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2D and 3D Boundary Element Analysis of Mode-I Cracks in Gradient
Elasticity

G.F. Karlis 1, S.V. Tsinopoulos 2, D. Polyzos 3 and D.E. Beskos 4

Abstract: A boundary element method, suit-
able for solving two and three dimensional gra-
dient elastic fracture mechanics problems under
static loading, is presented. A simple gradient
elastic theory (a simplied version of Mindlin’s
Form-II general theory of gradient elasticity) is
employed and the static gradient elastic funda-
mental solution is used to construct the boundary
integral representation of the problem with the aid
of a reciprocal integral identity. In addition to a
boundary integral representation for the displace-
ment, a boundary integral representation for its
normal derivative is also necessary for the com-
plete formulation of a well-posed problem. Sur-
face quadratic line and quadrilateral boundary ele-
ments are employed for the two- and three dimen-
sional case, respectively and the discretization is
restricted only to the boundary. Two new special
variable-order singularity discontinuous elements
for two- and three-dimensional cases are proposed
for the treatment of singular fields around the tip
or the front of the crack and the numerical de-
termination of the corresponding stress intensity
factors (SIFs). Two numerical examples dealing
with two- and three-dimensional mode-I cracks
are presented and discussed.
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1 Introduction

It is well known that in classical elasticity all the
fundamental quantities and material constants de-
fined at any point of an elastic body are taken
as mean values over very small volume ele-
ments the size of which must be sufficiently large
in comparison with the material microstructure.
Considering a very simple example and taking
Taylor expansions for displacements around the
point of interest, Exadaktylos and Vardoulakis
(2001) explain that this assumption is possible
only when displacements are constant or vary lin-
early throughout the aforementioned representa-
tive volume elements. In cases where non-linear
variations of displacements are observed, higher
order Taylor expansion terms and thus higher or-
der gradients of displacements should be taken
into account. Making use of higher Taylor terms,
however, some new internal length scale con-
stants correlating the microscopic representative
volume element with the macrostructure are intro-
duced in the constitutive equations of the consid-
ered elastic continuum. Thus, in fracture mechan-
ics and dislocation problems where near the tip
of the crack and dislocation lines abrupt changes
of strains and stresses are observed, enhanced
elastic theories that take into account higher or-
der gradients of strains and stresses and intro-
duce new internal length scale parameters to de-
scribe microstructural effects, should be applied.
Among those who have developed such theo-
ries one can mention Mindlin (1964), Mindlin
(1965), Mindlin and Eshel (1968), Green and
Rivlin (1964), Aifantis (1992), Ru and Aifantis
(1993), Vardoulakis and Sulem (1995), Exadakty-
los and Vardoulakis (1998), Fleck and Hutchinson
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(1997), and Fleck and Hutchinson (2001). In the
regime of isotropic linear elastic behaviour, the
most general and comprehensive gradient elastic
theory is the one due to Mindlin (1964). How-
ever, in order to balance the dimensions of strains
and higher order gradients of strains as well as
to correlate the micro-strains with macro-strains,
Mindlin utilized eighteen new constants render-
ing thus his initial general theory very compli-
cated from physical and mathematical point of
view. For this reason, considering long wave-
lengths and the same deformation for macro and
micro structure Mindlin proposed three new sim-
plified versions of his theory, known as Form-
I, II and III, where beyond the two Lamè con-
stants other five ones are introduced instead of
sixteen employed in his initial model. In Form-
I, the strain energy density function is assumed
to be a quadratic form of the classical strains and
the second gradient of displacement; in Form-II
the second displacement gradient is replaced by
the gradient of strains and in Form-III the strain
energy function is written in terms of the strain,
the gradient of rotation and the fully symmetric
part of the gradient of strain. The most important
difference among the aforementioned three sim-
plified versions of the general Mindlin’s theory
is the fact that the Form-II leads to a total stress
tensor, which is symmetric as in the case of clas-
sical elasticity. This symmetry avoids the prob-
lems introduced by the non-symmetric stress ten-
sors in Cosserat, micropolar and couple stress the-
ories. Aifantis (1992) and Ru and Aifantis (1993)
proposed a very simple gradient elastic model re-
quiring only one new gradient elastic constant be-
sides the standard Lamè ones. As it is mentioned
in Vardoulakis, Exadaktylos, and Aifantis (1996)
this gradient elastic model can be considered as
the simplest possible special case of Form-II ver-
sion of Mindlin’s theory. Vardoulakis and Sulem
(1995) proposed the gradient elastic theory with
surface energy, a rigorous theory that can be con-
sidered as a direct consequence of the continuum
model proposed by Casal (1972). Finally, Fleck
and Hutchinson (1997) and Fleck and Hutchinson
(2001) decomposed the second gradient of dis-
placement into the stretch gradient and the rota-
tion gradient tensors thus proposing an alterna-

tive version of Mindlin’s Form-I gradient elastic
theory. The aforementioned theories seem to be
ideal for studying the strain and stress fields near
the crack tip at the microscale. For this reason
many analytical works dealing with two dimen-
sional, gradient elastic, fracture mechanics prob-
lems under conditions of plane strain or anti-plane
strain have appeared in the literature. One can
mention here the analytical works of Vardoulakis,
Exadaktylos, and Aifantis (1996), Exadaktylos,
Vardoulakis, and Aifantis (1996), Vardoulakis and
Exadaktylos (1997), Exadaktylos (1998), Huang,
Zhang, Guo, and Hwang (1997), Zhang, Huang,
Chen, and Hwang (1998), Shi, Huang, and Hwang
(2000), Fannjiang, Chan, and Paulino (2002),
Georgiadis (2003), Georgiadis and Grentzelou
(2006), Tong, Lam, and Yang (2005) and Radi
(2008). The main conclusion they reach is that
near the crack tip displacements and strains be-
have as r3/2 and r1/2 functions, respectively, with
r being the distance from the crack tip, while dou-
ble stresses and total stresses exhibit a singular
behaviour of order r−1/2 and r−3/2, respectively.
The important part of these results is that gra-
dient elastic theories predict the same cusp-like
crack shape near the crack tip with Barenblatt’s
cohesive zone theory (Barenblatt (1962)) with-
out demanding extra interatomic forces beyond
those imposed by the non-classical boundary con-
ditions. On the other hand, stress fields near the
tip of the crack remain singular. In all these ana-
lytical works no computation of stress intensity
factors (SIFs) has been reported because of the
complexity of the problem. It is obvious that for
complex gradient elastic fracture mechanics prob-
lems use of numerical methods of solution is im-
perative. The Finite Element Method (FEM) and
the Boundary Element Method (BEM) are two
very well-known and robust methods for solving
elastic fracture mechanics problems(Nishioka,
Kabayashi, and Fujimoto (2007), Fujimoto and
Nishioka (2006), Shah, Tan, and Wang (2006),
Zhang and Savaidis (2003) and Wen, Aliabadi,
and Young (2002)). Shu, King, and Fleck (1999)
and Tsepoura, Papargyri-Beskou, and Polyzos
(2002) were the first to use the finite element
method (FEM) and the boundary element method
(BEM), respectively, for solving elastostatic prob-
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lems in the framework of the gradient elastic-
ity theories of Mindlin. Since then many pa-
pers dealing with numerical solutions of gradi-
ent elastic problems have appeared in the litera-
ture. Here one can mention the FEM formula-
tions of Amanatidou and Aravas (2002), Ama-
natidou, Giannakopoulos, and Aravas (2005), En-
gel, Garikipati, Hughes, Larson, Mazzei, and
Taylor (2002), Tenek and Aifantis (2002), Peer-
lings and Fleck (2004), Soh and Wanji (2004),
Imatani, Hataday, and Maugin (2005), Askes and
Gutierrez (2006), Dessouky, Masad, Zbib, and
Little (2003), Dessouky, Masad, Little, and Zbib
(2006), Akarapu and Zbib (2006), Wei (2006)
and Markolefas, Tsouvalas, and Tsamasphyros
(2007), the BEM formulations of Tsepoura and
Polyzos (2003), Polyzos, Tsepoura, Tsinopoulos,
and Beskos (2003), Tsepoura, Tsinopoulos, Poly-
zos, and Beskos (2003), Polyzos, Tsepoura, and
Beskos (2005) and Polyzos (2005) and the mesh-
less local Petrov-Galerkin formulation of Tang,
Shen, and Atluri (2003). In the aforementioned
works, only those of Amanatidou and Aravas
(2002), Imatani, Hataday, and Maugin (2005),
Wei (2006) and Akarapu and Zbib (2006) are
referred to the solution of gradient elastic frac-
ture mechanics problems. More precisely, Ama-
natidou and Aravas (2002) proposing a two di-
mensional mixed FEM formulation for Mindlin’s
Form-I, II and III theory, solve the mode-III crack
problem providing results for the antiplane stress
and displacement fields around the tip of the
crack. Although their findings are in agreement
with the theoretical ones of Georgiadis (2003),
there are no results dealing with the mode-III SIF
or correlating the SIF with the constants associ-
ated with the considered gradient elastic model.
Imatani, Hataday, and Maugin (2005) utilize a
mixed Form-I FEM formulation for the solution
of a plane mode-I crack problem providing re-
sults dealing with the variation of the energy re-
lease rate with respect to the length of the crack
and only for specific values of the gradient elastic
constants of the Form-I Mindlin’s theory. Finally,
Wei (2006) and Akarapu and Zbib (2006) using a
mixed FEM formulation for the simplified Form-
II and Fleck and Hutchinson (1997) gradient elas-
tic theories, respectively, they calculate stresses

and displacements near the tip of mode-I, II, III
cracks without giving any information about the
SIF and its dependence on the considered gradient
elastic constants. Very recently, Karlis, Tsinopou-
los, Polyzos, and Beskos (2007) developed a nu-
merical methodology, which combines the BEM
proposed by Polyzos, Tsepoura, Tsinopoulos, and
Beskos (2003) and Tsepoura, Tsinopoulos, Poly-
zos, and Beskos (2003) with special crack tip
boundary elements for the numerical determina-
tion of the SIF in mode-I and mixed mode-(I &
II) fracture mechanics plane gradient elastic prob-
lems. Adopting the idea of variable-order sin-
gularity boundary elements around the tip of the
crack for the evaluation of the corresponding SIF
(Lim, Lee, Tay, and Zhou (2002)), a new spe-
cial variable-order singularity discontinuous ele-
ment was proposed for the treatment of singular
fields around the tip of the crack. The SIFs de-
termination was accomplished by a displacement
type of formulation in connection with the mul-
tiregion approach. As it is mentioned in the re-
view papers of Beskos (1997), Aliabadi (1997)
and Dominguez and Ariza (2003), the displace-
ment based BEM has the disadvantage of subre-
gioning but is associated with lower order singu-
larity kernels than either the traction or the dual
BEM. On the other hand, it is well known that
the BEM, as it is applied to linear elastic fracture
mechanics, possesses some distinct advantages
over the FEM as the dimensionality reduction of
the problem, no requirements for remeshing and
the higher level of accuracy achieved. These ad-
vantages are more pronounced in gradient elastic
problems as the BEM does not have any conti-
nuity problem like the FEM, which, in order to
deal with C(1) continuity problems, develops C(0)

continuity mixed elements with a large number of
degrees of freedom.

The goal of the present work is twofold: first
to provide some new results dealing with two-
dimensional (2D) mode-I gradient elastic cracks
and second to extend the work of Karlis,
Tsinopoulos, Polyzos, and Beskos (2007) to solve
three dimensional mode-I gradient elastic fracture
mechanics problems. The paper is organized as
follows: the simplified Form-II gradient elastic
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theory and how it is obtained from the most gen-
eral Mindlin’s Form-II theory is presented in the
next section. The two-dimensional (2D) special
variable order singularity discontinuous element
and its extension to three dimensions are illus-
trated in section 3. The 2D and three-dimensional
(3D) BEM employed for the needs of the present
paper as well as the solution procedure for the
computation of SIFs are reported in section 4. Fi-
nally, results concerning 2D and 3D mode-I crack
problems are presented and discussed in sections
5 and 6.

2 Simplified Form II Gradient Elastic The-
ory: Theoretical Background

Mindlin in the Form-II version of his gradient
elastic theory (Mindlin (1964)) considered that
the potential energy density Ŵ is a quadratic form
of the strains and the gradient of strains, i.e.

Ŵ =
1
2

λ εiiε j j + μεi jεi j + α̂1κ̂iikκ̂k j j + α̂2κ̂i j jκ̂ikk

+α̂3κ̂iikκ̂ j jk + α̂4κ̂i jkκ̂i jk + α̂5κ̂i jkκ̂k ji

(1)

where εi j = (∂iu j +∂ jui)
/

2, κ̂i jk = ∂iε jk =
(∂i∂ juk +∂i∂ku j)

/
2 = κ̂ik j and λ , μ , α̂1÷ α̂5 ma-

terial constants. It should be noticed, however,
that the constants λ , μ are not the same with the
corresponding Lamè ones of the classical elas-
ticity. Strains εi j and gradients of strains κ̂i jk

are dual in energy with the Cauchy and double
stresses, respectively, defined as

τ̂i j =
∂Ŵ
∂ei j

= τ̂ ji (2)

μ̂i jk =
∂Ŵ

∂ κ̂i jk
= μ̂ik j (3)

which implies that

τ̂pq = 2μepq +λ eiiδpq (4)

and

μ̂pqr =
1
2

â1
[
k̂riidpq +2k̂iipdqr + k̂qiidrp

]
+2â2k̂piidqr + â3(k̂iirdpq + k̂iiqdpr)

+2â4k̂pqr + â5
(
k̂rpq + k̂qrp

)
(5)

or in dyadic form

τ̂ = μ(∇u+u∇)+λ (∇ ·u)I (6)

μ̂ =
1
2

α̂1[∇2u⊗ I+ I⊗∇∇ ·u
+∇∇ ·u⊗ I+(∇∇ ·u⊗ I)213]
+2α̂2∇∇ ·u⊗ I

+
1
2

α̂3[I⊗∇2u+ I⊗∇∇ ·u
+
(
∇2u⊗ I

)213
+(∇∇ ·u⊗ I)213]

+ α̂4 (∇∇u+∇u∇)

+
1
2

α̂5 (2u∇∇+∇∇u+ ∇u∇) (7)

with ⊗ denoting dyadic product of two vectors, I
being the second order unit tensor and (a⊗ b ⊗
c)213 = b⊗a⊗c

The first subscript of the double stress tensor μik j

indicates the normal vector on the surface on
which the double stresses act, while the other two
have the same significance as the corresponding
ones of the classical stress tensor τi j. As it is ex-
plained by Georgiadis (2003), double stresses are
nonvanishing stresses produced by internal self-
equilibrating forces. A practical example of dou-
ble forces is presented in the recent work of Var-
doulakis and Giannakopoulos (2006).

Ignoring body forces, considering smooth bound-
aries and taking the variation of (1), one obtains
from the resulting variational statement the equi-
librium equation

∂ jσ jk = ∂ j(τ̂ jk −∂iμ̂i jk) = 0 (8)

accompanied by the boundary conditions

uk = u and/or P̂k = p (9)

nl∂luk = q and/or R̂k = R (10)

where σ jk, τ̂ jk,−∂iμ̂i jk represent the symmetric
total, Cauchy and relative stress tensors, respec-
tively, u, p,q,R are prescribed vectors, nk is the
unit vector normal to the boundary and P̂k, R̂k are
the traction and double traction vectors, respec-
tively, having the form

P̂k =n jτ̂ jk −nin jDμ̂i jk − (n jDi +niD j)μ̂i jk

+(nin jDlnl −D jni)μ̂i jk (11)

R̂k =nin jμ̂i jk (12)
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or in dyadic form

P̂ = n̂ · τ̂ − (n̂⊗ n̂) : ∂nμ̂ − n̂ · (∇S · μ̂)

− n̂ · (∇S · μ̂213)+(∇S · n̂)(n̂⊗ n̂) : μ̂
− (∇Sn̂) : μ̂ (13)

R̂ = n̂ · μ̂ · n̂ ≡ (n̂⊗ n̂) : μ̂ (14)

where Di = ∂i − nink∂k, D = nl∂l and ∇s =
(I− n̂⊗ n̂) ·∇. Inserting (4) and (5) into (8) one
obtains the equilibrium equation of a Form-II gra-
dient elastic material written in terms of displace-
ments as

(λ +2μ)(1− l̂2
1 ∇2)∇∇ ·u

−μ(1− l̂2
2 ∇2)∇×∇×u = 0 (15)

where

l̂2
1 = 2(α̂1 + α̂2 + α̂3 + α̂4 + α̂5)/(λ +2μ)

l̂2
2 = (α̂3 + α̂4 + α̂5)/2μ (16)

Rearranging (15) and considering that λ , μ repre-
sent the Lamè constants, it is easy to see that

(λ +2μ)∇∇ ·u−μ∇×∇×u

− l̂2
1 ∇2 [(λ +2μ)∇∇ ·u−μ∇×∇×u]

+ μ(l̂2
2 − l̂2

1)∇2(∇×∇×u) = 0 (17)

or in terms of classical elasticity

[Classical Elastic Equilibrium Eq.]

− l̂2
1 ∇2 [Classical Elasticity Equilibrium Eq.]

+ μ̃
(
l̂2
2 − l̂2

1

)
∇2 (∇×∇×u) = 0 (18)

Although very elegant, the use of the Form II gra-
dient elastic theory for the solution of real prob-
lems is discouraging since seven new material
constants, i.e. λ , μ , α̂1 ÷ α̂5 have to be deter-
mined. If the constants α̂1 ÷ α̂5 take the values

α̂1 = α̂3 = α̂5 = 0

α̂2 = (λ/2)g2 (19)

α̂4 = μg2

then the constitutive equations (6), (7) as well as
the equilibrium equation (17) can be written as

τ̂ = μ(∇u+u∇)+λ (∇ ·u)I (20)

μ̂ = g2∇τ̂ (21)

(λ +2μ)∇∇ ·u−μ∇×∇×u

−g2∇2 [(λ +2μ)∇∇ ·u−μ∇×∇×u] = 0
(22)

where λ , μ are the classical Lamè constants and
g2 is the volumetric strain gradient energy coef-
ficient or simply the gradient coefficient, which
is introduced to balance the dimensions of strains
and strain gradients and moreover to relate the mi-
crostructure with the macrostructure representing
a characteristic length of the material. Thus, as it
is stated in Vardoulakis, Exadaktylos, and Aifan-
tis (1996), the gradient elastic theory described by
Eqs (20-22) is the simplest possible special case
of Mindlin’s theory. As it has already been men-
tioned, the present work exploits this simple en-
hanced elastic theory, which from now will be ref-
fered to as Mindlin’s simplified Form-II gradient
elastic theory.

3 Unified 2D and 3D discontinuous elements
of variable-order singularity

Karlis, Tsinopoulos, Polyzos, and Beskos (2007)
proposed a new variable singularity element suit-
able for representing fields developed near the
crack tip of a 2D gradient elastic solid. In the
present section a new 3D variable singularity ele-
ment is proposed and both 2D and 3D special el-
ements are presented in a unified way. According
to Vardoulakis, Exadaktylos, and Aifantis (1996),
Exadaktylos, Vardoulakis, and Aifantis (1996),
Vardoulakis and Exadaktylos (1997), Exadaktylos
(1998), Zhang, Huang, Chen, and Hwang (1998),
Shi, Huang, and Hwang (2000), Fannjiang, Chan,
and Paulino (2002), Georgiadis (2003) and Radi
(2008), the fields u, q, R and P near the crack
tip vary as r3/2, r1/2, r−1/2 and r−3/2 respectively,
with r being the distance from the tip. As it is
well known, the elements used in a classical BEM
formulation interpolate the unknown fields either
linearly or quadratically and therefore the behav-
ior of the fields around the crack tip can never be
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represented correctly. In the present work, adopt-
ing the idea of using variable-order singularity
continuous boundary elements around the tip or
the front of the crack for the description of the
near tip behavior and the evaluation of the cor-
responding SIFs as described in Lim, Lee, Tay,
and Zhou (2002) and Zhou, Lim, Lee, and Tay
(2005), special variable-order of singularity dis-
continuous line and quadrilateral boundary ele-
ments for 2D and 3D analyses, respectively, are
proposed.

Thus, e.g., for the special elements of the 3d cases
the crack side is always discontinuous, while dis-
continuity on the other sides is optional. The main
advantage of using discontinuity at the crack side
is that no functional nodes are located at the crack
front and thus, despite the singularity of R and P
there, the field nodal values are finite and can be
computed.

3.1 2D discontinuous elements of variable-
order singularity

The local coordinates of the functional nodes of
the special element are identical to those of a clas-
sical, partially or fully discontinuous, 3-noded,
quadratic line element. As shown in Fig. 1, the
tip of the crack can be located either at ξ = −1 or
at ξ = 1 for the special element being to the left
or right of the tip. In order to unify these two pos-
sible cases a new variable p is introduced via the
linear transformation

p = (1+cξ )
/

2 (23)

with c =±1 for the tip located at ξ = ∓1, respec-
tively. Thus, the tip of the crack is always located
at p = 0 and the interval ξ ∈ [−1,1] is transformed
into the interval p ∈ [0,1]. After the transforma-
tion, the tip of the crack is located at p = 0 (Fig.
2). Consider a point x(p) on the element and a
point y(0) located at the crack tip. The fields of
interest F at the point x, can be expressed in terms
of the asymptotic solutions as

F = Krλ1 +Lrλ2 +C (24)

where K, L and C are constant vectors to be deter-
mined. Vector F could represent u, q, R or P and

1

2

3

d1

ξ

Crack tip

Crack tip

12

3

22

ξ

pd1

1 223 p

Transformation

Geometrical node

Functional node

Figure 1: Variable order of singularity discontin-
uous boundary element and its transformation.

p

Crack Tip
p=0

p=1

x

y
r=

|x
-y

|

Functional Nodes
Geometrical Nodes

Figure 2: A 2D, discontinuous, variable order of
singularity element.

thus λ1 and λ2 take the values displayed in Tab. 1.
Considering that suitable interpolation functions
Ni exist, fields F can be approximated as

F = NiFi i=1,2,3 (25)

with Fi being the three nodal values of F. In view
of Eq. (24) Ni should have the form

Ni (r; p,λ1,λ2) = airλ1 +birλ2 + zi (26)

where r =
∣∣x j (p)−y(0)

∣∣ is the distance of the
functional node j from the crack tip, as illustrated
in Fig. 2, while the vectors K, L, C of Eq. (24)
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are given by

K = aiFi

L = biFi (27)

C = ziFi

The constants ai, bi, zi can be easily obtained by
solving a set of three linear systems, consisting
of three equations each, which arise from the
requirement that each interpolation function must
satisfy the relations

Ni (p corresponding to node j) = δi j i, j=1,2,3
(28)

where δi j is the Kronecker delta. It can be ver-
ified that ∑Ni = 1 for all the combinations of
λ1, λ2 provided in Tab. 1. Finally it should be
mentioned that the present 2D element formula-
tion is more accurate than the one reported in
Karlis, Tsinopoulos, Polyzos, and Beskos (2007)
since the distance r between points x and y ( Fig.
2) is taken here as a straight line between these
points as it should be and not as a curved one
along the coordinate p, as it was the case in Karlis,
Tsinopoulos, Polyzos, and Beskos (2007).

Table 1: Orders of magnitude of the asymptotic
fields.

F λ1 λ2

u 3/2 1
q 1/2 1
R −1/2 1
P −3/2 −1/2

3.2 3D discontinuous elements of variable-
order singularity

As in the 2D case, near the crack front, the fields
u, q, R and P vary as r3/2, r1/2, r−1/2 and r−3/2

respectively, with r being the distance from the
crack front. Once more, adopting the idea of
using variable-order continuous elements (Lim,
Lee, Tay, and Zhou (2002) and Zhou, Lim, Lee,

and Tay (2005)), a new discontinuous, quadri-
lateral, eight-nodded element with variable-order
singularity is proposed for the treatment of the
fields around the crack front. In this special el-
ement, the crack side is always discontinuous,
while discontinuity on the other sides is optional.
The main advantage of using discontinuity on the
crack side is that no functional nodes are located
on the crack front and thus, despite the singular-
ity of R and P there, the field nodal values are
finite and can be computed. The local coordinates
of the functional nodes are identical to those of
a classical, partially or fully discontinuous, eight-
nodded, quadratic, quadrilateral element. Practi-
cally, the crack front can be located at any of the
element’s sides. In order to be able to deal with all
the possible cases of the crack front location, the
local numbering of the element nodes is changed,
so that the crack front always resides on the first
side of the element. The result of the local renum-
bering is described in Tab. 2 for all the possible
cases.

Table 2: The renumbering of the element nodes,
so that the crack front always resides on the first
side.

Nodes Crack on:
Side 1 Side 2 Side 3 Side 4

Node 1′ 1 2 3 4
Node 2′ 2 3 4 1
Node 3′ 3 4 1 2
Node 4′ 4 1 2 3
Node 5′ 5 6 7 8
Node 6′ 6 7 8 5
Node 7′ 7 8 5 6
Node 8′ 8 5 6 7

Local coord. ξ ′
1 ξ1 ξ2 −ξ1 −ξ2

Local coord. ξ ′
2 ξ2 −ξ1 −ξ2 ξ1

An example of an element having the crack front
located at its third side is illustrated in Fig. 3.
Consider a point x(ξ ′

1,ξ ′
2) on the element and a

point y(ξ ′
1,−1) located at the crack front having

the same ξ1-coordinate as x, as shown in Fig. 4.
The field of interest F at the point x, can be ex-
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Figure 3: Transition from the real 3D space to
the parametric representation of the element and
nodal renumbering, for the case of a fully discon-
tinuous element.

pressed in terms of the asymptotic solutions as

F
(
ξ ′

1, r
)

= K
(
ξ ′

1

)
rλ1 +L

(
ξ ′

1

)
rλ2 +C

(
ξ ′

1

)
(29)

where r is the distance r = |x−y|, the symbol F
represents u, q, R and P and λ1, λ2 take the values
of Tab. 1. In addition, the fields F can be approx-
imated using the interpolation functions Ni and
their corresponding nodal values Fi as follows:

F
(
ξ ′

1, r
)

= Ni (ξ ′
1, r
)

Fi, i= 1,...,8 (30)

Combining Eqs (29) and (30) and assuming
a quadratic behaviour for the functions K(ξ ′

1),
L(ξ ′

1) and C(ξ ′
1), the interpolation functions Ni

should be of the form

Ni (ξ ′
1, r
)

=
(

ei
1 +ei

2ξ ′
1 +ei

3ξ ′2
1

)
rλ1

+
(

ei
4 +ei

5ξ1 +ei
6ξ ′2

1

)
rλ2

+ei
7 +ei

8ξ ′
1 +ei

9ξ ′2
1 (31)

where ei
j, ( j = 1, ...,9) are constants to be deter-

mined. Due to the use of eight-noded elements,
one of the nine terms of the above expression must
be omitted. In the present work, having in mind
that the coefficients of rλ1 and rλ2 will be used

Crack front

x( , )ξ ξ1 2' '
y( , )ξ1 –1'

ξ1'

ξ2'
r=|x-y|
1'

2' 3'

4'

5'

6'

7'

8'

Figure 4: Projection of point x to the crack front.

for the SIF calculation, this term is taken to be
ei

9 . The remaining eight constants ei
j can be eas-

ily obtained by solving a set of eight linear sys-
tems, consisting of eight equations each, which
arise from the requirement that each interpolation
function Ni must satisfy the relations

Ni
(

ξ ′ j
1, r j

)
= δi j, i, j = 1, ...,8 (32)

where δi j is the Kronecker delta, r j =

|x
(

ξ ′ j
1,ξ ′ j

2

)
− y

(
ξ ′ j

1,−1
)
| and

(
ξ ′ j

1,ξ ′ j
1

)
are the local coordinates of the j functional
node. It can be verified that ∑Ni = 1 for all the
combinations of λ1, λ2 provided in Tab. 2.

4 BEM Procedure and SIF Determination

In this section the 2D and 3D BEM procedure is
presented in brief and the evaluation of the cor-
responding SIFs via the nodal values of the spe-
cial elements is explained. Adopting the sim-
plified Mindlin’s Form-II gradient elastic theory
and utilizing the well known identity ∇2 = ∇∇ ·
−∇ ×∇× the equilibrium equation (22) obtains
the more familiar form

μ∇2u+(λ + μ)∇∇ ·u
−g2∇2 (μ∇2u+(λ + μ)∇∇ ·u)= 0 (33)

As it is proved in Polyzos, Tsepoura, Tsinopoulos,
and Beskos (2003), the fundamental solution of
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(33) has the form

ũ∗ (r; μ ,ν ,g) =
1

16πμ (1−ν)
[
Ψ(r;ν ,g) Ĩ−X(r;g) r̂⊗ r̂

]
(34)

where ν is the Poisson ratio, r̂ the unit vector in
the direction r = y−x , r = |y−x| and X , Ψ scalar
functions given for the 2D and 3D cases, respec-
tively by the relations

X = −2+
8g2

r2 −4K2 (r/g) (35)

Ψ = −2(3−4ν) lnr +
4g2

r2

−2(3−4ν)K0 (r/g)−2K2 (r/g) (36)

and

X (r,g) = −1
r

+
6g2

r3 −
(

6g2

r3 +
6g
r2 +

2
r

)
e−r/g

(37)

Ψ(r,ν ,g) = (3−4ν)
1
r

+2(1−2ν)
[
−g2

r3 +
(

g2

r3 +
g
r2

)
e−r/g

]

+4(1−ν )
[

g2

r3 +
(

g2

r3 +
g
r2 +

1
r

)
e−r/g

]
(38)

with K0(.) and K2(.) being the modified Bessel
functions of the second kind and zero and second
order, respectively. Considering a gradient elas-
tic material of volume V surrounded by a smooth
boundary S and characterized by two Lamè con-
stants λ ,μ and a gradient coefficient g2, Poly-
zos, Tsepoura, Tsinopoulos, and Beskos (2003)
showed that for any static gradient elastic bound-
ary value problem its integral representation reads

c̃(x) ·u(x)+∫
S

{
P̃∗ (x,y) ·u(y)− ũ∗ (x,y) ·P(y)

}
dSy =

∫
S

{
∂ ũ∗ (x,y)

∂ny
·R(y)− R̃∗ (x,y) ·q(y)

}
dSy

(39)

where ũ∗ (x,x) is the fundamental solution given
by Eq. (34), P̃∗ (x,x) and R̃∗ (x,x) are the funda-
mental traction and double stress traction tensors,

respectively and c̃(x) is the well-known jump ten-
sor being equal to (1/2)Ĩ for x ∈ S and equal to
Ĩ when x ∈ V ∩S. Observing Eq. (39), one real-
izes that this equation contains four unknown vec-
tor fields, u(x), P(x), R(x) and q(x) = ∂u/∂n.
Thus, the evaluation of the unknown fields re-
quires the existence of one more integral equation.
This integral equation is obtained by applying the
operator ∂/∂nx on Eq. (39) and has the form

c̃(x) · ∂u(x)
∂nx

+
∫
S

{
∂ P̃∗ (x,y)

∂nx
·u(y)− ∂ ũ∗ (x,y)

∂nx
·P(y)

}

·dSy =∫
S

{
∂ 2ũ∗ (x,y)

∂nx∂ny
·R(y)− ∂ R̃

∗
(x,y)

∂nx
·q(y)

}

·dSy (40)

All the kernels appearing in the integral equations
(39) and (40) are given explicitly in Polyzos, Tse-
poura, Tsinopoulos, and Beskos (2003). Integral
equations (39) and (40) accompanied by the clas-
sical and non-classical boundary conditions (9)
and (10) form the integral representation of the
general gradient elastic boundary value problem.
The goal of the BEM is to solve numerically the
just described well-posed boundary value prob-
lem. To this end the global boundary S is dis-
cretized into quadratic, continuous and discontin-
uous isoparametric boundary elements, while spe-
cial variable-order singularity, discontinuous ele-
ments are placed on both sides of the crack tip or
crack front as it is illustrated in Fig. 5. Then, for
a node k the integral Eqs (39) and (40) are written
as

1
2

uk +
M

∑
β=1

H̃k
β ·uβ +

M

∑
β=1

K̃k
β ·qβ

=
M

∑
β=1

G̃k
β ·Pβ +

M

∑
β=1

L̃k
β ·Rβ
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Crack faces
Crack front

Crack elements

Figure 5: Position of the variable order of singu-
larity elements.

1
2

qk +
M

∑
β=1

S̃k
β ·uβ +

M

∑
β=1

T̃k
β ·qβ

=
M

∑
β=1

Ṽk
β ·Pβ +

M

∑
β=1

W̃k
β ·Rβ (41)

where M is the total number of nodes. Explicit ex-
pressions for H̃k

β , K̃k
β , G̃k

β , L̃k
β , S̃k

β , T̃k
β , Ṽk

β and W̃k
β

are given in Tsepoura, Tsinopoulos, Polyzos, and
Beskos (2003).

Collocating Eqs (41) at all nodal points M and
applying the boundary conditions (Eqs (9) and
(10)) one produces the final linear system of al-
gebraic equations of the form Ã ·X = B , where
the vectors X and B contain all the unknown
and known nodal components of the boundary
fields, respectively. The singular and hypersin-
gular integrals involved, are evaluated with high
accuracy by applying a methodology for direct
treatment of CPV and hypersingular integrals ex-
plained in Tsepoura, Tsinopoulos, Polyzos, and
Beskos (2003). Near to the crack front, an ex-
tra singularity due to the singular behaviour of
the interpolation functions (26) and (31) should
be taken into account. The numerical treatment of
all possible singular integrals defined on the con-
sidered special elements is presented for 2D and
3D in Karlis, Tsinopoulos, Polyzos, and Beskos
(2007) and the appendix of the present paper, re-
spectively. Finally, the linear system is solved
via a typical LU-decomposition algorithm and the
vector X comprising all the unknown nodal val-

ues of u, P, R, q is evaluated. Once the boundary
value problem has been solved, the calculation of
SIFs is done via the nodal traction values of the
special elements. Approaching the crack tip or
front (r → 0), the traction P, according to Eq. (24)
for the 2D case and Eq. (29) for the 3D case, ad-
mits a representation of the form

P =
K1 (P1, ...,PN)√

2π
lim
r→0

r−3/2

+
K2 (P1, ...,PN)√

2π
lim
r→0

r−1/2

+C(P1, ...,PN) (42)

where N = 3 for 2D and N = 8 for 3D. Taking into
account relation (27) and (31) the stress intensity
factors corresponding to x, y and to x, y and z di-
rections for 2D and 3D respectively, are obtained
by

K1 =
√

2πK =
√

2π a jP j

K2 =
√

2πL =
√

2π b jP j (43)

and

K1 (ξ1) =
√

2π
(
D1 +ξ1D2 +ξ 2

1 D3
)

K2 (ξ1) =
√

2π
(
D4 +ξ1D5 +ξ 2

1 D6
)

(44)

with j = 1,2,3 for two dimensions and Di = e j
i P j,

i = 1, ...,6 and j = 1, ...,8 for three dimensions
and a j, b j, e j

i calculated from solving the systems
(28) and (32).

5 Numerical Results

Two mode-I fracture problems are studied in this
section. The first deals with a 2D crack, while
the second concerns a rectangular 3D crack both
subjected to a tensile loading. The obtained crack
profiles as well as the corresponding SIFs are pre-
sented and compared against those of classical
elasticity.

5.1 2D Mode-I crack problem

Consider a square gradient elastic plate with
rounded corners of very small radius of curvature
(in order to have a smooth boundary) in a state of
plane stress. The plate contains a central horizon-
tal line crack and is subjected to a uniform tensile
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traction P0 = 100MPa applied normal to its top
and bottom sides, as shown in Fig. 6. The crack
length is chosen to be equal to 2a = 1m and the
side of the square plate is L = 16a. The Young
modulus and the Poisson ratio of the gradient elas-
tic plate are E = 210GPa and ν = 0.2, respec-
tively. Due to the double symmetry of the prob-
lem, only one quarter of the plate is discretized,
with the following boundary conditions along the
axes of symmetry: P(0,y) = 0 and R(0,y) = 0
for 0 ≤ y < a , uy(0,y) = 0 and R(0,y) = 0 for
a ≤ y ≤ L/2 and ux(x,0) = 0 and R(x,0) = 0 for
0 ≤ x ≤ L/2. Fig. 7 displays the upper-right-

2a

16a

1
6
a

x

y
P0

P0

radius 0.05m

Figure 6: Gradient elastic plate with a horizontal
line crack.

quarter of the crack opening displacement pro-
file obtained by the present BEM for four dif-
ferent values of the gradient coefficient g (0.01,
0.1, 0.3, 0.5). In the same figure, the crack profile
provided by the classical elasticity theory (g = 0)
is also shown. As it is apparent, the crack pro-
file in the gradient elastic case remains sharp at
the crack tip and is not blunted as in the clas-
sical case. This cusp type of profile is identical
to the one coming out of Barenblatt’s (Barenblatt
(1962)) cohesive zone theory. Barenblatt explains

Figure 7: Upper right quarter of the COD profile.

that the two faces of the crack at the tip are sub-
jected to very strong interatomic forces. Thus,
considering these atomic attraction forces as com-
pressive stresses larger than the tensile ones due
to external loading, he obtained a cusp-like crack
opening near the tip of the crack. The important
conclusion here is that the results depicted in Fig.
7 are fully compatible with Barenblatt’s findings
without, however, to consider other forces than
those implied by the Mindlin’s simpilified Form-
II gradient elastic theory. Also, it should be no-
ticed that as the gradient coefficient g increases,
the crack becomes stiffer. In Figs 8 and 9 the two

Figure 8: SIF (KI)1 as function of the gradient
coefficient g.

mode-I SIFs for the gradient elastic case, (KI)1
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Figure 9: SIF (KI)2 as function of the gradient
coefficient g.

Figure 10: Traction values near the crack tip.

and (KI)2, are plotted versus the gradient coeffi-
cient g. The interesting remark here is that the
SIF (KI)1 tends to zero as the gradient coefficient
g tends to zero. As a result of that, Eq. (42) be-
comes Py = (KI)2 /

√
2π lim

r→0
r−1/2 with (KI)2 be-

ing the mode-I SIF as defined in classical elastic-
ity theory. Moreover, Fig. 9 depicts the behavior
of the SIF corresponding to r−1/2 traction term as
a function of the gradient elastic coefficient g. It
should be noted that for g greater than 0.1 the con-
tribution of this term is much smaller than that of
the term corresponding to r−3/2. For this reason
the evaluation of the SIF (KI)2 for large g requires
further investigation. However, for small g it is
apparent from Fig. 9 that as g approaches zero
(KI)2 becomes dominant and goes to the classical

elastic case. However, the most important obser-
vation here is that the SIF (KI)1 takes only nega-
tive values. This means that in gradient elasticity
the stresses near the crack tip not only go to in-
finity with a different order (r−3/2) than those of
classical elasticity (r−1/2), but are also compres-
sive and not tensile as in classical elasticity. This
explains the different shapes of the crack profile in
gradient and classical elasticity theories, as shown
in Fig. 7. This behaviour becomes more pro-
nounced in Fig. 10 where the traction field near
to the crack tip, for various values of the gradient
coefficient g is displayed.

5.2 3D Mode I Crack Problem

Consider a gradient elastic cube with rounded cor-
ners of very small radius of curvature (in order
to have a smooth boundary). The cube contains
a central horizontal rectangular crack and is sub-
jected to a uniform tensile traction P0 = 100MPa
applied normal to its top and bottom sides. The
side of the cube L is chosen to be equal to 16a = 8
and the crack dimensions are 2a×L, as shown in
Fig. 11. The Young modulus and the Poisson ra-
tio of the gradient elastic plate are E = 210GPa
and ν = 0.2, respectively. Due to the octant sym-
metry of the problem, the analysis is performed
by taking into acount two Cartesian symmetries
with respect to the X-Z and Y-Z planes, while
on the X-Y symmetry plane the following bound-
ary conditions are considered: P(x,y,0) = 0 and
R(x,y,0) = 0 for 0 ≤ x < a and 0 ≤ y < L/2 and
uz(x,y,0) = 0 and R(x,y,0) = 0 for a ≤ x ≤ L/2
and a ≤ y ≤ L/2 . The mesh used is shown in Fig.
12, where 4×8 elements are placed at the crack
surface.

Fig. 13 displays the lower-right of the crack open-
ing displacement profile, at y = 0 , obtained by
the present 3D BEM for four different values of
the gradient coefficient g (0.05, 0.1, 0.3, 0.5), as
well as the profile corresponding to the classical
elastic case (g = 0). The profiles are compared to
the 2D ones of Fig. 7 and found to be the same
as expected. The same conclusion is valid for the
calculated (KI)1 and (KI)2 SIFs plotted in Figs 14
and 15 for different gradient coefficients g.
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2a

L=
a16

L

X

Y
Z

Figure 11: The gradient elastic cube with a central
horizontal rectangular crack.

Figure 12: The discretized domain (one eighth of
the cube).

6 Conclusions

A displacement based BEM was employed for
the solution of 2D and 3D mode-I crack prob-
lems characterized by a linear and isotropic gra-
dient elastic material. The Mindlin’s simplified

Figure 13: Shape of mode-I crack for different
values of the gradient coefficient g.

Figure 14: SIF (KI)1 with respect to the gradient
coefficient g.

Figure 15: SIF (KI)2 with respect to the gradient
coefficient g.
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Form-II gradient elastic theory was adopted and
a corresponding 2D and 3D boundary element
methodology was employed. A new eight-noded
discontinuous boundary element of variable sin-
gularity has been developed as an extension to
3D of the corresponding 2D special element pro-
posed by the authors. These special elements can
lead to the determination of 2D and 3D SIFs di-
rectly via their nodal traction values after the de-
termination of boundary tractions and displace-
ments. Two mode-I crack problems dealing with
2D and 3D cracks were solved for various val-
ues of the gradient elastic coefficient. All the re-
sults concerning the behavior of the considered
fields near the crack tip or front were obtained di-
rectly in the context of Mindlin’s simplified Form-
II gradient elastic theory, without considering ex-
tra conditions. Stresses and displacements around
the crack tip were calculated with high accuracy
and showed to be more physically acceptable than
those of the case of classical elasticity.
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Appendix A: 3D Integrations over the Spe-
cial Elements

In this section, the treatment of the integrals ap-
pearing in Eqs (39) and (40) for the 3D case is
explained. The integrals involving the fields P
and R and defined over the special boundary el-
ements, in addition to the usual fundamental so-
lution type of singularities (Tsepoura, Tsinopou-
los, Polyzos, and Beskos (2003)), exhibit an extra
singularity due to the singular behavior of the in-
terpolation functions near the crack front. Thus,
even in cases where the source point does not re-
side in the element, i.e., in cases where a so-called

regular integration is performed, there is always
a singularity present near the front of the crack.
The methodology for the treatment of these inte-
grals deals first with the handling of the singular-
ities coming from the interpolation functions of
the special element and then addresses any pos-
sible singularities that are introduced by the fun-
damental solutions (in case the source point re-
sides in the element). Without loss of generality,
one can assume that the crack front resides at the
first side of the element. If it does not, one can
renumber the element nodes so that it does. This
assumption is useful for the simplification of the
following paragraphs.

Appendix A:.1 Integrals involving the field R

The integrals involving the field R and are defined
over a special boundary element, appear in the
discretized form of Eqs (39) and (40) as

1∫
−1

1∫
−1

∂ ũ∗

∂ny
(x(ξ1,ξ2) ,y)

Ni (ξ1, r (ξ1,ξ2) ;λ1,λ2)Jedξ1dξ2

1∫
−1

1∫
−1

∂ 2ũ∗

∂nx∂ny
(x(ξ1,ξ2) ,y)

Ni (ξ1, r (ξ1,ξ2) ;λ1,λ2)Jedξ1dξ2 (45)

where Ni is the ith interpolation function given
by Eqs (31), with the parameters λ1 and λ2 be-
ing equal to −1/2 and 1, respectively (Tab. 1)
and Je is the Jacobian of the transformation from
the global coordinates to the intrinsic local coor-
dinates ξ1, ξ2. It is important to see that there is
a singularity of the form r−1/2, attributed to the
new interpolation functions (31). If r is expanded
in series with respect to ξ2, around the singular
point ξ2 = −1 it is easy to see that r is of the fol-
lowing form:

r = f (ξ1) (ξ2 +1)−1/2 +O(ξ2 +1)1/2 (46)

In order to deal with this new singularity, one ap-
plies the nonlinear transformation

s1 = ξ1

s2 = 2

(
1+ξ2

2

)a

−1 (47)
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which was introduced by Zhou, Lim, Lee, and Tay
(2005) and the integrals (45) become

1∫
−1

1∫
−1

∂ ũ∗

∂ny
(x(s1, s2) ,y)

Ni (s1, r (s1, s2) ;λ1,λ2)JeJnlds1ds2

1∫
−1

1∫
−1

∂ 2ũ∗

∂nx∂ny
(x(s1, s2) ,y)

Ni (s1, r (s1, s2) ;λ1,λ2)JeJnlds1ds2 (48)

where Jnl is the Jacobian of the non-linear trans-
formation (47) of the form

Jnl =
1
a

(
1+ s2

2

)(1−a)/a
(49)

and the parameter a > 0 is a constant to be deter-
mined. For 0 < a ≤ 1/2, the transformation com-
pletely removes the interpolation function singu-
larity. In the present work the value a = 1/2 is
used. As long as the singular behavior of the inter-
polation functions has been overcome, integrals
(48) are treated in the same way as the integrals
corresponding to non-special elements (Tsepoura,
Tsinopoulos, Polyzos, and Beskos (2003)).

Appendix A:.2 Integrals involving the field P

The integrals involving the field P and defined
over a special boundary element, appear in the
discretized form of Eqs (39) and (40) as

1∫
−1

1∫
−1

ũ∗ (x(ξ1,ξ2) ,y)Ni (ξ1, r (ξ1,ξ2) ;λ1,λ2)

Jedξ1dξ2

1∫
−1

1∫
−1

∂ ũ∗

∂nx
(x(ξ1,ξ2) ,y)Ni (ξ1, r (ξ1,ξ2) ;λ1,λ2)

Jedξ1dξ2 (50)

where the parameters λ1 and λ2 are equal to −3/2
and −1/2, respectively (Tab. 1). This time to
deal with the interpolation function singularities,
the aforementioned nonlinear transformation is

not adequate. Since the singularities introduced
by the interpolation functions are more than one
(of the orders of r−3/2 and r−1/2), the nonlin-
ear transformation raises their order only partially.
Again, expanding r−3/2 in series around the sin-
gular point ξ2 = −1, one can see that r is given
by

r = f (ξ1) (ξ2 +1)−3/2 +g(ξ1) (ξ2 +1)−1/2

+ O(ξ2 +1)1/2 (51)

After applying the nonlinear transformation (47)
the integrals (50) become

1∫
−1

1∫
−1

ũ∗ (x(s1, s2) ,y)Ni (s1, r (s1, s2) ;λ1,λ2)

JeJnlds1ds2

1∫
−1

1∫
−1

∂ ũ∗

∂nx
(x(s1, s2) ,y)Ni (ξ1, r (s1, s2) ;λ1,λ2)

JeJnlds1ds2 (52)

Observing the transformation, one can notice that
there is no value for the parameter a that raises
the order of both interpolation function singular-
ities. However, by choosing a = 1/2 one can
reduce the singularities to the order of r−1. To
address this type of singularity one also applies
the methodology for direct treatment of singular
integrals, introduced by Guiggiani and Gigante
(1990). In short, the kernels of the integrals are
expanded asymptotically to power series with re-
spect to the local coordinate s2 around the point
s2 = −1. Then the singular terms of the divergent
part of the integrals are subtracted and the inte-
gral is calculated with the Gauss quadrature, as
it is now regular and finally the subtracted terms
are added, after integrating them analytically. Ap-
plying the above briefly described procedure, the
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integrals (52) take the form

1∫
−1

[ 1∫
−1

ũ∗Ni (s1, r (s1, s2) ;λ1,λ2)
(

1+ s2

2

)

Je (s1, s2)− ũ∗|s2=−1 A Je|s2=−1

(
1+ s2

2

)−2

ds2

+ũ∗|s2=−1 A Je|s2=−1 lim
ε→0

1∫
−1+ε

(
1+ s2

2

)−2

ds2

]

ds1 (53)

1∫
−1

⎡
⎣ 1∫
−1

∂ ũ∗

∂nx
Ni (s1, r (s1, s2) ;λ1,λ2)

(
1+ s2

2

)

Je (s1, s2)

− ∂ ũ∗

∂nx

∣∣∣∣
s2=−1

A Je|s2=−1

(
1+ s2

2

)−2

ds2

+
∂ ũ∗

∂nx

∣∣∣∣
s2=−1

A Je|s2=−1

lim
ε→0

1∫
−1+ε

(
1+ s2

2

)−2

ds2

]
ds1 (54)

where ε is the radius of a sphere including the sin-
gular point, which resides on the crack front. The
analytical calculation of the last integrals appear-
ing in Eqs (54), (55) yields

lim
ε→0

1∫
−1+ε

(
1+ s2

2

)−2

ds2 = lim
ε→0

(
− 4

1+ s2

∣∣∣∣
1

−1+ε

)

= −2+ lim
ε→0

4
ε

(55)

Considering the contribution of all elements
around the singular point within a neighbourhood
of size ε , the last term in Eq. (55) must be zero
(Guiggiani and Gigante (1990)). As long as the
singular behavior of the interpolation functions
has been overcome, the integrals (54) are treated
in the same way as the integrals corresponding
to non-special elements (Tsepoura, Tsinopoulos,
Polyzos, and Beskos (2003)).

Appendix A:.3 Integrals involving the field q

The integrals involving the field q and defined
over a special boundary element, appear in the
discretized form of Eqs (39) and (40) as

1∫
−1

1∫
−1

R̃∗ (x(ξ1,ξ2) ,y)Ni (ξ1, r (ξ1,ξ2) ;λ1,λ2)

Jedξ1dξ2

1∫
−1

1∫
−1

∂ R̃∗

∂nx
(x(ξ1,ξ2) ,y)Ni (ξ1, r (ξ1,ξ2) ;λ1,λ2)

Jedξ1dξ2 (56)

where the parameters λ1 and λ2 are equal to 1/2
and 1, respectively (Tab. 1). The interpolation
functions involved in integrals (56) do not exhibit
any singularity as one approaches the crack front.
Thus, one would expect that a standard Gauss
quadrature would be adequate for an accurate in-
tegration. However, a slow convergence was ob-
served due to the O

(
r1/2
)

term of the interpola-
tion functions. In order to achieve a better conver-
gence, the non-linear transformation (47) is used
again with a = 1/2, this time in an effort to in-
crease the order of the integrand from O

(
r1/2
)

to
O
(
r3/2
)
. Thus the integrals (56) finally become

1∫
−1

1∫
−1

R̃∗ (x(s1, s2) ,y)Ni (s1, r (s1, s2) ;λ1,λ2)

JeJnlds1ds2

1∫
−1

1∫
−1

∂ R̃∗

∂nx
(x(s1, s2) ,y)Ni (s1, r (s1, s2) ;λ1,λ2)

JeJnlds1ds2 (57)

where Jnl is the Jacobian of the non-linear trans-
formation given by (49).




