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A Lie-Group Shooting Method for Computing Eigenvalues and
Eigenfunctions of Sturm-Liouville Problems

Chein-Shan Liu1

Abstract: For the Sturm-Liouville eigenvalues
problem we construct a very effective Lie-group
shooting method (LGSM) to search the eigenval-
ues, and when eigenvalue is determined we can
also search a missing left-boundary condition of
the slope through a weighting factor r ∈ (0,1).
Hence, the eigenvalues and eigenfunctions can
be calculated with a better accuracy. Because a
closed-form formula is derived to calculate un-
known slope in terms of λ for the estimation of
eigenvalues, the present method is easy to imple-
ment and has a low computational cost. Simi-
larly by applying the LGSM to find a correspond-
ing eigenfunction in terms of λ is easily carried
out in a finer range of r. Numerical examples
were examined to show that the Lie-group shoot-
ing method has a significantly improved accuracy
than before.

Keyword: Sturm-Liouville eigenvalues prob-
lem, Eigenvalue, Eigenfunction, Lie-group shoot-
ing method

1 Introduction

The Sturm-Liouville eigenvalues problem has
been of considerable physical interest and is
rather important in many fields, including partial
differential equations, vibration of continuum me-
chanics, and quantum mechanics.

In most cases, it is not possible to obtain the
eigenvalues of Sturm-Liouville eigenvalues prob-
lem analytically. However, there are various nu-
merical methods to approximate it. Pryce (1993)
has provided an excellent review of the mathemat-
ical background of Sturm-Liouville eigenvalues
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problems and their numerical solutions, as well
as a detailed discussion of applications. He sum-
marized examples of Sturm-Liouville eigenvalues
problems that have been considered by numerous
authors.

There is a continued interest in the numerical so-
lution of Sturm-Liouville eigenvalues problems
and associated Schrödinger equations with the
aim to improve convergence rates and ease of
implementation of different algorithms. In or-
der to obtain more efficient numerical results,
several numerical methods have been developed
in the past several years, e.g., Andrew (1994,
2000a), Andrew and Paine (1985, 1986), Ce-
lik (2005a, 2005b), Celik and Gokmen (2005),
Condon (1999), Ghelardoni (1997), Ghelardoni,
Gheri and Marletta (2001, 2006), Vanden Berghe
and De Meyer (1991, 1995, 2007), and Yücel
(2006). Among, the most influential one is the al-
gebraically asymptotic correction method, which
is reviewed by Andrew (2000).

Although Ghelardoni and Gheri (2001) have dis-
cussed a shooting technique for computing eigen-
values, to our best knowledge there is no study
on the Lie-group shooting method to Sturm-
Liouville eigenvalues problem. In this paper we
propose a new shooting method for computing the
eigenvalues and eigenfunctions of the following
Sturm-Liouville eigenvalues problem:

− d
dx

[
p(x)

dy(x)
dx

]
+q(x)y(x) = λ s(x)y(x), (1)

x0 < x < x f ,

y(x0) = 0, y(x f ) = 0. (2)

The problem is that for the given p(x), q(x) and
s(x) we need to calculate the eigenvalue λ and
eigenfunction y(x). In the above we suppose p(x),
q(x), s(x) continuous with p(x) and s(x) strictly
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positive. When x0 and x f are finite the Sturm-
Liouville eigenvalues problem is regular; other-
wise, it is singular.

By letting

x = x0 +(x f −x0)t, (3)

u(t) = y(x)+ t(1− t)+c, (4)

where c is a given positive constant, we can trans-
form Eqs. (1) and (2) into an equivalent system:

ü(t) = − ṗ(t)
p(t)

[u̇(t)+2t−1]

+
(x f −x0)2

p(t)
[q(t)−λ s(t)][u(t)− t(1− t)−c]

−2, (5)

u(0) = c, u(1) = c. (6)

The advantage by adjusting the original zero
boundary values equal to c > 0 will be demon-
strated in Section 3, and the advantage by adding
an extra term t(1− t) in Eq. (4) will be explained
in Section 4. Here, p(t), q(t) and s(t) should be
understood as p(x(t)), q(x(t)) and s(x(t)).

The present approach of Sturm-Liouville eigen-
values problem is based on the group preserving
scheme (GPS) developed by Liu (2001) for the
integration of initial value problems (IVPs). The
GPS method is very effective to deal with ordi-
nary differential equations (ODEs) endowing with
special structures as shown by Liu (2005) for stiff
equations, and by Liu (2006a) for ODEs with con-
straints.

The stepping techniques developed for IVPs re-
quire both the initial conditions of u1 = u and
u2 = u̇ for the second-order ODEs. If the initial
value of u2 is available, then we can numerically
integrate the following IVP step-by-step in a for-
ward direction from t = 0 to t = 1:

u̇1 = u2, (7)

u̇2 = f (t,u1,u2), (8)

u1(0) = c, (9)

u2(0) = A, (10)

where

f (t,u1,u2) := − ṗ(t)
p(t)

[u2(t)+2t −1]

+
(x f −x0)2

p(t)
[q(t)−λ s(t)][u1(t)− t(1− t)−c]

−2. (11)

Here, we call Eqs. (7)-(10) the (u, t)-IVP, where
u(t) = (u1(t),u2(t)) denotes the system variables
in the t-domain. The shooting technique is simply
by finding a suitable A, such that the solution of
u1(t) can also match the right-boundary condition
u1(1) = c.

Liu (2006b, 2006c, 2006d) has extended the GPS
for ODEs to solve the boundary value problems
(BVPs), and the numerical results reveal that the
Lie-group shooting method is a rather promis-
ing method to effectively solve the two-point
BVPs. Recently, Liu (2008) could solve an in-
verse Sturm-Liouville problem by using a Lie
group method to find the potential function q(x)
with high accuracy. In the construction of Lie-
group method for the calculations of BVPs, Liu
(2006b) has introduced the idea of one-step GPS
by utilizing the closure property of Lie group,
and hence, the new shooting method has been
named the Lie-group shooting method. However,
this method needs to be modified for the Sturm-
Liouville problem.

2 One-step GPS

2.1 The GPS

Let us write Eqs. (7) and (8) in a vector form:

u̇ = f(t,u), (12)

where

u :=
[

u1

u2

]
, f :=

[
u2

f (t,u1,u2)

]
. (13)

Liu (2001) has embedded Eq. (12) into an aug-
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mented system:

Ẋ :=
d
dt

[
u

‖u‖
]

=

⎡
⎣ 02×2

f(t,u)
‖u‖

fT(t,u)
‖u‖ 0

⎤
⎦[ u

‖u‖
]

:= AX,

(14)

where A is an element of the Lie algebra so(2,1)
satisfying

ATg+gA = 0 (15)

with

g =
[

I2 02×1

01×2 −1

]
(16)

a Minkowski metric. Here, I2 is an identity ma-
trix, and the superscript T stands for the transpose.

The augmented variable X satisfies the cone con-
dition:

XTgX = u ·u−‖u‖2 = 0. (17)

To preserve it, Liu (2001) has developed a group-
preserving scheme (GPS) as follows:

Xk+1 = G(k)Xk, (18)

where Xk denotes the numerical value of X at the
discrete tk, and G(k) ∈ SOo(2,1) satisfies

GTgG = g, (19)

det G = 1, (20)

G0
0 > 0, (21)

where G0
0 is the 00th component of G.

The main contribution of Liu (2001) is given a
general ODE three structures: a geometric struc-
ture of cone, a Lie-algebra structure, and a Lie-
group structure. There are many Lie-group inte-
grators which can be developed for Eq. (14) to
preserve the above three structures; see, for ex-
ample, Liu (2007).

2.2 Generalized mid-point rule

Applying scheme (18) to Eq. (14) with a spec-
ified initial condition X(0) = X0 we can com-
pute the solution X(t) by GPS. Assuming that
the stepsize used in GPS is Δt = 1/K, and start-
ing from an initial augmented condition X0 =
X(0) = (uT

0 ,‖u0‖)T we can calculate the value
X(1) = (uT(1),‖u(1)‖)T at t = 1 by

X f = GK(Δt) · · ·G1(Δt)X0. (22)

However, let us recall that each Gi, i = 1, . . .,K, is
an element of the Lie group SOo(2,1), and by the
closure property of Lie group, GK(Δt) · · ·G1(Δt)
is also a Lie group denoted by G. Hence, we have

X f = GX0. (23)

This is a one-step transformation from X0 to X f .

Usually it is very hard to obtain an exact solution
of G. To be an approximation, we can calculate G
by a generalized mid-point rule, which is obtained
from an exponential mapping of A by taking the
values of the argument variables of A at a gener-
alized mid-point. The Lie group generated from
this constant A ∈ so(2,1) is known to be an ele-
ment of the proper orthochronous Lorentz group,
which admits a closed-form representation:

G =

⎡
⎢⎣ I2 + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎥⎦ , (24)

where

û = ru0 +(1− r)u f , (25)

f̂ = f(t̂, û), (26)

a = cosh

(
‖f̂‖
‖û‖

)
, (27)

b = sinh

(
‖f̂‖
‖û‖

)
. (28)

Here, we use the initial u0 and the final u f through
a suitable weighting factor r to calculate G, where
0 < r < 1 is a parameter and t̂ = r. The above
method employed a generalized mid-point rule
to calculate G, and the resultant is a single-
parameter Lie group element G(r).



160 Copyright c© 2008 Tech Science Press CMES, vol.26, no.3, pp.157-168, 2008

2.3 A Lie group mapping between two points
on the cone

Let us define a new vector

F :=
f̂

‖û‖ , (29)

such that Eqs. (24), (27) and (28) can also be ex-
pressed as

G =

⎡
⎣ I2 + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (30)

a = cosh(‖F‖), (31)

b = sinh(‖F‖). (32)

From Eqs. (23) and (30) it follows that

u f = u0 +ηF, (33)

‖u f‖ = a‖u0‖+b
F ·u0

‖F‖ , (34)

where

η :=
(a−1)F ·u0 +b‖u0‖‖F‖

‖F‖2 . (35)

Substituting

F =
1
η

(u f −u0) (36)

into Eq. (34) we obtain

‖u f‖
‖u0‖ = a+b

(u f −u0) ·u0

‖u f −u0‖‖u0‖ , (37)

where

a = cosh

(‖u f −u0‖
η

)
, (38)

b = sinh

(‖u f −u0‖
η

)
(39)

are obtained by inserting Eq. (36) for F into
Eqs. (31) and (32).

Let

cosθ :=
[u f −u0] ·u0

‖u f −u0‖‖u0‖ , (40)

S := ‖u f −u0‖, (41)

and from Eqs. (37)-(39) it follows that

‖u f‖
‖u0‖ = cosh

(
S
η

)
+cosθ sinh

(
S
η

)
. (42)

By defining

Z := exp

(
S
η

)
, (43)

we obtain a quadratic equation for Z from
Eq. (42):

(1+cosθ )Z2 − 2‖u f‖
‖u0‖ Z +1−cos θ = 0. (44)

The solution is found to be

Z =

‖u f ‖
‖u0‖ +

√( ‖u f ‖
‖u0‖

)2
−1+cos2 θ

1+cosθ
, (45)

and then from Eqs. (43) and (41) we obtain

η =
‖u f −u0‖

lnZ
. (46)

Therefore, between any two points (u0,‖u0‖) and
(u f ,‖u f‖) on the cone, there exists a Lie group
element G ∈ SOo(2,1) mapping (u0,‖u0‖) onto
(u f ,‖u f‖), which is given by[

u f

‖u f‖
]

= G
[

u0

‖u0‖
]
, (47)

where G is uniquely determined by u0 and u f

through Eqs. (30)-(32), (36) and (46).

3 The Lie-group shooting method

The Sturm-Liouville eigenvalues problem consid-
ered in Section 1 requires both the information at
the initial point t = 0 and at the terminal point t =
1. However, the usual time stepping scheme re-
quires a complete information at the starting point
t = 0. Some effort is then required to reconcile
the stepping scheme for the integration of Sturm-
Liouville eigenvalues problem presented there.

From Eqs. (7)-(10) it follows that

u̇1 = u2, (48)

u̇2 = f (t,u1,u2), (49)

u1(0) = c, u1(1) = c, (50)

u2(0) = A, u2(1) = B, (51)
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where A and B are two supplemented unknown
constants, and c is a given positive constant.

From Eqs. (36), (50) and (51) it follows that

F :=
[

F1

F2

]
=

1
η

[
0

B−A

]
. (52)

By inserting Eq. (13) for u into Eqs. (46), (45) and
(40) we can obtain

η =

√
(A−B)2

lnZ
, (53)

Z =

√
c2+B2√
c2+A2 +

√
c2+B2

c2+A2 −1+cos2 θ

1+cosθ
, (54)

cosθ =
A(B−A)√

(A−B)2
√

c2 +A2
. (55)

When compare Eq. (52) with Eq. (29), and with
the aid of Eqs. (25), (26) and (48)-(51) we obtain

rA+(1− r)B = 0, (56)

A−B+
η
ξ

f̂ = 0, (57)

where

f̂ := f (r,c, rA+(1− r)B) = f (r,c,0), (58)

ξ :=
√

c2 +[rA+(1− r)B]2 = c, (59)

because of û1 = c and û2 = rA+(1− r)B = 0.

Eq. (56) is a crucial result for the further devel-
opment of a closed-form formula about A. This
equation is obtained by using the two identical
boundary values of u1 = u in Eq. (6). From the
above equations we can see that c must be a posi-
tive value, and the advantage by adjusting the two
boundary values in Eq. (6) equal is that we can
derive Eq. (56), and that a closed-form solution of
A will be available as follows.

The above derivation of the governing equations
(53)-(59) is based on by equating the two F’s in
Eqs. (29) and (36). It also means that the two Lie
groups defined by Eqs. (24) and (30) are equal.
Under this sense we may call our shooting tech-
nique a Lie-group shooting method (LGSM).

4 The solution of A

From Eqs. (56)-(58), (11), and (59) we obtain an
algebraic equation for A:

Ac+η0 f1 = 0, (60)

where

f1(r) =− ṗ(r)
p(r)

(2r−1)

− (x f −x0)2r(1− r)
p(r)

[q(r)−λ s(r)]

−2, (61)

Z =
√

c2 +B2 +
√

B2
√

c2 +A2 −
√

A2
, (62)

η0 =

√
A2

lnZ
. (63)

Here, B = rA/(r−1) has a different sign from A
because of 0 < r < 1.

Eq. (60) can be used to solve A for a given r. If
A is available, we can return to integrate Eqs. (7)-
(10) by a suitable forward IVP solver.

Without adding an extra term t(1− t) in Eq. (4),
the two terms −t(1− t) and −2 will disappear
from Eq. (11), which in turns make f̂ = 0 by view-
ing Eqs. (11) and (58) for the case of ṗ = 0 be-
cause of û1 = c. Under this condition we only
have A = 0 by Eq. (57). Therefore, we have added
an extra term t(1− t) in Eq. (4) to avoid f̂ = 0.

More interestingly, Eq. (60) can be solved analyt-
ically for A. Here we consider only the case of
A > 0. For this case inserting Eq. (63) for η0 into
Eq. (60) we obtain

lnZ =
− f1

c
. (64)

Defining

f2(r) := exp

(
− f1(r)

c

)
, (65)

and substituting Eq. (62) for Z into Eq. (64) we
obtain
√

c2 +B2 +
√

B2
√

c2 +A2 −
√

A2
= f2. (66)
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Eq. (66) can be written as

f2A−B = f2

√
c2 +A2 −

√
c2 +B2 (67)

by using A > 0 and B < 0. Squaring the above
equation and cancelling the common terms we
can rearrange it to

2 f2

√
c2 +B2

√
c2 +A2 = (1+ f 2

2 )c2 +2 f2AB.

(68)

Squaring again and cancelling the common term
and factor we can get

4 f 2
2 (A2 +B2)−4 f2(1+ f 2

2 )AB = (1− f 2
2 )2c2.

(69)

Inserting B = rA/(r−1) and through some alge-
braic manipulations we eventually obtain:

4 f2

(r−1)2 [ f2− (1− f2)2r2 +(1− f2)2r]A2

= (1− f 2
2 )2c2. (70)

If the following condition holds

f3(r) := f2 − (1− f2)2r2 +(1− f2)2r > 0, (71)

then A has a positive solution:

A =

√
(r−1)2(1− f 2

2 )2c2

4 f2 f3
. (72)

5 Calculating eigenvalues

In the previous section we have derived a closed-
form solution to calculate the slope A for each r
in its admissible range. If A is available, then we
can apply the fourth-order Runge-Kutta method
(RK4) to integrate the (u, t)-IVP in Eqs. (7)-(10).
Up to this point we should note that the Lie-group
shooting method is an exact technique without
making any assumption of the approximation in
the derivations of all required formulae.

In principle, if there exists one solution y of
Eqs. (1) and (2), there are many solutions of the
type αy, α ∈ R. Assume that one of these solu-
tions has a slope y′(x0) �= 0 (it should be nonzero;
otherwise we have only a trivial solution y = 0)

at the left-end, then there are many different so-
lutions with slopes αy′(x0), α ∈ R. It means that
the slope A can be an arbitrary value. So the fac-
tor r in Eq. (72) can be any value in the interval of
r ∈ (0,1). Now, we can fix r = 1/2, and then we
come to the following equation for A:

A =

√
(1− f 2

4 )2c2

4(1+ f 2
4 )2 f4

, (73)

where

f4(λ ) :=

exp

(
(x f −x0)2

4cp(1/2)
[q(1/2)−λ s(1/2)]+

2
c

)
.

(74)

Here A is only dependent on λ . In order to avoid
f4 to be a tiny value in the calculation of large
eigenvalues, we can take

c =
∣∣∣∣(x f −x0)2

4p(1/2)
[q(1/2)−λ s(1/2)]+2

∣∣∣∣, (75)

such that f4 = exp(±1) dependent on the
sign of the argument (x f − x0)2[q(1/2) −
λ s(1/2)]/[4p(1/2]+2.

In order to calculate the eigenvalues we let λ run
in a selected interval we are interesting, and then
insert λ into Eqs. (73) and (75) we can obtain A
and c. When c and A are given, we can calcu-
late y(x f ) by integrating Eqs. (7)-(10) and using
Eq. (4). Therefore, we can plot a curve of the vari-
ation of y(x f ) with respect to λ , namely the eigen-
values curve, of which the intersecting points with
the zero line give the values of the required eigen-
values. In order to obtain more accurate eigen-
value we can adjust the λ nearby the marked one
until y(x f ) satisfies |y(x f )| < ε1, where ε1 is a
given tolerance of error of mismatching the right-
boundary condition y(x f ) = 0.

6 Calculating eigenfunctions

When the eigenvalue λ is calculated in the previ-
ous section, we can insert it into Eq. (72) to cal-
culate A. However, how to determine a correct
r requires a numerical integration of the ODEs.
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For a trial r in the admissible range, we can calcu-
late A and then numerically integrate Eqs. (7)-(10)
from t = 0 to t = 1, obtaining y(x f ) by Eq. (4),
and compare the end value of yr(x f ) with the ex-
act one y(x f ) = 0. If |yr(x f )| is smaller than a
given tolerance of error ε2, then the process of
finding a solution is finished. Otherwise, we need
to calculate the end values of y(x f ) correspond-
ing to a different r1 < r and r2 > r, which are
denoted by yr1(x f ) and yr2(x f ), respectively. If
yr1(x f )yr(x f ) < 0, then there exists one root be-
tween r1 and r; otherwise, the root is located be-
tween (r, r2). Then, we may apply a half-interval
method to find a suitable r, which requires us to
calculate Eqs. (7)-(10) at each of the calculation
of yr(x f ), until |yr(x f )| is small enough to satisfy
the criterion of |yr(x f )| ≤ ε2.

In principle, we can increase the accuracy by im-
posing a smaller ε2 on the shooting error, which
however requires more iterations. Since the nu-
merical method is very stable we can quickly
pick up a correct value of r through some trials.
Therefore, in the following calculations we do not
use the above half-interval method to pick up the
weighting factor r. When the best r is selected,
we can use Eq. (72) to calculate A, such that the
solution of y can be calculated.

We have mentioned that there are many solutions
of the Sturm-Liouville eigenvalues problem. In
order to give a unique solution we can consider
the following normalized condition:

y′(x0) = 1. (76)

Therefore, in order to match the normalized con-
dition (76) we can take the numerical solution of
y by

y(x) = (x f −x0)
[

u− x−x0

x f −x0

(
1− x−x0

x f −x0

)
−c

]
/

(A−1), (77)

where u is calculated by the Lie-group shooting
method. However, when y′(x0) = 0 the above nor-
malization cannot be used, and we can employ
other normalization as to be shown by the follow-
ing Example 3.

7 Numerical examples

7.1 Example 1

For a first and simple test example we consider the
Sturm-Liouville eigenvalues problem with x0 = 0,
x f = π , p = s = 1 and q = 0, and the solution is
given by

yk(x) = sinkx, k ∈ N, (78)

λk = k2. (79)

Here λk is the eigenvalue, and yk is the eigenfunc-
tion.

We have applied the Lie-group shooting method
in Section 5 to calculate the eigenvalues in a range
of 8 < λ < 50. From Fig. 1 it can be seen that the
curve of y(x f ) is intersected with the zero line at
λ = 9,16,25,36,49, which are corresponding to
k = 3,4,5,6,7. In this calculation the time step-
size used in the RK4 is Δt = 0.0005.

0 10 20 30 40 50

-3

0

3

y(
x

f)

zero line

Figure 1: For Example 1 plotting the eigenvalues
curve.

In Fig. 2 we compare the calculated eigenfunc-
tions by using the Lie-group shooting method in
Section 6 and the exact eigenfunctions for k =
1,3,7. It can be seen that the numerical errors
are small. Without exception we have used a time
stepsize Δt = 0.001 in the RK4 for the calcula-
tions of eigenfunctions.
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Figure 2: Comparing numerical and exact solutions for Example 1.

7.2 Example 2

For a second test example we consider the Sturm-
Liouville eigenvalues problem with

[x−1y′(x)]′+(λ +1)x−3y(x) = 0, (80)

y(1) = y(e) = 0. (81)

The eigenvalue is λk = k2π2, k∈N, and the eigen-
function is yk = xsin(kπ lnx).

In Fig. 3 we compare the calculated eigenfunc-
tions and exact eigenfunctions for k = 1,5,10. It
can be seen that the numerical errors are small.

7.3 Example 3

For another test example we consider a singular
Sturm-Liouville eigenvalues problem to calculate
the eigenfunction in the Schrödinger equation

d2y(x)
dx2 +(λ −x2)y(x) = 0, (82)

y(−∞) = y(∞) = 0. (83)

Here λk = 2k +1, k ∈ Z+ is the eigenvalue, and

yk(x) = Hk(x)exp

(
−x2

2

)
(84)
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Figure 3: Comparing numerical and exact solutions for Example 2.

is the eigenfunction, where the Hermite polyno-
mials for k = 0,1,2,3,4 are given by

H0(x) = 1, (85)

H1(x) = 2x, (86)

H2(x) = −2+4x2, (87)

H3(x) = −12x+8x3, (88)

H4(x) = 12−48x2 +16x4. (89)

In general, Hk(x) = (−1)kex2
dke−x2

/dxk.

In Fig. 4 we compare the calculated eigenfunc-
tions and exact eigenfunctions for k = 2,3,4 in
the range of −6 ≤ x ≤ 6. The numerical errors
are about in the order of 10−2. The normalization
employed for this example is by multiplying the

numerical solution by a factor 2.

7.4 Example 4

For this example we consider the Sturm-Liouville
eigenvalues problem with [Ghelardoni, Gheri and
Marletta (2001); Yücel (2006)]:

−y′′(x)+exy(x) = λ y(x), (90)

y(0) = y(π) = 0. (91)

The eigenvalue did not have a closed-form solu-
tion, and we first employed the Lie-group shoot-
ing method in Section 5 to search the eigenvalues
in the range of 30 < λ < 920 as shown in Fig. 5.
There are 30 intersecting points of the eigenval-
ues curve with the zero line, which is coincident
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tions for Example 3.

with that of the result given by Ghelardoni, Gheri
and Marletta (2001). In Table 1 we compare our
calculated eigenvalues through a finer adjusting of
the eigenvalues to match the right-boundary con-
dition y(x f ) = 0 with those by Ghelardoni, Gheri
and Marletta (2001). In this calculation we were
fixed Δt = 10−4 and ε1 = 10−12. The last col-
umn also records the values of calculated y(π)
which is given by y(π) = 0 theoretically. When
we use the eigenvalues provided by Ghelardoni,
Gheri and Marletta (2001), we find that the right-
boundary condition can be matched rather well
with the accuracy in the order of 10−9; however,
our new eigenvalues can improve the accuracy at
least three orders. We also calculate some eigen-
functions in Fig. 6 for k = 5,10,30.

0 200 400 600 800 1000

-12

0

12

y(
x

f)

zero line

Figure 5: For Example 4 plotting the eigenvalues
curve.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
x

-0.2

-0.1

0.0

0.1

0.2

y5

-0.1

0.0

0.1

y10

-0.04

0.00

0.04

y30

Figure 6: Computing the eigenfunctions for Ex-
ample 4.
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Table 1: Comparing the eigenvalues for Example
4 with those of Ghelardoni, Gheri and Marletta
(2001)

k GGM’s λk present λk y(π)
1 4.8966693800 4.89666937998 1.8×10−12

5 32.263707046 32.263707045806 −2.4×10−13

10 107.11667614 107.11667613843 4×10−13

15 232.07881198 232.0788119867 3.4×10−12

20 407.06523527 407.06523527773 −1.4×10−12

25 632.05890789 632.0589079298 −3×10−12

30 907.05546058 907.055460696755 −3.6×10−12

7.5 Example 5

For the last example we consider another singular
Sturm-Liouville eigenvalues problem with [Pryce
(1993); Ghelardoni, Gheri and Marletta (2001)]:

−y′′(x)+
(

x2 +
3

4x2

)
y(x) = λ y(x), (92)

0 < x < ∞,

y(0) = y(∞) = 0, (93)

which has theoretical eigenvalues λk = 4k, k ∈ N.

As that done by Ghelardoni, Gheri and Marletta
(2001) we replace the above problem by

−y′′(x)+
(

x2 +
3

4x2

)
y(x) = λ y(x), (94)

x0 < x < x f ,

y(x0) = y(xk
f ) = 0, (95)

where we fix x0 = 0.0001 and

xk
f = 4.0001

(
1+

k−1
10

)
, k ∈ N. (96)

In Table 2 we compare the errors of our calcu-
lated eigenvalues through a finer adjusting of the
eigenvalues to match the right-boundary condi-
tion y(xk

f ) = 0 with those by Ghelardoni, Gheri
and Marletta (2001). In this calculation we have
fixed Δt = 10−4. It can be seen that the accuracy
is improved.

8 Conclusions

The new Lie-group shooting method developed
here can be used to calculate the eigenvalues

Table 2: Comparing the errors of eigenvalues for
Example 5 with those of Ghelardoni, Gheri and
Marletta (2001)

k GGM’s error Present error
1 1.02×10−4 9.95×10−5

5 4.16×10−3 4.15×10−3

10 5.62×10−4 5.40×10−4

20 5.36×10−5 3.30×10−7

30 6.49×10−5 4.60×10−7

50 2.44×10−5 5.06×10−6

70 1.42×10−4 9.10×10−6

and eigenfunctions of Sturm-Liouville eigenval-
ues problems. The key point is relied on a closed-
form formula of A(λ ) in the search of eigenval-
ues and A(r) in the calculation of eigenfunctions.
Several numerical examples were given to con-
firm the efficiency and accuracy of the present
Lie-group shooting approach, which is much easy
to implement with low computational cost than
the numerical methods appeared in the past lit-
erature. And moreover the accuracy is improved
significiantly.
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