3

nλ nk, (30)

nσ i j = Ci jkl (nεkl −n−1ε p
kl

)−Ci jkl
+

nε p
kl, (31)

na =
2

∑
m=1

nam =

2

∑
m=1

[ n−1a+
m

2
3 bm (Qm − nam) nλ nk

]
, (32)

nρ i j =
2

∑
m=1

nρ i j
m =

2

∑
m=1

( n−1ρ i j
m +2 nλ ζm

nη i j −2χm
nλ nk nρ i j

m

)
,

(33)

nη i j = nσ i j −nρ i j, (34)
nk = σY + na, (35)

nF = nJ2−1
3

2
nk ( na)≤ 0, nλ ≥ 0, nλ nF = 0.

(36)

Since the Reissner-Mindlin type shell kinemat-
ics is employed, the stress and strain measures
are described by eight tensor components (σσσ ∈R8,
ρρρ ∈R8, εεε ∈R8)

σσσT =
[
σαβ σδ3 σ3ε

]
, ρρρT =

[
ραβ ρδ3 ρ3ε

]
,

(37)

εεεT =
[
εαβ εδ3 ε3ε

]
. (38)

Unlike the standard matrix notation, all deviatoric
components of the stress and back stress tensors,
S ∈R9 and ρ ′ ∈R9, can be explicitly included in
the formulation.

Relying on the closest point projection scheme,
the predictor phase is expressed as

nσαβ
trial = n−1σαβ +Cαβδε n+

ε δε , (39)

nσδ3
trial = n−1σδ3 +2Gaδε n+

ε ε3, (40)

where G denotes the shear modulus. As may be
observed, the in-plane components presented by
Eq. (39) and the shear components in Eq. (40)
are expressed separately in order to achieve high
numerical efficiency [Sorić, Montag and Krätzig
(1997a)]. After onset of plastification, the stress
components at the end of the time step are ob-
tained by the relations

nσαβ = nσ αβ
trial −Cαβγδ n+

ε
p

γδ , (41)

nσδ3 = nσ δ3
trial −2Gaδε n +ε

p
ε3 . (42)

By use of equation (20), the plastic strain incre-
ment

+ε
p ∈ R9 at time nt can be expressed by the

following tensor components:
n +ε

p
αβ = nλ μαβγδ

nηγδ , (43)

n +ε
p
δ3 = nλ aδε

nηε3, (44)
n +
ε

p
33 = −nλ μαβγδ aαβ nηγδ , (45)

where the transverse normal strain component
n +
ε

p
33 is determined from the incompressibility

condition
n+ε

p j
j = 0. Inserting Eq. (43) into Eq.

(41), and Eq. (44) into (42), it yields

nσαβ = nσ αβ
trial −nλ Cαβρλ μρλγδ

nηγδ , (46)
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nσα3 = nσα3
trial −nλ G nηα3 . (47)

Applying Eq. (33), the back stress tensor compo-
nents at time nt can be broken down as

nραβ =
2

∑
m=1

nραβ
m =

2

∑
m=1

(
nUm

n−1ραβ
m +2 nUm

nλ ζm
nηαβ

)
, (48)

nρα3 =
2

∑
m=1

nρα3
m =

2

∑
m=1

( nUm
n−1ρα3

m +2 nUm
nλ ζm

nηα3) (49)

in which nU is introduced as auxiliary variable
given by

nUm =
1

1+2χm
nλ nk

. (50)

Analogously, the isotropic hardening variable at
time nt is obtained as

na =
2

∑
m=1

nam =

2

∑
m=1

1

1+ 2
3 bm

nλ nk

(n−1a+
m

2
3 bmQm

nλ nk
)
. (51)

Now, substituting Eqs. (46) and (48) into Eq. (34)
we obtain

nηγδ
(

δ α
γ δ β

δ − nK1 aαβ aγδ

)
=

nK2

1+2 nK2
nλ G

nηαβ
trial (52)

with the abbreviations

nK1 =
2 nK2

nλ G(1−2ν)
3(1+2 nK2

nλ G)(1−ν)
, (53)

nK2 =
1

1+2
2
∑

m=1

nUm
nλζm

. (54)

The trial relative stress tensor components nηαβ
trial

and nηα3
trial are defined by

nηαβ
trial = nσαβ

trial −
2

∑
m=1

nUm
n−1ραβ

m , (55)

nηα3
trial = nσα3

trial −
2

∑
m=1

nUm
n−1ρα3

m . (56)

In the program coding of the procedure presented
above, the following inverse relation will be use-
ful [Sorić, Montag and Krätzig (1997b)]

(
δ α

γ δ β
δ − nK1 aαβ aγδ

)−1
=

δ γ
α δ δ

β −
nK1

2 nK1−1
aαβaγδ . (57)

Using Eq. (57) and by means of Eqs. (34),
(47), (49) and (52), the explicit expressions for
the components of the relative stress tensors are
obtained in terms of the trial state

nηαβ = nA
αβ
γδ

nηγδ
trial , (58)

nηα3 =
1

1+2 nλ
(

2
∑

m=1

nUm ζm +G

) nηα3
trial, (59)

where the transformation tensor nA
αβ
γδ is broken

down in the form

nA
αβ
γδ =

1

1+2 nλ
(

2
∑

m=1

nUm ζm +G

)
[

δ α
γ δ β

δ +

2 nλ G(1−2ν)

2 nλ G(1+ν)+3(1−ν)
(

1+2
2
∑

m=1

nλ nUm ζm

)

aγδ aαβ

]
. (60)

Using Eq. (19), the second invariant J2 may be
transformed in terms of the relative stress compo-
nents as

J2 =
1
2

(
μαβγδ ηαβ ηγδ + aεςηε3ης 3 + aηϑ η3η η3ϑ

)
(61)

with the tensor μαβγδ defined as plane projection
of (16)

μαβγδ = aαγaβδ −
1
3

aαβ aγδ . (62)
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Substitution of Eqs. (58) and (59) into Eq. (61)
yields the expression for J2 in terms of the plastic
multiplier and the trial stress as well as the auxil-
iary variables nUm

nJ2 = nJ2

(
nλ , nUm, nσ αβ

trial,
nσ α3

trial

)
. (63)

After inserting Eqs. (63) and (51) into the
yield criterion (14), the following nonlinear scalar
equation is obtained

nF = nJ2

(
nλ , nUm, nσαβ

trial ,
nσα3

trial

)
−

2
nk ( na) = 0,

(64)

which has to be solved for nλ . For this purpose,
the Newton iteration sheme is applied. During the
iteration process, the unknown auxiliary variables
nUm must be computed, which is performed by
means of the nonlinear equation

2

∑
m=1

{
1

1+ 2
3bmλ (σY +a)[

n−1a
m
+

2
3

bmQmλ (σY +a)
]}

−a = 0 (65)

obtained by substituting relations (35) into (51).
In each iteration step, for a given value of λ , this
equation is solved for the isotropic hardening vari-
able a by applying an additional Newton iteration
scheme. After determination of na, the value of
the variable nUm can be computed, and thereafter
the plastic multiplier nλ is determined.

After determination of the plastic multiplier, the
updated value of the stress tensor as well as all
internal variables can be calculated. To avoid
spurious unloadings, all state variables should be
updated with respect to the previous equilibrium
state. In order to preserve numerical efficiency
of the global iteration strategy on structural level,
an elastoplastic tangent modulus consistent with
the integration algorithm has to be derived and ap-
plied thereby.

3.2 Consistent elastoplastic tangent modulus

Consistent elastoplastic tangent modulus is ob-
tained by linearization of the updated algorithm

presented in the previous section. Due to nota-
tional simplicity, the left upper index n referring
to all state variables at time nt will be omitted. In-
serting equation (39) into (46), and after differen-
tiation and replacing the trial stress by the actual
stress tensor components, the following formula
is obtained

dσαβ =

Cαβρλ
(

dερλ −μρλγδ ηγδ dλ −λ μρλγδ dηγδ
)

.

(66)

Analogously, by differentiation of equation (47)
and further use of (40), we obtain

dσα3 = 2Gaαρdερ3 −4Gηα3dλ −4λ Gdηα3.

(67)

After forming the derivative of Eq. (30), the
following differential relation for the equivalent
plastic strain is obtained

dε p
eqv =

2
3

kdλ
1− 2

3
dk

dε p
eqv

λ
. (68)

By use of Eqs. (30) and (32), the isotropic hard-
ening variable will be expressed as

dam =
bm (Qm −am)

1+ 2
3 bmkλ

dε p
eqv. (69)

Differentiation of Eqs. (35) and (51) leads to

dk
dε p

eqv
=

2

∑
m=1

dam

dε p
eqv

=
2

∑
m=1

bm (Qm −am)
1+ 2

3bmkλ
. (70)

The differential of the back stress tensor compo-
nents dραβ and dρα3, obtained from Eq. (33) by
means of Eqs. (30) and (68), may be expressed by
the following relation

dρ i j =
2

∑
m=1

dρ i j
m =

2

∑
m=1

(
Hi j

m dλ +2ζmλ dη i j −2χmλ kdρ i j
m

)
(71)

with the abbreviation

Hi j
m = 2ζmη i j − 2χmkρ i j

m

1− 2
3

dk
dε p

eqv
λ

. (72)
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Differentiation of Eq. (34) yields

dη i j = dσ i j −dρ i j. (73)

Inserting Eq. (73) into (71) and simplifying the
results, we have

dρ i j =
2

∑
m=1

dρ i j
m =

2

∑
m=1

Vm
(
Hi j

m dλ +2ζmλ dσ i j),
(74)

where

Vm =
1

(1+2χmkλ)
(

1+
2
∑

m=1

2ζmλ
1+2χmkλ

) . (75)

Furthermore, substituting Eqs. (73) and (74) into
Eq. (66) and (67) delivers

dσαβ = Bαβ
γδ

(
Cγδεςdεες −Dγδ dλ

)
, (76)

dσα3 =
2G

1+2λ G(1−K3)

(
aαβ dεβ3 −Fα3dλ

)
,

(77)

where the following abbreviations are introduced

Bαβ
γδ =

2G
1+2K3λ G[

δ α
γ δ β

δ +
2K3λ G(1−2ν)

2K3λ G(1+ν)−3(1−ν)
aαβ aγδ

]
,

(78)

Dαβ = Cαβγδ μγδες (ηες −λ Lες ) , (79)

Fα3 = ηα3−λ Lα3, (80)

K3 = 1−
2λ

2
∑

m=1
Umζm

1+2λ
2
∑

m=1
Umζm

. (81)

Herein Lες and Lα3 in Eqs. (79) and (80) are ex-
pressed by the equation

Li j =
2η i j

2
∑

m=1
Umζm −2 k

1− 2
3 λ dk

dε p
eqv

2
∑

m=1
Umχmρ i j

m

1+2λ
2
∑

m=1
Umζm

.

(82)

The differential of the plastic multiplier dλ in (76)
and (77) should be expressed in terms of the strain
tensor components. After formation of the deriva-
tive of the yield functions and by use of Eqs. (73)
- (77) and (61), an explicit expression for the plas-
tic multiplier is obtained as follows:

dλ =
μαβγδ Oαβες ηγδ

K5 +T1 +2T2
dεες +

2K4ηϑ3

K5 +T1 +2T2
dεϑ3

(83)

with

Oαβες = K3Bαβ
γδ Cγδες , (84)

T1 = μαβγδ

(
K3Bαβ

ες Dες +Lαβ
)

ηγδ , (85)

T2 = aαβ
(
K4Fα3 +Lα3)ηβ3, (86)

K4 = 1− 2GK3

1+2λ G(1−K3)
, (87)

K5 =
4
9

k2 dk
dε p

eqv

1− 2
3λ dk

dε p
eqv

. (88)

Finally, substitution of Eq. (83) into Eqs. (76) and
(77) yields the following relationships between
the stress and strain differential components

dσαβ = Cαβγδ
ep dεγδ +2Cαβε3

ep dεε3, (89)

dσα3 = Cα3γδ
ep dεγδ +2Cα3ε3

ep dεε3, (90)

which then deliver the tensor components of the
consistent elastoplastic tangent modulus

Cαβγδ
ep = Bαβ

ες

(
Cες γδ − μϑκλνDες Oϑκγδηλν

K5 +T1 +2T2

)
,

(91)

Cαβε3
ep = −

K4Bαβ
γδ Dγδηε3

K5 +T1 +2T2
, (92)

Cα3γδ
ep = −K4

K3

μϑκλν Fα3Oϑκγδηλν

K5 +T1 +2T2
, (93)

Cα3ε3
ep =

K4

2K3

(
aαε − 2K4Fα3ηε3

K5 +T1 +2T2

)
. (94)
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It is not difficult to verify that the tensor compo-
nents Ci jkl

ep are unsymmetrical with respect to the
couple of indices (i j) and (kl) due to the nonlin-
ear kinematic hardening law. For the evaluation
of the stiffness matrix, the unsymmetrical tangent
operator should be symmetrized by using arith-
metic mean values as shown in Sorić, Tonković
and Krätzig (2000)

sym Ci jkl
ep =

1
2

(
Ci jkl

ep +Ckli j
ep

)
. (95)

4 Numerical examples

The integration algorithm and the correspond-
ing consistent tangent modulus have been imple-
mented at the material point level into the formu-
lation of the four-noded assumed-strain layered
finite element [Basar, Montag and Ding (1993)].
The independent variables representing three dis-
placement components and two rotations are ap-
proximated by bilinear interpolation functions.
The layered finite element approach provides dis-
cretization of the shell continuum into a finite
number of homogenous layers, enabling the simu-
lation of the propagation of plastic zones through-
out the thickness of the structure. Herein, the
equidistant layers are defined by the integration
points. To implement the material model into the
finite element formulation used in this paper, we
evaluate the material tensor by numerical integra-
tion over the shell thickness h

n
E

i jkl
=
∫ h/2

−h/2

(
ξ 3)n

Ci jkl
L dξ 3 ≈

N

∑
L=1

(
ξ 3

L

)n
Ci jkl

L Δξ 3
L ,

n = 0,1,2,3, . . . (96)

where ξ 3 is the thickness coordinate and Ci jkl
L

describes material response of the layer L (L =
1, . . .,N) for each step of the computation. For
plastic computation step Ci jkl

L represents the
elastoplastic tangent modulus and it stands for the
elastic material tensor if the step is elastic. By
means of Eq. (96), the constitutive equations for
middle surface stress resultants are formulated ac-

cording to [Sorić, Montag and Krätzig (1997b)]

Ñ(αβ) =
0
E

αβγδ
αγδ +

1
E

αβρλ
βρλ +

0
E

αβ3η
γη ,

M(αβ) =
1
E

αβγδ
αγδ +

2
E

αβρλ
βρλ +

1
E

αβ3η
γη ,

Q̃α =
0
E

α3γδ
αγδ +

1
E

α3ρλ
βρλ +

0
E

α33η
γη ,

(97)

where Ñ(αβ) is pseudo-stress resultant tensor,
M(αβ) denotes the moment tensor and Q̃α is the
pseudo-shear stress tensor. The strain compo-
nents αγδ and βρλ are the middle surface first
and second strain tensors, while γη describes con-
stant shear deformations throughout the thick-
ness. In this computation ten integration points
are used in thickness direction. Material nonlin-
earity was combined with the modeling of geo-
metrically nonlinear responses assuming finite ro-
tations. For the tracing of the hysteresis loops,
Newton-Raphson and Riks-Wempner-Wessels it-
eration schemes, both enhanced by line search
procedures [Montag, Krätzig and Sorić (1999)]
were applied. The following material parameters,
taken from Hopperstad and Remseth (1995) for
ductile steel are used: E = 200 GPa, ν = 0.3,
σY = 200 MPa, Cρ1 = 800, Cρ2 = 1, Qρ 1 = 100
MPa, Qρ 2 = 2000 MPa, b1 = 20, b2 = 0, Q1 =
100 MPa, Q2 = 0. Thereby, the material model
consists of two independent kinematic hardening
variables and an isotropic hardening variable.

4.1 Biaxial test

To demonstrate accuracy and numerical efficiency
of the algorithms derived, the biaxial tests taken
from Hopperstad and Remseth (1995) and Nukala
(2006) have been performed in the first example.
For specified cyclic strain history, the aim is to
obtain the correct stress response using minimal
number of steps.

The data sets for two biaxial cyclic strain load-
ing histories considered in this study are shown in
Figs. 1(a) and 1(b). In the present example, the
initial cyclic yield stress σY and the correspond-
ing yield strain εY = σY /E are utilized to nor-
malize the stress and strain. As it is shown, the
cyclic strain histories are described by the con-
nected straight segments, to give a closed cycle in
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Figure 1: Cyclic strain histories: (a) history 1; (b) history 2

Figure 2: Stress-strain response for strain history 1: I - 1080 equal increments of size 0.1; II - 108 equal
increments of size 1.0; III - 36 equal increments of size 3.0

Figure 3: Stress-strain response for strain history 2: I - 960 equal increments of size 0.1; II - 96 equal
increments of size 1.0; III - 32 equal increments of size 3.0
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Figure 4: A comparison of stress-strain response for strain history 2 with 32 equal increments of size 3.0
between the present work and the published solutions by Hopperstad and Remseth (1995)

Figure 5: Geometry, finite element mesh and loading for spherical cap

Figure 6: Load-displacement diagram for spherical cap
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Figure 7: Deformed configurations of spherical cap for various load levels on the first hysteresis loop

Figure 8: Spread of plastic zones at load levels corresponding to deformed configurations presented in
Figure 7
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Figure 9: Geometry, finite element mesh and loading
for shallow cylindrical shell

Figure 10: Cyclic response of shallow cylindrical
shell

Figure 11: Deformed configurations of shallow cylindrical shell for various load levels on the first hysteresis
loop
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Figure 12: Spread of plastic zones at load levels corresponding to deformed configurations presented in
Figure 11

the biaxial ε11−ε22 space. The numerical simula-
tion is performed using three different normalized
strain increments of 0.1, 1.0 and 3.0. Thereby, the
hysteresis loops obtained with the smallest incre-
ment are assumed as an ’exact’ solution.

The normalized stress versus normalized strain re-
sponses in 11 and 22 directions at the element
integration point level are shown in Figs. 2 and
3. As may be observed from figures, an excellent
agreement of the solutions, using three different

strain increments, is exhibited. Additionally, the
accuracy of the computational procedure is tested
by comparing the computed stress-strain curves
obtained with the normalized strain increment of
size 3.0 given in Fig. 3 with the solutions by Hop-
perstad and Remseth (1995). As evident from Fig.
4, the results are almost identical.
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4.2 Spherical cap with central opening sub-
jected to cyclic line load

As second example, a spherical shell with a hole
in the middle is considered. The shell is subjected
to cyclic line load along the upper boundary and
supported by fixed hinge along the lower end. The
geometrical parameters and loading are presented
in Fig. 5. Due to symmetry, only one quarter of
the shell is modeled by the finite element mesh
of 20×20. The reference load of q0 = 1 N/mm
is scaled by the load factor of ±26 in order to
simulate a symmetric loading controlled test. The
load factor versus vertical displacement at the up-
per edge of the shell is plotted in Fig. 6. It is
evident that each consecutive hysteresis loop dis-
places during the repetitive loading, which is as-
sociated with the increase in displacement. Thus,
ratcheting effect has been induced. The upper
load limit of the closed path cannot be reached
after four hysteresis loops since a buckling prob-
lem occurs. The shell collapses at the limit point
which is slightly below the loading amplitude.
Consequently, it can be concluded that the pre-
sented cyclic loading yields decreasing of limit
point, which is followed by collapse of the struc-
tures. It occurs due to the ratcheting strain accu-
mulation and spread of plastic zones throughout
the shell thickness. The deformed configurations
for the upper load limit, zero load and lower load
limit of the first hysteresis are plotted in Fig. 7.
At the same load levels, the spreading of plastic
zones throughout the sections traced by the merid-
ional planes containing the axis of rotation is pre-
sented in Fig. 8. During the cyclic deformation
process presented, the plastic regions slightly in-
crease with increasing displacements.

4.3 Shallow cylindrical shell under cyclic point
load

Cyclic response of a shallow cylindrical shell un-
der the point load will be presented as last ex-
ample. The shell is hinged at the longitudinal
edges and it is free along the curved boundaries,
as shown in Fig. 9 presenting the geometry and
finite element mesh. Using symmetry again, one
quarter of the structure is discretized by 20×20
finite elements. Unlike the previous example, a

nonsymmetric loading controlled cyclic process
is modeled by the oscillate load factor between
+13.3 and –10, which scale the reference load of
F0 = 1 kN. Load-displacement diagram present-
ing the cyclic response is plotted in Fig. 10. As
may be seen, after several cycles the stabilized
hysteresis loop is reached. The deformed config-
urations for the upper load limit, zero load and
lower load limit of the first hysteresis are plotted
in Fig. 11. Spreading of plastic zones through-
out the sections traced by the planes parallel to
the longitudinal shell edges are shown in Fig. 12
for the load levels corresponding to the deformed
configurations presented in the previous figure.

5 Conclusion

An efficient numerical technique for modeling of
elastoplastic cyclic responses of shell structures
has been presented. The material model employs
the nonlinear hardening rules derived by super-
imposing of several hardening laws of the same
type, which are based on the Armstrong-Frederick
equations. The von Mises-type yield condition
with the assumption of small strain and associa-
tivity of the flow rule, has been adopted. A closest
point projection algorithm for Reissner-Mindlin
type kinematics has been successfully applied.
The tensor formulation used allows all nine stress
deviator components to be explicitly included in
the formulation, which turns out to be an advan-
tage over the classical matrix notation. The exper-
imentally obtained material parameters adopted
for the computations are taken from literature.
The derived elastoplastic tangent modulus ensures
quadratic convergence rate in the global solution
procedures.

Robustness and numerical stability of the pro-
posed algorithms are demonstrated by three nu-
merical examples. Firstly, the accuracy of the
computational procedure has been tested by mod-
eling of a biaxial state of cyclic strain history.
Then, two different types of complex cyclic shell
behavior are modeled. The first one is the ratch-
eting effect resulting with the structural collapse
obtained by symmetric loading controlled simu-
lation, and in the another one, the stabilization of
the load-displacement response takes place after
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several cycles of the nonsymmetric loading con-
trolled test. Clearly, the final judgement on accu-
racy of the numerical results may be given only
after comparing with the real experimental data.
Hence, it would be extremely interesting to test
the numerical simulation presented against exper-
imental results.
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creasing solution stability for finite-element mod-
elling of elasto-plastic shell response. Advances
in Engineering Software, vol. 30(9-11), pp. 607-
619.

Mroz, Z. (1967): On the description of
anisotropic workhardening. Journal of the Me-
chanics and Physics of Solids, vol. 15, pp. 163-
175.

Nukala, K.P.V.V. (2006): A return mapping algo-
rithm for cyclic viscoplastic constitutive models.
Computer Methods in Applied Mechanics and En-
gineering, vol. 195(1-3), pp. 148-178.

Providakis, C.P. (2007): The Effect of Internal
Support Conditions to the Elastoplastic Transient
Response of Reissner-Mindlin Plates. CMES:
Computer Modeling in Engineering & Sciences,



90 Copyright c© 2008 Tech Science Press CMES, vol.26, no.2, pp.75-90, 2008

vol. 18(3), pp. 247-258.

Sainsot, P.; Jacq, C.; Nélias, D. (2002): A Nu-
merical Model for Elastoplastic Rough Contact,
CMES: Computer Modeling in Engineering &
Sciences, vol. 3(4), pp. 497-506.

Simo, J.C.; Hughes, T.J.R. (1998): Computa-
tional Inelasticity, Springer.
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