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Atomic-scale Modeling of Self-Positioning Nanostructures

Y. Nishidate1 and G. P. Nikishkov1,2

Abstract: Atomic-scale finite element proce-
dure for modeling of self-positioning nanostruc-
tures is developed. Our variant of the atomic-
scale finite element method is based on a mesh-
less approach and on the Tersoff interatomic po-
tential function. The developed algorithm is used
for determination of equilibrium configuration of
atoms after nanostructure self-positioning. De-
pendency of the curvature radius of nanostruc-
tures on their thickness is investigated. It is found
that for thin nanostructures the curvature radius is
considerably smaller than predicted by continuum
mechanics equations. Curvature radius variation
with varying orientation of crystallographic axes
is also modeled and results are compared to finite
element continuum anisotropic solution.

Keyword: Nanostructure, Self-positioning,
Atomic-scale finite element method.

1 Introduction

Nanoscale structures have many potential appli-
cations. However, controlling and manipulating
formation of nanoscale structures is usually com-
plicated. One promising approach to creation
of 3D nanoscale structures is the method utiliz-
ing self-positioning phenomena of thin solid films
[Schmidt and Eberl (2001); Songmuang, Deneke,
and Schmidt (2006); Golod, Prinz, Mashanov,
and Gutakovsky (2001); Vaccaro, Kubota, and
Aida (2001)]. The self-positioning is caused by
lattice mis-matching strain in layered structures
composed of several metal or semiconductor ma-
terials. The self-positioning structures are cre-
ated by depositing a sacrificial material layer and
several lattice mismatched layers. After etching
away the sacrificial layer, the layered materials
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form hinges or tubes with diameter controllable
by layer material properties and thickness. Strain-
driven self-positioning can be used to create 3D
nanoscale structures by folding 2D membranes
as origami (Japanese paper craft work) [In, Ku-
mar, Shao-Horn, and Barbastathis (2006); Arora,
Nichol, Smith, and Barbastathis (2006)]. This ap-
proach is simple and robust, and deformation is
predictable and controllable.

Analytical continuum mechanics approaches
[Hsueh (2002); Nikishkov (2003); Nishidate
and Nikishkov (2006)] and computational finite
element modeling [Nikishkov, Khmyrova, and
Ryzhii (2003); Nikishkov, Nishidate, Ohnishi,
and Vaccaro (2006)] have been applied to es-
timating deformations of self-positioning multi-
layer structures. However, these approaches do
not take into account atomic-scale effects like ab-
sence of neighboring atoms at free surfaces.

Recently, atomic-scale modeling has been applied
to practical systems consisting of hundreds of
thousands of atoms[Fitzgerald, Goldbeck-Wood,
Kung, Petersen, Subramanian, and Wescott
(2008)]. Several finite element algorithms have
been developed for multiscale simulations [Theo-
dosiou and Saravanos (2007); Chirputkar and
Qian (2008)]. The atomic-scale finite element
method (AFEM) based on the Brenner inter-
atomic potential has been proposed for multi-
scale analysis of carbon nanotubes [Liu, Huang,
Jiang, Qu, and Hwang (2004); Liu, Jiang, Huang,
Qu, Yu, and Hwang (2005)]. We have applied the
AFEM to modeling of self-positioning bi-layer
structures. The investigation of curvature radius
dependence on the structure thickness [Nishidate
and Nikishkov (2007)] showed that atomic-scale
and continuum mechanics solutions produce same
results for structures with thickness larger than
100 nm. Atomic scale effects play significant role
for thin self-positioning nanostructures.
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In this article, formulation of the atomic-scale
finite element method with the use of of the
Tersoff-Nordlund potential function is presented.
Since the self-positioning of nanostructures in-
volves large translations and rotations, a special
iteration procedure that includes load relaxation
factor is developed. The created AFEM code is
applied to modeling of bi-layer self-positioning
nanostructures. Deformation of self-positioning
structures with varying thickness and with vary-
ing orientations of crystallographic axes is inves-
tigated.

2 Atomic-scale finite element method

The atomic-scale finite element method (AFEM)
is proposed for analysis of carbon nanotubes [Liu,
Huang, Jiang, Qu, and Hwang (2004); Liu, Jiang,
Huang, Qu, Yu, and Hwang (2005)]. The atomic-
scale finite element equation system is derived
from the approximation of energy E around cur-
rent configuration x(i):

E(x)≈E(x(i))+
∂E
∂x

|x=x(i) ·(x−x(i))

+
1
2
(x−x(i))T · ∂ 2E

∂x2 |x=x(i) ·(x−x(i)),

(1)

and its subsequent minimization:

∂E
∂x

= 0. (2)

Substituting equation (1) into (2), AFEM global
equation system can be obtained, and expressed
in a form similar to conventional finite element
equation system:

Ku = f, (3)

where K is a global stiffness matrix, u is a dis-
placement vector, and f is a load (force) vector.
In the AFEM, the global stiffness matrix K and
the load vector f are composed of second and first
derivatives of the system energy with respect to
atom positions:
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, (5)

where E is the total energy of the atomic system, n
is a number of atoms (AFEM nodes), and xi is the
coordinate vector of an i-th atom. As long as the
problem is to find the static equilibrium configura-
tion of atomic bonds without external loads, total
energy E is replaced by a potential energy. Ex-
pressions of energy derivatives should be obtained
to formulate the AFEM global equation system,
so energy function E should be at least twice dif-
ferentiable.

Equation (1) shows that solution becomes less
reliable as current configuration gets further
from equilibrium atomic configuration. Self-
positioning structures deform with large trands-
lational and rotational displacements, so it is de-
sirable to divide loading into several steps and to
apply load gradually. Therefore, we employ the
following Newton-Raphson iteration procedure to
obtain the final structure shape.

do
K = K(x(i))
f = f(x(i))
α = g(K, f)
f = α f(x(i))
Δu = K−1f
x(i+1) = x(i) +Δu
u(i+1) = u(i) + |Δu|

while
|Δu|

u(i+1) > ε

(6)

At each updated configuration, tangent stiffness
matrix and loading vector should be calculated
using equation (4) and (5). In the iteration pro-
cedure, ε is an error tolerance, g is a function
for estimating load relaxation factor α . Con-
stant α factor throughout overall solution can per-
form unnecessary iterations or can lead to diver-
gence, because derivative (slope) of the interac-
tion potential energy usually becomes smaller as
current configuration gets closer to equilibrium
where loading becomes zero.

The relaxation factor is estimated at each load-
ing step using tangent stiffness matrix and current
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Figure 1: Self-positioning GaAs-InAs bi-layer hinge before and after self-positioning.

loading vector. In our case, the value of α is cal-
culated as:

u =
umean

a
,
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(7)

where n is a number of atoms, f i
j is a j-th com-

ponent of full load vector acting on i-th atom,
Kii

j j are corresponding diagonal entries of cur-
rent tangent stiffness matrix, a is a characteristic
length of atomic system, and δ is a displacement
suppression factor representing admissible mean
displacement length. We selected characteristic
length a as an initial lattice period, and a constant
δ with the value 2 ·10−4. Stronger load relaxation
is applied if smaller δ is selected, or calculated
mean value of the solution guess umean increases.

3 Modeling GaAs and InAs crystalline struc-
tures

We model bi-layer self-positioning hinges con-
sisting of GaAs top and InAs lower layer (Fig. 1).
Coordinate axes x, y, and z are aligned to struc-
ture length, thickness, and width (bending axis)
directions, respectively.

An AFEM mesh is constructed in accordance
with GaAs and InAs crystalline structures called
zincblende crystal. Arrangement of atoms in
zincblende crystals is shown in Fig. 2. Arsenide
atoms occupy crystal corners and face centers of
the unit crystal, and Gallium/Indium atoms are in-
side with positions (0.25, 0.25, 0.25), (0.75, 0.25,

0.75), (0.25, 0.75, 0.75), and (0.75, 0.75, 0.25) in
the unit edge length crystal.

The GaAs and InAs possess material anisotropy
depending on its crystal orientation. We investi-
gate the effect of anisotropy depending on a mate-
rial orientation angle. The material orientation an-
gle is modeled by rotating crystals around global
y axis. Fig. 3 shows the procedure of creation
AFEM meshes for modeling GaAs and InAs ma-
terial anisotropy. The original crystalline struc-
ture with zero material orientation angle is pre-
pared. Then the structure is rotated around y axis
and atoms outside the rectangular solution do-
main are removed.

Figure 2: Atomic configuration and bonding in
zincblende crystalline structures. There are eight
corner and six face center atoms (bigger) and four
inner atoms (smaller).
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Figure 3: Modeling atomic structures with different material axes orientation. (a) Initial structure with
unit crystals aligned to global axes. (b) Structure rotation around y axis by specified orientation angle. (c)
Removal of atoms outside a rectangular region.

4 Modeling In–Ga–As atomic interaction

The atomic-scale finite element method employs
continuous empirical interatomic potential func-
tion which describes interatomic interactions.
Several empirical interatomic potential functions
have been developed to study behavior of atomic
systems [Brenner (1990); Brenner, Shenderova,
Harrison, Stuart, Ni, and Sinnott (2002); Tersoff
(1989)]. For example, Liu, Huang, Jiang, Qu, and
Hwang (2004); Liu, Jiang, Huang, Qu, Yu, and
Hwang (2005) employed an empirical interatomic
potential function and its parameters developed
by Brenner (1990); Brenner, Shenderova, Harri-
son, Stuart, Ni, and Sinnott (2002).

Although the Brenner potential model is widely
used and successfully applied for modeling sev-
eral types of atomic structures, its parameters
for Indium, Gallium, and Arsenide systems are
not available. Another empirical potential en-
ergy model has been proposed by Tersoff (1989).
In the Tersoff model, total potential energy E is
given by the following function:

E = ∑
i

Ei =
1
2 ∑

i
∑
j �=i

Vi j,

Vi j = fC(ri j) [ fR(ri j)+bi j fA(ri j)] ,
fR(ri j) = Ai jexp(−λi jri j),
fA(ri j) = −Bi jexp(−μi jri j),

fC(ri j) =

⎧⎪⎪⎨
⎪⎪⎩
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1
2 + 1

2 cos
[
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π
]
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bi j = (1+β ni j
i j ζ ni j

i j )−1/(2ni j),
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fC(rik)g(θi jk),

g(θi jk) = 1+
c2

ik

d2
ik

− c2
ik

d2
ik +(hik −cos θi jk)2

, (8)

where Ei is the potential energy of atom i, Vi j the
potential energy of a bond i– j, ri j the distance
from atom i to atom j, fC the cut-off function to
disregard effects from distant atoms, fR a reactive
component, fA an attractive component, and bi j a
bonding term to represent multi-atom interaction
effects characterized by bonding angles.

Appearance of the potential function (8) is
slightly different from the original Tersoff poten-
tial function due to subsequent parametrization by
Nordlund, Nord, Frantz, and Keinonen (2000) for
Indium, Gallium and Arsenide systems. The pa-
rameter values for Indium, Gallium, and Arsenide
systems are listed in Tab. 1.

The parameters obtained by Nordlund correspond
to basic elastic and melting crystal properties.
They were developed for investigation of damage
at Si/Ge, AlAs/GaAs, and InAs/GaAs interfaces.
It was noted that the parameters should be used
with care for other purposes. So, we performed
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Table 1: Tersoff potential energy parameters for Indium, Gallium, and Arsenide systems fit by Nordlund,
Nord, Frantz, and Keinonen (2000)

In–Ga In–In In–As As–As Ga–As Ga–Ga
n 3.43739 3.40223 0.7561694 0.60879133 6.31741 3.4729041
c 0.0801587 0.084215 5.172421 5.273131 1.226302 0.07629773
d 19.5277 19.2626 1.665967 0.75102662 0.790396 19.796474
h 7.26805 7.39228 −0.5413316 0.15292354 −0.518489 7.1459174
β 0.705241 2.10871 0.3186402 0.00748809 0.357192 0.23586237

λ (−1) 2.5616 2.6159 2.597556 2.384132239 2.82809263 2.50842747
μ (−1) 1.58314 1.68117 1.422429 1.7287263 1.72301158 1.490824
A (eV) 1719.7 2975.54 1968.295443 1571.86084 2543.29720 993.888094
B (eV) 221.557 360.61 266.571631 546.4316579 314.459660 136.123032

R () 3.4 3.5 3.5 3.4 3.4 3.4
S () 3.6 3.7 3.7 3.6 3.6 3.6

several tests to confirm parameter suitability for
our modeling of self-positioning structures. The
first test measured correspondence of elastic prop-
erties obtained using the Nordlund parameters to
elastic properties known from the literature. The
second test involved calculation of lattice param-
eters for GaAs and InAs and their comparison to
known values.

Using the AFEM with Tersoff potential and Nord-
lund parameters, elastic properties of GaAs and
InAs are estimated by applying external load at
the end of specimen shaped into a thin rod along
its longitudinaldirection. Strain and stress are cal-
culated at a position sufficiently far from the free
end where external load is applied. Taking into
account that the specimen is thin in transverse di-
rections, Young’s modulus E and Poisson’s ratio
ν are determined by:

E =
σx

εx
, ν = −εy

εx
. (9)

For a cubic crystal with axes aligned with cube
edges, estimation of Young’s modulus and Pois-
son’s ratio from constitutive tensor components
C11 and C12 can be made as follows:

E =
(C11−C12)(C11 +2C12)

C11 +C12
, ν =

C12

C11 +C12
.

(10)

The lattice period is estimated at the center of
cube structures consisting of several crystals in

all directions. Elastic properties and lattice pe-
riods estimated by the AFEM modeling for GaAs
and InAs are compared with experimental values
[Bhattacharya (1993)] in Tab. 2.

A difference of 5% is observed for Young’s mod-
ulus of GaAs, however in general the correspon-
dence of estimated elastic properties to their ex-
perimental values is acceptable. Estimated lattice
periods are in very good agreement with experi-
mental values. We therefore concluded that the
AFEM with Tersoff potential and parameters de-
veloped by Nordlund is suitable for simulation
of the atomic-scale behaviour of nanostructures
composed of GaAs and InAs.

5 Modeling self-positioning GaAs–InAs
hinges

A self-positioning structure consisting of GaAs
top and InAs lower layers is shown in Fig. 4. It
is used for investigation of curvature radius de-
pendence on structure thickness and crystal ori-
entation angle. We employ problem size parame-
ter c to express size of atomic systems. Curvature
radius of GaAs and InAs bilayer structures with
the problem size parameters c = 1, 2, 4, 8, 12, 16,
24, and 36 prepared to find equilibrium configura-
tion. We model material anisotropy with material
orientation angles 0, 15, 30, 45, 60, 75, and 90
degrees. Appearance of crystalline structure ge-
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Table 2: GaAs and InAs properties: comparison of AFEM estimation with literature [Bhattacharya (1993)].

GaAs InAs
Experiment AFEM δ (%) Experiment AFEM δ (%)

E (GPa) 85.3 81.0 −5.04 51.8 51.4 −0.77
ν 0.312 0.313 0.32 0.352 0.357 1.42

LP (nm) 0.56533 0.56389 −0.25 0.60584 0.60592 0.01

ometry is shown in Fig. 5 for varying orientation
angles.

y (thickness)

x (length)

z (width)

3a  c

1a  c
GaAs
InAs

16 a  c

t2

t1

0

0

0

Figure 4: Schematic of a self-positioning prob-
lem. The number of atoms in the problem is de-
termined by the parameter c.

The top GaAs and lower InAs layer are composed
of 3c and c number of crystals in the thickness
(y) direction. In the length (x) direction, several
atomic layers of length 16a0c is prepared where
a0 is an initial lattice period (Fig. 4). For hinge
with 0 orientation angle, 16a0c is equals to length
of 16 unit crystals.

We compare results obtained by AFEM with ana-
lytical continuum mechanics solution under plane
strain conditions [Nikishkov (2003)]. The plane
strain conditions correspond to structures with in-
finite width in z direction. In order to simu-
late atomic systems of infinite dimensions, pe-
riodic boundary conditions, which help to mini-
mize number of atoms in the model are usually
employed in computational modeling.

Periodic boundary conditions in the z (width) di-
rection are applied for structures with orientation
angles 0, 45 and 90 degrees. Such structures con-
sist of one complete and another incomplete crys-
tal in the width direction, and connection across
periodic boundary is created when looking for
neighboring atoms.

For hinges with the other orientation angles (15,
30, 60 and 75 degrees), enough number of atomic
layers corresponding to width 30a0 are prepared
and displacement is constrained in the width di-
rection to imitate plane strain conditions (εz = 0).

Boundary condition restricting displacements in x
direction at one end of the structure are also ap-
plied.

The analytical continuum mechanics solution is
used for comparison. In addition, in order to to
reduce computing time, the initial configuration
of atoms in AFEM meshes is determined accord-
ing to the curvature radius given by continuum
mechanics solution under plane strain conditions
[Nikishkov (2003)]:

R =
E ′

1
2t4

1 +E ′
2

2t4
2 +2E ′

1E ′
2t1t2(2t2

1 +2t2
2 +3t1t2)

6E ′
1E ′

2t1t2(t1 + t2)(η1ε0
1 −η2ε0

2 )
,

E ′
i =

Ei

1−ν2
i

, ηi = 1+νi,

(11)

where Ei, νi, ti, and ε0
i are Young’s modulus, Pois-

son’s ratio, thickness, and initial lattice mismatch-
ing strain, respectively. Subscripts 1 and 2 denote
material layers. In bi-layer systems, expression is
symmetric to each other, so distinction of layer 1
and 2 for curvature radius calculation is not im-
portant.

Definition of thickness for structures consisting of
just a few crystal layers in the thickness direction
should be done with care when calculating curva-
ture radius using an analytical technique. It is ap-
propriate to add some offset equal to a ’radius’ of
an atom at each free surface. While adding such
an offset is not critical for thick structures, it can
be important for problems with small number of
crystals in y direction.
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0◦ 15◦

30◦ 45◦

60◦ 75◦

Figure 5: Top view of atom configurations for
self-positioning hinges with different orientation
angles. Orientation angles 0, 45, and 90 degrees
have periodic boundary in z (width) direction.

If we adopt half of the atom connectivity length
as an offset, then for zincblende crystal structures
the offset is equal to

√
3a/8, where a is a lattice

period. Corresponding offsets are 0.1224 nm for
GaAs and 0.1425 nm for InAs.

Initial strains ε0
i in equation (11) are determined

by initial (a0) and material-specific lattice period
(ai) as:

ε0
i =

ai −a0

a0
. (12)

We determine the initial lattice period for the bi-
layer system using a weighted linear interpolation
of GaAs and InAs specific lattice periods:

a0 =
a1n1 +a2n2

n1 +n2
, (13)

where n1 and n2 are number of crystals in each
InAs and GaAs layer. Therefore, a0 is assumed to
be 0.57546 nm in our problems.

6 Numerical results

The developed AFEM computer program was
used to solve two problem series for self-
positioning nanostructures. The first one is com-
puting the curvature radius of bi-layer hinges
with varying thickness. The second series in-
cludes problems with varying orientation of ma-
terial axes for the same nanostructures.

6.1 Curvature dependence on the structure
thickness

Bi-layer atomic structures of different thickness
are created by setting problem size parameter c
to 1, 2, 4, 8, 12, 16, 24, and 36. Correspond-
ing thicknesses are 2.56, 4.86, 9.46, 18.65, 27.84,
37.03, 55.41 and 82.98 nm. The equilibrium con-
figurations of bi-layer hinges are determined with
the use of Newton-Raphson iteration procedure
(6). We compare the AFEM values of curvature
radius with the continuum mechanics solution un-
der plane strain conditions [Nikishkov (2003)]. In
the continuum mechanics solution, elastic prop-
erties estimated by the AFEM on the tensile rod
model are used (see Tab. 2).

Curvature radius values based on the AFEM mod-
eling at the top and at the bottom of the atomic
structures are calculated by taking three neighbor
nodes along the x direction to fit a circle at each
y level. Then, these values are used to calculate
curvature radius at the neutral layer by linear in-
terpolation. The neutral layer is located at 0.54 of
the thickness from the bottom of the structure in
our problems.

Fig. 6 shows the final shape of an atomic model
after self-positioning in case of problem size c =
1, totally four unit crystals in the thickness direc-
tion. Analysis reveals that spacing of atoms is
smaller in GaAs and larger in InAs, and that the
free end is not straight along local thickness di-
rection, due to expansion in the lower layer and
compression in the top layer.

In order to estimate convergence of the curvature
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Figure 6: Final shape of atomic bi-layer structure
with the size c = 1.
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Figure 7: Ratio of the curvature radius determined
by the AFEM and the continuum mechanics solu-
tion with varying thickness.

radius with thickness increase, least square fits
of the obtained eight numerical solutions are per-
formed using power function R(c) = α1 (α2 c +
α3)−β + γ , where c indicates size of the atomic
system, and α1, α2, α3, β , and γ are parameters
found by least square fit, where γ corresponds to
converged value for infinite number of crystal lay-
ers. Fig. 7 shows the ratio of the curvature radius
determined by the AFEM and the continuum me-
chanics solution with varying thickness.

Least square fits indicate that the relative dif-
ference of curvature radius converges to 1.0037
for an infinite number of atomic layers. For the
biggest problem we investigated (c = 36), the dif-
ference is −0.36%. So, the AFEM and contin-
uum mechanics solution are in quite good agree-

ment for large thickness. The difference between
atomic-scale and continuum mechanics curvature
radius increases with reduction of the structure
thickness. This difference is −18.4% for c = 1,
corresponding to four unit crystals in the thick-
ness direction and thickness 2.56 nm.

6.2 Curvature dependence on the material ori-
entation angle

AFEM solutions with problem sizes c = 1,2,4
and 8 and material orientation angles
0,15,30,45,60,75 and 90 degrees are per-
formed for modeling anisotropy of GaAs and
InAs bi-layer nanostructures. Fig. 8 shows the fi-
nal shape of atomic models after self-positioning
in case of crystal size c = 1 for orientation angles
0,15,30,45,60 and 75 degrees.

Tab. 3 contains ratios of the curvature radius R to
the thickness t obtained by the AFEM modeling
at the neutral layer for orientation angles 0, 15,
30 and 45 degrees and by continuum mechanics
solution for zero orientation angle. For varying
orientation angles, the ratio in between maximum
and minimum values of curvature radius is about
1.35. This ratio is similar to experimental data
and numerical finite element modeling of GaAs
and In0.2Ga0.8As bi-layer structures [Nikishkov,
Nishidate, Ohnishi, and Vaccaro (2006)]

Fig. 9 shows dependency of the curvature radius
ratio (RAFEM/RCont.(0◦)) for varying material ori-
entation angle. Curvature radius is the minimum
at orientation angles 0 and 90 degrees and max-
imum at 45 degrees, and dependency on orien-
tation angle shows a curve similar to sinusoidal
function with frequency π .

7 Conclusion

Algorithm of the atomic-scale finite element
method based on the Tersoff interatomic poten-
tial has been developed. Solution procedure for
problems with large displacements is organized as
the Newton-Raphson iteration procedure. A load
relaxation factor is introduced in order to restrict
load step magnitude for cases with high gradients
of the atomic system energy.

The developed AFEM code is applied to modeling
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30◦ 45◦
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Figure 8: Final shape of atomic bi-layer structure with the size c = 1 for orientation angles 0 to 75 degrees.

of GaAs and InAs bi-layer self-positioning nanos-
tructures. Two problem series include investiga-
tion nanohinge curvature radius dependence on
the structure thickness and the material orienta-
tion angle. The self-positioning hinge deforma-
tion converges to the continuum mechanics solu-
tion under plane strain conditions with increasing
structure thickness. However, for nanostructures
of small thickness less than 40 nm atomic-scale
effects play considerable role. Dependency of
curvature radius on the material orientation angle
shows periodic curve with the maximum curva-
ture radius observed for orientation angle 45 de-
grees. Our modeling shows that hinges with dif-
ferent material orientation angles can exhibit cur-
vature radius differing by 35%.

Appendix A: First order differentiation of
Tersoff potential for calculation
of force vector

Tersoff potential function (8) is used to estimate
forces acting on each atom. Assembly of first or-
der derivatives of bonding i– j energy Vi j yields
the global force vector. Let the distance ri j be-
tween atoms with positions xi and x j is defined
as:

ri j = |ri j|= |x j −xi|
Then derivatives of ri j in respect to atom positions
xi and x j are:

∂ ri j

∂xi
= −x j −xi

ri j
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Table 3: Total thickness t (nm) and relative value of curvature radius R/t for problem sizes c = 1,2,4 and
8 with varying orientation angles. Dependency on orientation angle is symmetric in respect to orientation
angle 45 degree.

c t (nm) Cont. (0◦) AFEM (0◦) AFEM (15◦) AFEM (30◦) AFEM (45◦)
1 2.56 9.25 7.56 8.32 9.86 10.67
2 4.86 9.60 8.56 9.35 10.88 11.76
4 9.46 9.81 9.23 9.98 11.54 12.54
8 18.65 9.92 9.63 10.29 11.87 13.01
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Figure 9: Dependency of RAFEM/RCont.(0◦) on ori-
entation angle for problem sizes c = 1 to 8.

∂ ri j

∂x j
=

x j −xi

ri j

Differentiation of Vi j in respect to positions xi, x j,
and any neighboring atom position xk yields:

∂Vi j

∂xi
=

∂ ri j

∂xi

[
∂ fC
∂ ri j

{
fR +bi j fA

}
+ fC

{
∂ fR

∂ ri j
+bi j

∂ fA

∂ ri j

}]

+ fC fA
∂bi j

∂xi

∂Vi j

∂x j
=

∂ ri j

∂x j

[
∂ fC
∂ ri j

{
fR +bi j fA

}
+ fC

{
∂ fR

∂ ri j
+bi j

∂ fA

∂ ri j

}]

+ fC fA
∂bi j

∂x j

∂Vi j

∂xk
= fC fA

∂bi j

∂xk

Derivatives of bi j in respect to positions xi, x j, and
xk have same appearance for all cases and is ex-
pressed as:

∂bi j

∂xi
= −1

2
β nζ n−1

i j
∂ζi j

∂xi

(
1+β nζ n

i j

)− 1
2n−1

Differentiation of ζi j in respect to positions xi, x j,
and xk:

∂ζi j

∂xi
=

∂ rik

∂xi

∂ fC
∂ rik

g(θi jk)+ fC
∂ cos(θi jk)

∂xi

∂g(θi jk)
∂ cos(θi jk)

∂ζi j

∂x j
= fC

∂ cos(θi jk)
∂x j

∂g(θi jk)
∂ cos(θi jk)

∂ζi j

∂xk
=

∂ rik

∂xk

∂ fC
∂ rik

g(θi jk)+ fC
∂ cos(θi jk)

∂xk

∂g(θi jk)
∂ cos(θi jk)

Differentiation of cos(θi jk) in respect to positions
xi, x j, and xk:

∂ cos(θi jk)
∂xi

=
1

(ri jrik)2[
∂ri j · rik

∂xi
ri jrik − (ri j · rik)

{
∂ ri j

∂xi
rik + ri j

∂ rik

∂xi

}]
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∂ cos(θi jk)
∂x j

=

1
r2

i jrik

[
∂ri j · rik

∂x j
ri j − (ri j · rik)

∂ ri j

∂x j

]

∂ cos(θi jk)
∂xk

=

1

ri jr2
ik

[
∂ri j · rik

∂xk
rik − (ri j · rik)

∂ rik

∂xk

]

where ri j · rik denotes inner product of vectors ri j

and rik. Differentiation of ri j · rik in respect to xi,
x j, and xk:

∂ri j · rik

∂xi
= −{(xk −xi)+(x j −xi)

}
∂ri j · rik

∂x j
= (xk −xi)

∂ri j · rik

∂xk
= (x j −xi)

Differentiation of g(θi jk) in respect to cos(θi jk):

∂g(θi jk)
∂ cos(θi jk)

=
2c2
{

h−cos(θi jk)
}

[
d2 +

{
h−cos(θi jk)

}2
]2

These are differentiations in respect to atom posi-
tions. In addition to these expressions, derivatives
of fC, fA, fR in respect to corresponding distances
like ri j or rik should be given.

Appendix B: Second order differentiation of
Tersoff potential for calculation
of tangent stiffness matrix

The second order differentiation of Tersoff poten-
tial is calculated from first order differentiation.
In second order differentiation, differentiation is
calculated twice, so we employ superscript sym-
bol to distinguish which is first or second differ-
entiation symbol as following:

xm
i first differentiation symbol

xn
i second differentiation symbol

Second order differentiation of ri j in respect to
atom positions xi and x j are:

∂ 2ri j

∂xm
i ∂xn

i
=

⎧⎨
⎩

1
ri j
− (x j−xi)2

r3
i j

xm
i = xn

i

− (x j−xi)m(x j−xi)n

r3
i j

xm
i �= xn

i

∂ 2ri j

∂xm
i ∂xn

j
=

∂ 2ri j

∂xm
j ∂xn

i
=

⎧⎨
⎩
− 1

ri j
+ (x j−xi)2

r3
i j

xm
i = xn

j

(x j−xi)m(x j−xi)n

r3
i j

xm
i �= xn

j

For example, xm
i equals to xn

i when first differen-
tiation symbol is xi and second is xi, but not equal
when first differentiation symbol is xi and second
is yi.

Differentiation of Vi j in respect to positions xi, x j,
and xk:

∂ 2Vi j

∂xm
i ∂xn

i
=

∂ 2ri j

∂xm
i ∂xn

i[
∂ fC
∂ ri j

{
fR +bi j fA

}
+ fC

{
∂ fR

∂ ri j
+bi j

∂ fA

∂ ri j

}]
+

∂ ri j

∂xm
i

∂ ri j

∂xn
i

[
∂ 2 fC
∂ r2

i j

fR +2
∂ fC
∂ ri j

∂ fR

∂ ri j
+ fC

∂ 2 fR

∂ r2
i j

+

bi j

{
∂ 2 fC
∂ r2

i j

fA +2
∂ fC
∂ ri j

∂ fA

∂ ri j
+ fC

∂ 2 fA

∂ r2
i j

}]
+

(
∂ ri j

∂xm
i

∂bi j

∂xn
i

+
∂bi j

∂xm
i

∂ ri j

∂xn
i

)(
∂ fC
∂ ri j

fA + fC
∂ fA

∂ ri j

)
+

fC fA
∂ 2bi j

∂xm
i ∂xn

i

∂ 2Vi j

∂xi∂x j
=

∂ 2ri j

∂xi∂x j[
∂ fC
∂ ri j

{
fR +bi j fA

}
+ fC

{
∂ fR

∂ ri j
+bi j

∂ fA

∂ ri j

}]
+

∂ ri j

∂xi

∂ ri j

∂x j

[
∂ 2 fC
∂ r2

i j

fR +2
∂ fC
∂ ri j

∂ fR

∂ ri j
+ fC

∂ 2 fR

∂ r2
i j

+

bi j

{
∂ 2 fC
∂ r2

i j

fA +2
∂ fC
∂ ri j

∂ fA

∂ ri j
+ fC

∂ 2 fA

∂ r2
i j

}]
+
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(
∂ ri j

∂xi

∂bi j

∂x j
+

∂bi j

∂xi

∂ ri j

∂x j

)(
∂ fC
∂ ri j

fA + fC
∂ fA

∂ ri j

)
+

fC fA
∂ 2bi j

∂xi∂x j

∂ 2Vi j

∂xi∂xk
=

∂ ri j

∂xi

∂bi j

∂xk

(
∂ fC
∂ ri j

fA + fC
∂ fA

∂ ri j

)

+ fC fA
∂ 2bi j

∂xi∂xk

∂ 2Vi j

∂x j∂xi
=

∂ 2ri j

∂x j∂xi[
∂ fC
∂ ri j

{
fR +bi j fA

}
+ fC

{
∂ fR

∂ ri j
+bi j

∂ fA

∂ ri j

}]
+

∂ ri j

∂x j

∂ ri j

∂xi

[
∂ 2 fC
∂ r2

i j

fR +2
∂ fC
∂ ri j

∂ fR

∂ ri j
+ fC

∂ 2 fR

∂ r2
i j

+

bi j

{
∂ 2 fC
∂ r2

i j

fA +2
∂ fC
∂ ri j

∂ fA

∂ ri j
+ fC

∂ 2 fA

∂ r2
i j

}]
+

(
∂ ri j

∂xi

∂bi j

∂x j
+

∂bi j

∂xi

∂ ri j

∂x j

)(
∂ fC
∂ ri j

fA + fC
∂ fA

∂ ri j

)
+

fC fA
∂ 2bi j

∂x j∂xi

∂ 2Vi j

∂xm
j ∂xn

j
=

∂ 2ri j

∂xm
j ∂xn

j[
∂ fC
∂ ri j

{
fR +bi j fA

}
+ fC

{
∂ fR

∂ ri j
+bi j

∂ fA

∂ ri j

}]
+

∂ ri j

∂xm
j

∂ ri j

∂xn
j

[
∂ 2 fC
∂ r2

i j

fR +2
∂ fC
∂ ri j

∂ fR

∂ ri j
+ fC

∂ 2 fR

∂ r2
i j

+

bi j

{
∂ 2 fC
∂ r2

i j

fA +2
∂ fC
∂ ri j

∂ fA

∂ ri j
+ fC

∂ 2 fA

∂ r2
i j

}]
+

(
∂ ri j

∂xm
j

∂bi j

∂xn
j
+

∂bi j

∂xm
j

∂ ri j

∂xn
j

)(
∂ fC
∂ ri j

fA + fC
∂ fA

∂ ri j

)
+

fC fA
∂ 2bi j

∂xm
j ∂xn

j

∂ 2Vi j

∂x j∂xk
=

∂ ri j

∂x j

∂bi j

∂xk

(
∂ fC
∂ ri j

fA + fC
∂ fA

∂ ri j

)

+ fC fA
∂ 2bi j

∂x j∂xk

∂ 2Vi j

∂xk∂xi
=

∂ ri j

∂xi

∂bi j

∂xk

(
∂ fC
∂ ri j

fA + fC
∂ fA

∂ ri j

)

+ fC fA
∂ 2bi j

∂xk∂xi

∂ 2Vi j

∂xk∂x j
=

∂ ri j

∂x j

∂bi j

∂xk

(
∂ fC
∂ ri j

fA + fC
∂ fA

∂ ri j

)

+ fC fA
∂ 2bi j

∂xk∂x j

∂ 2Vi j

∂xk∂xk
= fC fA

∂ 2bi j

∂xk∂xk

Differentiation of bi j in respect to positions xi, x j,
and xk has same appearance for all cases and ex-
pressed as:

∂ 2bi j

∂xm
i ∂xn

i
= −1

2
β nζ n−2

i j

(
1+β nζ n

i j

)− 1
2n−2

[
(n−1)

∂ζi j

∂xm
i

∂ζi j

∂xn
i

(
1+β nζ n

i j

)
+

ζi j
∂ 2ζi j

∂xm
i ∂xn

i

(
1+β nζ n

i j

)
+

nβ n

(
− 1

2n
−1

)
ζ n

i j
∂ζi j

∂xm
i

∂ζi j

∂xn
i

]

Differentiation of ζi j in respect to positions xi, x j,
and xk:

∂ 2ζi jk

∂xm
i ∂xn

i
=

∂ 2rik

∂xm
i ∂xn

i

∂ fC
∂ rik

g(θi jk)+
∂ rik

∂xm
i

∂ rik

∂xn
i

∂ 2 fC
∂ r2

ik

g(θi jk)+

∂ rik

∂xm
i

∂ fC
∂ rik

∂ cos(θi jk)
∂xn

i

∂g(θi jk)
∂ cos(θi jk)

+

∂ rik

∂xn
i

∂ fC
∂ rik

∂ cos(θi jk)
∂xm

i

∂g(θi jk)
∂ cos(θi jk)

+

fC
∂ 2 cos(θi jk)

∂xm
i ∂xn

i

∂g(θi jk)
∂ cos(θi jk)

+

fC
∂ cos(θi jk)

∂xm
i

∂ cos(θi jk)
∂xn

i

∂ 2g(θi jk)
∂ cos(θi jk)2
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∂ 2ζi jk

∂xi∂x j
=

∂ rik

∂xi

∂ fC
∂ rik

∂ cos(θi jk)
∂x j

∂g(θi jk)
∂ cos(θi jk)

+

fC
∂ 2 cos(θi jk)

∂xi∂x j

∂g(θi jk)
∂ cos(θi jk)

fC
∂ cos(θi jk)

∂xi

∂ cos(θi jk)
∂x j

∂ 2g(θi jk)
∂ cos(θi jk)2

∂ 2ζi jk

∂xi∂xk
=

∂ 2rik

∂xi∂xk

∂ fC
∂ rik

g(θi jk)+
∂ rik

∂xi

∂ rik

∂xk

∂ 2 fC
∂ r2

ik

g(θi jk)+

∂ rik

∂xi

∂ fC
∂ rik

∂ cos(θi jk)
∂xk

∂g(θi jk)
∂ cos(θi jk)

+

∂ rik

∂xk

∂ fC
∂ rik

∂ cos(θi jk)
∂xi

∂g(θi jk)
∂ cos(θi jk)

+

fC
∂ 2 cos(θi jk)

∂xi∂xk

∂g(θi jk)
∂ cos(θi jk)

+

fC
∂ cos(θi jk)

∂xi

∂ cos(θi jk)
∂xk

∂ 2g(θi jk)
∂ cos(θi jk)2

∂ 2ζi jk

∂x j∂xi
=

∂ rik

∂xi

∂ fC
∂ rik

∂ cos(θi jk)
∂x j

∂g(θi jk)
∂ cos(θi jk)

+

fC
∂ 2 cos(θi jk)

∂x j∂xi

∂g(θi jk)
∂ cos(θi jk)

+

fC
∂ cos(θi jk)

∂xi

∂ cos(θi jk)
∂x j

∂ 2g(θi jk)
∂ cos(θi jk)2

∂ 2ζi jk

∂xm
j ∂xn

j
= fC

∂ 2 cos(θi jk)
∂xm

j ∂xn
j
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+
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∂ cos(θi jk)

∂xm
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∂ cos(θi jk)
∂xn

j
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∂ cos(θi jk)2

∂ 2ζi jk

∂x j∂xk
=

∂ rik

∂xk

∂ fC
∂ rik

∂ cos(θi jk)
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+
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∂x j∂xk

∂g(θi jk)
∂ cos(θi jk)

+

fC
∂ cos(θi jk)

∂x j

∂ cos(θi jk)
∂xk

∂ 2g(θi jk)
∂ cos(θi jk)2

∂ 2ζi jk

∂xk∂xi
=

∂ 2rik

∂xk∂xi
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∂ rik

g(θi jk)+
∂ rik

∂xk

∂ rik

∂xi

∂ 2 fC
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∂ rik

∂xk
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∂xi
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∂ cos(θi jk)
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∂xi
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∂xk
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∂ cos(θi jk)

+

fC
∂ 2 cos(θi jk)

∂xk∂xi

∂g(θi jk)
∂ cos(θi jk)

+

fC
∂ cos(θi jk)

∂xk

∂ cos(θi jk)
∂xi

∂ 2g(θi jk)
∂ cos(θi jk)2
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∂xk
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∂ rik

∂ cos(θi jk)
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+
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∂ 2 cos(θi jk)

∂xk∂x j

∂g(θi jk)
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+
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∂xk
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∂xm
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∂ rik

∂xn
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Differentiation of cos(θi jk) in respect to positions
xi, x j, and xk:

∂ 2 cos(θi jk)
∂xm

i ∂xn
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=
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∂xk

∂ ri j

∂x j

)

− ∂ rik

∂xk

{
∂ri j · rik

∂x j
ri j − (ri j · rik)

∂ ri j

∂x j

}]

∂ 2 cos(θi jk)
∂xk∂xi

=
1

r2
i jr

3
ik

[
ri jrik

{
∂ 2ri j · rik

∂xk∂xi
rik+

∂ri j · rik

∂xk

∂ rik

∂xi
−∂ri j · rik

∂xi

∂ rik

∂xk
− (ri j · rik)

∂ 2rik

∂xk∂xi

}

−
(

∂ ri j

∂xi
rik +2ri j

∂ rik

∂xi

)
{

∂ri j · rik

∂xk
rik − (ri j · rik)

∂ rik

∂xk

}]

∂ 2 cos(θi jk)
∂xk∂x j

=
1

r2
i jr

2
ik[

ri j

{
∂ 2ri j · rik

∂xk∂x j
rik +

∂ri j · rik

∂x j

∂ rik

∂xk

}

− ∂ ri j

∂x j

{
∂ri j · rik

∂xk
rik − (ri j · rik)

∂ rik

∂xk

}]

∂ 2 cos(θi jk)
∂xm

k ∂xn
k

=
1

ri jr3
ik

[
rik

{
∂ 2ri j · rik

∂xm
k ∂xn

k

rik+

∂ri j · rik

∂xm
k

∂ rik

∂xn
k

−∂ri j · rik

∂xn
k

∂ rik

∂xm
k

− (ri j · rik)
∂ 2rik

∂xm
k ∂xn

k

}

−2
∂ rik

∂xn
k

{
∂ri j · rik

∂xm
k

rik − (ri j · rik)
∂ rik

∂xm
k

}]
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∂ 2ri j · rik

∂xm
i ∂xn

i
=

{
2 xm

i = xn
i

0 xm
i �= xn

i

∂ 2ri j · rik

∂xi∂x j
=

{
−1 xi = x j

0 xi �= x j

∂ 2ri j · rik

∂xi∂xk
=

{
−1 xi = xk

0 xi �= xk

∂ 2ri j · rik

∂x j∂xi
=

{
−1 x j = xi

0 x j �= xi

∂ 2ri j · rik

∂xm
j ∂xn

j
= 0

∂ 2ri j · rik

∂x j∂xk
=

{
1 x j = xk

0 x j �= xk

∂ 2ri j · rik

∂xk∂xi
=

{
−1 xk = xi

0 xk �= xi

∂ 2ri j · rik

∂xk∂x j
=

{
1 xk = x j

0 xk �= x j

∂ 2ri j · rik

∂xm
k ∂xn

k

= 0

Differentiation of g(θi jk) in respect to cos(θi jk)
twice:

∂ 2g(θi jk)
∂ cos(θi jk)2 =

2c2
[
d2 −3

{
h−cos(θi jk)

}2
]

[
d2 +

{
h−cos(θi jk)

}2
]3

As for first order differentiation, second order dif-
ferentiation of fC, fA, fR in respect to correspond-
ing distance twice should be given.
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