
Copyright c© 2008 Tech Science Press CMES, vol.27, no.1, pp.37-47, 2008

Plane Wave Analysis of Panel Wedges

T. Kar and M.L. Munjal1

Abstract: In the present work, a wedge struc-
ture made of absorbing panels has been analyzed
by making use of the matrizant analysis with the
help of the Boundary-Condition-Transfer (BCT)
algorithm. The rectangular panel wedge, as it is
called in this manuscript, is simple in geometry.
The theoretical model, based on the plane wave
acoustical coupling between multiple interacting
ducts of variable cross sectional area, is applied
to predict the pressure reflection coefficient of the
present wedge configuration. Bulk reaction and
hence wave propagation in the wedge material has
been assumed in the proposed model. An asymp-
totic solution using the Peano-Baker series of ma-
trix calculus is derived for different variable area
ducts and then solved with the aid of the boundary
condition transfer algorithm. A brief parametric
study is also included as an aid to designers.

Keyword: Acoustic wedge; plane wave; Ma-
trizant; transfer matrix method; anechoic cham-
ber.

1 Introduction

An anechoic room simulates a free field, a repre-
sentation of a theoretical infinite space, in which
there are no sound wave reflections and hence
the wave propagation is free from reverberations.
This is achieved by mounting sound absorbing
materials on the walls in order to absorb the sound
energy. Design of the anechoic chambers is based
on the parametric charts developed through an ex-
perimental investigation by different investigators
[Beranek and Sleeper (1946), Koidan, Hruska,
and Pickett (1972)]. Determining the optimum
wedge configuration by experimentation is not
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cost effective. Thus, an analytical approach for
analyzing the acoustic wave propagation in the
wedges or panels is imperative. The conventional
rectangular wedges were analyzed by means of
the finite element method (FEM) and the bound-
ary element method (BEM) to validate the ex-
perimental results [Easwaran and Munjal (1993),
Wang and Tang (1996)]. They made use of the
bulk reaction model that accounts for wave prop-
agation in the wedge material. Incidentally, both
of these computational approaches were based on
a 2-D analysis.

Like wedges, acoustical panels are also used as
sound absorbers, but for different purposes. Con-
ventional wedges are used in the anechoic cham-
bers, whereas panels in different forms find appli-
cation in various performance spaces like HVAC
plenums, blower and compressor enclosures, au-
diometric test rooms, barrier walls etc. Micro-
perforated panels are also used to attenuate rela-
tively low frequency sound wave [Chens, Lee, and
Chiang (2000)]. The concept of hybrid panels is
based on a combined approach for noise control: a
passive approach for middle and higher frequen-
cies and an active approach for low frequencies.
Such acoustic absorbers have been studied exper-
imentally in the literature [Lee, Kim, Rhee, Jo,
and Choi (2002)].

In terms of the cut-off frequency, the threshold
frequency above which the pressure reflection co-
efficient is less than 0.1 for a plane wave at normal
incidence, and the sound absorption coefficient of
an acoustic wedge is less than 0.01, there is a sig-
nificant difference between the performances of a
simple panel and the rectangular wedge. Wedges
have very low cut-off frequencies, whereas the
acoustic panels provide good sound absorption
only at higher frequencies. Here, an attempt is
made to get a rectangular wedge structure from



38 Copyright c© 2008 Tech Science Press CMES, vol.27, no.1, pp.37-47, 2008

the flat panels that would offer an intermediate
performance. The schematic diagram of such a
configuration is given in Fig. 1.

Figure 1: Schematic diagram of the panel wedge.

Structurally non-rigid wedges need to be pro-
tected by a perforated metal sheet and/or a thin
impervious membrane. HVAC applications may
make use of fibrous absorbers with a perforated
plate as the protective layer. Apart from impart-
ing the structural stability, perforated plate is used
to protect the fibrous absorbing material. An ex-
perimental investigation shows that the physical
elements of such a sound absorptive system like
porosity, thickness of the facing, the density of
the porous backing material etc. can change the
specific acoustic impedance of the absorber and
hence its absorption coefficient [Davern (1977)].
The rectangular wedges have been analyzed in
the literature to determine the pressure reflection
coefficient where the predicted results were vali-
dated with their experimental, BE and FE coun-
terparts [Kar and Munjal (2006a)].

The semi-analytical approach, proposed here,
makes use of the plane wave propagation and a
wave coupling between the wedge and the sur-
rounding air cavity. The model considers the
porous absorptive material as an equivalent fluid
with complex dynamic density ρω and sound
speed cω [Wang (1999)]. With the above ana-
lytical assumption, the sound wave seems to in-
teract between a couple of fluid sub domains.
The resulting differential equations are solved by
means of the matrizant analysis with the aid of

the boundary condition transfer (BCT) algorithm
[Kar and Munjal (2005)]. The model presented
here, applies to any configuration as long as there
exists a finite value of interface impedance. Al-
though the present model addresses fibrous mate-
rials with a perforated metal facing, yet it can also
accommodate the alternate applications of the un-
wrapped panel wedges with the assumption of a
“pseudo-coupling coefficient”, a small fictitious
impedance at the interface, for the sake of gener-
alization [Kar and Munjal (2006a)]. The concept
of pseudo-coupling coefficient is a mathematical
need of the approach adopted here.

2 Mathematical model for wave propagation

As shown in Fig. 1, the present model consists of
three distinct structural zones. The first is the ta-
pered panel. This zone is made of a couple of par-
allel perforated plates packed with fibrous sound
absorbing material between them. It may be noted
that the panel is mirror symmetric with respect
to the x-z plane. A base made of an open-pore
foam backs this. The base is structurally stable
and needs no perforated plate backing. In case
the base is designed to be made of similar fibrous
material like that of the panel, it must be protected
by perforated plate in a similar manner. Dissim-
ilar sound absorbing materials for the panel and
the base bring forth the concept of a hybrid panel
wedge. This may make the overall wedge effec-
tive over a wide frequency range. Thickness of
the air gap between the panel and the base varies
linearly with respect to the y-axis. The final part is
an air gap that terminates at a rigid backup plate.

The mathematical model, presented in this sec-
tion, deals with determination of the transfer ma-
trices for each of the constituent domains. Fig.
2 shows the mathematical domains of the wedge.
The complete wedge comprises five distinct parts
(computational domains). Each of them will be
treated independently during the analysis. As
shown in Fig. 2, the tapered panel of length L
consists of three distinct computational domains.
They are denoted as ΞΞΞ1,ΞΞΞ2,and ΞΞΞ3,respectively.
Due to the parallelogram-like cross-sectional area
of the panel, lengths of the segments ΞΞΞ1and ΞΞΞ3are
equal (L1 = L3). The segment ΞΞΞ4 represents the
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base of Length L4, whereas the final segment ΞΞΞ5

of length L5 is basically an air gap at the back of
the wedge. Each segment is modeled as a perfo-
rated element with multiple interacting ducts [Kar
and Munjal (2006b)] of variable cross-sectional
area [Kar and Munjal (2004)]. In the present anal-
ysis, each section/computational domain is as-
sumed to be made up of ducts, i.e., the domain ΞΞΞ2

is a three-duct configuration. The mathematical
model accounts for a cross flow across the perfo-
rated plate, [Munjal (1987)]. The assumption of
bulk reaction and hence wave propagation in the
absorptive material holds good in the present anal-
ysis. Determination of the transfer matrix across
the panel of the wedge (domains ΞΞΞ1, ΞΞΞ2, and ΞΞΞ3)
is the primal part of the analysis.

Figure 2: (A): Schematic diagram of the two-
segment conical concentric tube resonator. (B):
The corresponding simple concentric tube res-
onators.

Due to the finite perforate impedance, the pres-
sure difference across the interface of the wedge
and the air cavity drives a vibrating acoustic mass
across their interface. The above vibrating mass
appears in the continuity equations of both the
sub-domains in terms of the transverse velocity,
which leads to an acoustic wave coupling between
the sub-domains in terms of pressures. The perfo-
rate impedance at the interface causes the acous-
tic coupling between the ducts for any individ-
ual segment of the panel. Due to its geometrical
symmetry with respect to the x-z plane, it would

be sufficient to analyze half of the structure for
plane wave propagation in the wedge. The wedge
may be assumed to be placed inside an impedance
tube with a square cross-section of overall trans-
verse dimension “H ′′. The segments ΞΞΞ1 and ΞΞΞ3are
treated as two interacting variable-area rectangu-
lar ducts, whereas the segment ΞΞΞ2 is a three-duct
configuration. The base (ΞΞΞ4) and the air gap (ΞΞΞ5)
at the back are considered as uniform area ducts.

Assumptions that simplify the mathematical for-
mulation of the governing equations are as fol-
lows:

• Spatial variations of acoustic pressure and
thence density, across the wave fronts in any
domain are negligible in the frequency range
of interest here.

• Amplitudes of pressure and density pertur-
bations in ducts are negligible compared to
their mean values.

• Temperature variation and viscous effect of
the medium are negligible.

• Perforation along the entire length of the
tube is uniform.

• Wall thickness of the perforated shield is
negligible as compared to the transverse di-
mension of the panel of the wedge.

• The porous absorbent material of any duct is
considered as an equivalent fluid with com-
plex wave number kω , complex density ρω ,
and characteristic impedance Yω .

3 Mass continuity

The generalized model, presented here, is appli-
cable to all the sections. Here, the model will be
illustrated over the section ΞΞΞ1. The wave prop-
agating medium in the panel is either air or the
sound absorbing material.

Let ρ0 be the time-mean component of the air
density, and ρ1(z, t) and u1(z, t) be the density
and the particle velocity perturbations over the
cross-sectional area S1(z), respectively. Similarly
ρ2(z, t) and u2(z, t) are the density and velocity
perturbations for the second control volume and



40 Copyright c© 2008 Tech Science Press CMES, vol.27, no.1, pp.37-47, 2008

are averaged over the area S2(z). Then, the lin-
earized form of the continuity equation for the
control volume 1 may be written as

∂ρ1

∂ t
+ρ0u′1 +u1ρ0(lnS1)′+

2Hu∗12ρ0

S1 cosθ
= 0, (1)

and the corresponding continuity equation for the
second duct (CV-2) is given by

∂ρ2

∂ t
+ρω u′2 +u2ρω(lnS2)′ − 2Hu∗12ρω

S2 cosθ
= 0, (2)

where u∗12 is the normal particle velocity at the in-
terface, and assumed to be positive for the nor-
mally inward direction (from CV-1 to CV-2). A
prime (′) denotes differentiation with respect to z.

4 Momentum conservation

The momentum equations of the cavities for dy-
namical equilibrium become

ρ0

[
∂u1

∂ t

]
+ p′1 = 0; and ρω

[
∂u2

∂ t

]
+ p′2 = 0, (3)

The fluctuating normal particle velocity u∗12 across
the perforate in Eqs. 1 and 2 is due to the pressure
difference at the interface and may be given as

u∗12 =
p1(z)− p2(z)

ρ0c0ζ
, (4)

where c0 is the sound speed in air and ζ is the
non-dimensional perforated impedance for a per-
forated plate of thickness th, hole diameter dh, and
porosity σ , and may be given as [Selamet, Lee, Ji
and Huff (2001)]:

ζ =

6×10−3 + jk0

(
th +0.375

(
1+ kwYw

k0Y0

)
dh

)
σ

(5)

The complex valued density ρω of Eq. 2 is de-
termined from the corresponding wave number
kω and characteristic impedance of the absorptive
material Yω . For any such sound absorbing mate-
rial, Yω and kω are precisely outlined by empirical

formulae of Delany and Bazley (1970), later im-
proved through modifications by Mechel (1976):

Yω

Y0
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1+0.0485(A)0.754− j0.087(A)0.73 ;

if A ≤ 60

0.5(A/π) j1.4
(−1.466+ j0.212A)0.5 ;

if A > 60

kω

k0
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1+0.0978(A)0.6929− j0.189(A)0.6185 ;

if A ≤ 60

(−1.466+ j0.212A)0.5 ;

if A > 60

(6)

where Y0 and k0 are the characteristic impedance
(ρ0c0) and the wave number (ω/c0) of air, re-
spectively. The normalized flow resistivity “A′′

of a λ -deep acoustic lining, is given by A =
ηλ/Y0, where η is the flow resistivity of the lin-
ing material. Impedance expressions for differ-
ent arbitrary bodies are available in the literature
[Chandrasekhar and Rao (2006), Han and Atluri
(2006)].

Similarly, the equations for domains ΞΞΞ2 and ΞΞΞ3

may be framed accordingly. For the section ΞΞΞ2,
the variable depth air gap between the panel and
the base constitute the third duct. Eventually,
there exist a particle velocity at the interface of
the control volumes CV-2 and CV-3 as well. The
control volume CV-2 of ΞΞΞ2 has a uniform cross-
sectional area.

5 Solution

The pressure reflection coefficient of the panel
wedge is derived from its transfer matrix, a matrix
that transfers the state vector along the z coordi-
nate, making use of the following steps [Kar and
Munjal (2006a)].

• The system matrix [�i] for each domain ΞΞΞi,
i = 1-5, is derived from the respective differ-
ential coefficients.

• Forward transfer matrices [�i] from the cor-
responding system matrices [�i] are deter-
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mined by making use of the matrizant analy-
sis.

• The four-pole transfer matrix [T ] is de-
termined by applying the boundary condi-
tions over the transfer matrices [ΩΩΩi]. Here,
the boundary condition transfer (BCT) algo-
rithm is made use of to overcome the compu-
tational instabilities as discussed in the ear-
lier literature [Kar and Munjal (2005)].

• The pressure reflection coefficient and hence
the sound absorption coefficient is derived
from the transfer matrix [T ].

The first two steps are similar for all the domains
with little difference between them. Thus, here,
only one domain, namely [ΞΞΞi], will be worked out.
The third step applies the boundary conditions of
any domain to its forward transfer matrices [ΩΩΩ].
The final step is independent of the sub domains
and is applied to the four-pole matrix derived over
the whole wedge structure.

For plane wave propagation in fluids, state vari-
ables like the acoustic pressure pi, density per-
turbation ρi and velocity perturbations ui over the
corresponding areas Si(z) are all harmonic func-
tions of time. Working in the frequency domain,
the time dependence of all variables may be taken
as harmonic (e jωt). For steady state simple har-
monic motion,

pi (z, t) = pi(z)e jωt

ui (z, t) = ui(z)e jωt

u∗12 (z, t) = u∗12(z)e jωt

⎫⎬
⎭ i = 1,2. (7)

Using the condition of isentropicity, the den-
sity and the pressure perturbations are related by
[Munjal (1987)]

pi = ρic2
i ; i = 1,2 (8)

Using Eq. 8, the density terms, ρ1 and ρ2, are
eliminated from the continuity equations in favor
of the corresponding acoustic pressures. Express-
ing transverse velocity as in Eq. 4, the set of four
governing equations Eqs. 1-3 can be given as a set
of four coupled differential equations with vari-
able coefficients. The derivative of each state vari-
able may be rearranged as a linear combination of

the state variables (acoustic pressure and particle
velocity). Thus,

d {V}i

dz
=

4

∑
k=1

[Ψ]ik {V}k ; i = 1 to 4, or

{V’} = [Ψ]{V}
(9)

where the state vector {V} may be written as

{V}=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
p1 u1 p2 u2

]
for domains Ξ1 and Ξ3[

p1 u1 p2 u2 p3 u3

]
for domain Ξ2

(10)

Here, it may be reported again that only the so-
lution for the segment ΞΞΞ1 is presented in this sec-
tion. To clarify Eq. 9, one of the vector compo-
nent, say {V}2, corresponding to the particle ve-
locity u1, can be derived by rearranging Eq. 1 and
is given below explicitly.

u′1 ≡
d {V}2

dz
= −

{
ik0

Y0
+

2H
S1 cosθY0ζ

}
p1+{

2H
S1 cosθY0ζ

}
p2 − (lnS1)

′ u1. (11)

Terms associated with the vector components
p1, p2, etc. are elements of the system matrix [�].
Order of the system matrix is dependent upon the
number of space variables associated with the cor-
responding section. [�]1 and [�]3, correspond-
ing to the sections ΞΞΞ1 and ΞΞΞ3, respectively, are
fourth order square matrices, whereas, for ΞΞΞ2,
the number of differential equations will be six
and thus the corresponding system matrix [�]2
is of the sixth order. An asymptotic method of
matrix integration, better known as Peano-Baker
method, may be used for solving the set of Eqs.
9, where the forward transfer matrix [Ω] is de-
termined from the corresponding system matrices
[�] in the form of an infinite series [Frazer, Dun-
can and Collar (1952)]. This approach does not
decouple the set of first order differential equa-
tions and hence no change undergoes in their or-
der. Here, the solution in terms of the transfer
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matrix [Ω] for the corresponding section may be
given as:

{V}z=0 = [Ω]{V}z=L , (12)

where

[Ω] = [In +Q [�]+Q [�]Q [�]+ · · ·]−1

Q [�] =
L∫

0

[�]dz

Q [�]Q [�] =
L∫

0

[�]

⎛
⎝ L∫

0

[�]dz

⎞
⎠dz

(13)

Its usefulness is limited by slow convergence
since the solution starts from the identity matrix
on every occasion. The constituent matrix ele-
ments [�]ik of Eq. 9 are either constants or some
continuous functions of the axial co-ordinate z.
Thus, there exists a definite integral for each of
them and thence an approximated solution for the
first order differential equation of Eq. 9 over any
continuous path z = z1 to z = z2. This functional
continuity attribute of the coefficients provides an
alternate solution. Systems with variable coeffi-
cients can be solved by splitting the entire range
of the independent variable z into a finite number
of sub-segments. The variable coefficients may
be integrated over each of the sub-domain and
this would provide an averaged out system ma-
trix with constant coefficients. An element of the
corresponding system matrix in this case is given
as:⎡
⎣ z2∫

z1

[�]dz

⎤
⎦

ik

=
z2∫

z1

[�]ik dz, (14)

where (z1, z2) ⊂ (0,Li). The constituent elements
of a matrix, that result from the integration of the
matrix [�] over the path (z1, z2), correspond to the
average value of the integral [�]ik over that inter-
val. Thus, a scalar valued matrix (where [�]ik =
constant, for all i,k) may be integrated over the
entire path as a single segment. But for the vari-
able [�]ik ’s, the interval {z1 < z < L1} needs to be
segmented for better approximation. Let this in-
terval (path of integration) be divided into a finite

number of equal segments (say N). Thus, the in-
tegration for a single segment may be worked out
over the path length of Ls(= L1/N). Error asso-
ciated with the approximation depends upon the
number of segments as well as the characteristics
of the functions [�]ik. Thus, for any such inter-
val that spans (z, z + Ls), the state vectors at the
boundaries are related as [Kar and Munjal (2004)]

{V}z = e[Γ] {V}z+Ls
; [Γ]ik = −

z+Ls∫
z

[�]ik dz,

(15)

The Maclaurin’s series may be used to expand the
transfer matrix e[Γ] that acts as a linear operator
(matrix multiplication) between the downstream
and upstream state vectors of one segment.

e[Γ] = [IN ]+
∞

∑
n=1

[Γ]n

n!
≡ [Φ] , (say) (16)

If the transfer matrix [Γ] is diagonalized using the
corresponding modal matrix [Ψ] and the eigenval-
ues of the matrix [Γ], then

[Γ] = [Ψ] [λ ] [Ψ]−1 , [Φ] = [Ψ]
[
eλ

]
[Ψ]−1 , (17)

where eigenvalues are elements of the diagonal-
ized matrix [λ ]:

[
eλ

]
ik

=

{
eλι if i = k

0 if i �= k
(18)

and [λ ]i is the ith eigenvalue. Care must be taken
to ensure the direction of the integration while in-
tegrating the matrix [�]. The process is repeated
for all segments, and the corresponding transfer
matrices are determined and sequentially multi-
plied to produce the overall transfer matrix:

[Ω] =

[
N
∏
i=1

[Φ]i

]
. (19)

Similarly, the transfer matrices for other sections
ΞΞΞ2 to ΞΞΞ5 of Fig. 2 are derived. The orders of
the matrices are different. Eqs. 9 are a two-point
boundary value problem; that is, it is required
to satisfy boundary conditions at more than one
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value of the independent variable. The preference
for the proposed semi-analytical method over the
standard numerical methods is twofold. The fore-
most need is to get an operator in terms of the
transfer matrix that operates between the vectors
at the two ends of the conical part of wedge. Due
to large difference between the impedances of-
fered by different domains, it seems to have pro-
duced numerical instability generated due to the
cross flow of the sound propagation while sat-
isfying the boundary conditions across the inde-
pendent variable. Here, the transmission of the
boundary condition along the independent vari-
able is basically a numerical cancellation of the
associated differential coefficients ([�]ik of Eq.
9).

6 Boundary Condition

The order of the overall transfer matrices [Ωi]
varies from domain to domain; the order of the
linear operator for ΞΞΞ1 and ΞΞΞ3is four, whereas it
is six for ΞΞΞ2. Suitable boundary conditions are
applied to obtain the desired four-pole parameter
transfer matrix [T ]. The highest dimension of any
state vector of Eq. 10 is six (vectors across the
domain ΞΞΞ2). Thus, the desired four-pole param-
eter transfer matrix [T ]1, relating the state vec-
tors across the panel (domains ΞΞΞ1, ΞΞΞ2, and ΞΞΞ3),
may be obtained by applying a set of four appro-
priate boundary conditions (B.C.) to the transmis-
sion matrices [Ωi], i = 1 to 3.

Before obtaining a single transfer matrix over the
sections ΞΞΞ1, ΞΞΞ2, and ΞΞΞ3, two of the boundary con-
ditions are applied to section ΞΞΞ2. The normal par-
ticle velocity at the outlet of the first duct and at
the inlet of the third duct of ΞΞΞ2 may be considered
to be zero. They may be given as

u1,(z=L1+L2) = u3,(z=L1) = 0. (20)

On applying the boundary conditions of Eq. 19,
the order of the transfer matrix [Ω2] is reduced by
two. The reduced transfer matrix [Ω2] of order
four may now operate between the vectors with
four elements each across ΞΞΞ2. It may be written

as[
p1 u1 p2 u2

]T

(z=L1)

= [Ω2]
[
p2 u2 p3 u3

]T
(z=L1+L2)

. (21)

Now, all three transfer matrices [Ω1], [Ω2] and
[Ω3], which are of the same order, are multiplied
sequentially. To reduce the above product matrix
into the desired 2x2 matrix, a couple of boundary
conditions are applied. The normal particle veloc-
ity at the inlet (z = 0) of the second duct of ΞΞΞ1 may
be considered to be zero. Similarly, the velocity
at the outlet (z = L) of the first duct of ΞΞΞ3 is zero.
Thus, the boundary conditions may be written as

u2,(z=0)
∣∣
Ξ1

= u2,(z=L)
∣∣
Ξ3

= 0. (22)

As followed in all existing literature, matrix [Ω],
with the help of elementary algebra, may be re-
duced to a four-pole matrix [T ]1 by applying the
B.C.’s of Eq. 21. The base segment ΞΞΞ4, packed
with absorptive material, and the air gap ΞΞΞ5 of
Fig. 2 are treated as ducts with uniform cross-
sectional areas. The respective transfer matrices
[T ]2 and [T ]3 may be given as [Munjal (1987)],

[T ]2 =

[
cos (kω L4) j sin(kω L4)

Yω
jYω sin(kωL4) cos(kω L4)

]
;

[T ]3 =

[
cos(k0L5) j sin(k0L5)

Y0

jY0 sin(k0L5) cos(k0L5)

]
,

(23)

The final transfer matrix relating the state vec-
tor at the extreme ends is obtained by sequential
multiplication of the three constituent segmental
transfer matrices. Thus,

[T ] =
3

∏
i=1

[T ]i and
[
p u

]T

z=0
= [T ]

[
p u

]T

z=L
.

(24)

The impedance Z and thus the pressure reflection
coefficient R at the incident plane may be eval-
uated from the transfer matrix [T ]. Assuming a
rigid termination (the particle velocity u = 0) at
the end of the air-gap (domain ΞΞΞ5), the acoustic
impedance Z and the reflection coefficient R may
be given as

Z =
T1,1

T2,1
and R =

Z −Y0

Z +Y0
, Y0 = ρ0c0 (25)
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In the present work, the expression for ζ is evalu-
ated from the default option values of th = 1 mm,
dh = 3 mm and σ = 0.3 (porosity of 30 %). In case,
the panel is not protected by the perforated plate
(a case of pressure continuity at the interface) or
the impedance at the interface is too small, the el-
ements of the transfer matrices [Ωi] become large.
Application of B.C.’s to a matrix may be viewed
as a set of algebraic operations involving the con-
stituent elements of the matrix. Thus, any alge-
braic computation involving astronomically large
numbers would generate computational instabili-
ties on an expected line. In such situations, the
conventional approach of applying B.C.’s would
be inefficient for predicting the impedance Z and
the reflection coefficient R of an acoustic wedge.
The BCT algorithm is known to overcome such
limitations [Kar and Munjal (2005 and 2006a)].

7 Application of BCT algorithm

Boundary conditions are applied over a matrix
to reduce the order of the matrix by means of a
sequence of arithmetic operations. Every com-
puting machine has its own accuracy limit; say
of the order of 10−16 or 10−24. So, the accu-
racy of the application of the boundary condi-
tions depends upon the numerical values of the
transfer matrix elements/components. The mag-
nitudes of the transfer matrix elements depend
upon the impedance at the interface and the axial
dimension of the acoustic domain [Kar and Mun-
jal (2006a)]. Details of the algorithm are left out
from the scope of the current manuscript and may
be referred to in the literature [Kar and Munjal
(2005)]. Yet, a brief description will be outlined
here. In the present method, each boundary con-
dition is represented as a relationship among the
vector elements (particle velocity and the acoustic
pressure), where any one component of an nth or-
der vector may be given in terms of a linear com-
bination of the rest of the components. Such re-
lationship, an algebraic function by itself, for a
unique vector may be given as:

{V}k = f ({V}i |∀i = 1 to n, i �= k ) (26)

where {V}k is the kth component of the vector
{V}. The above may be demonstrated for a do-

main over the length L, where second order square
matrices [A] and [B] operate over the spans (0,
L/2) and (L/2, L), respectively, so that

{u}= [A]{v} and {u}= [B]{w} (27)

where

{u}= [u1 u2]
T ; {v} = [v1 v2]

T and

{w} = [w1 w2]
T .

(28)

As mentioned earlier, the boundary condition ap-
plied on the vector {u} may be represented as

u2 = C1u1 +C0 (29)

where the coefficients C0 and C1 are known quan-
tities, i.e., for acoustic domains, coefficients are
given in terms of impedance or admittance. A
similar relationship for the vector {v} may be de-
veloped by making use of the matrix [A]:

v2 = D1v1 +D0 (30)

where

D0 =
C0

A22−C1A12
; D1 =

C1A11 −A21

A22−C1A12
. (31)

The set of coefficients (D0, D1) can be hypo-
thetically considered as a boundary condition ap-
plied to the vector {v}. Rather than applying
the given boundary condition (in terms of C0 and
C1) on the vector {u} over a single overall ma-
trix ([M]=[A][B]), where the matrix elements are
larger than those of the individual matrices, it is
numerically advantageous to apply different set of
coefficients over segmental matrices [A] and [B].
This is the essence of the BCT algorithm.

8 Results and Discussion

The present approach has been applied to the sim-
ple rectangular wedge structures in the literature
[Kar and Munjal (2006a)] and is corroborated
with its experimental [Koidan, Hruska and Pick-
ett (1972)], FEM [Easwaran and Munjal (1993)]
and BEM [Wang and Tang (1996)] counterparts.
Here, the panel wedge has been analyzed to show
the utility of the present semi-analytical approach
based on the plane wave theory. All numerical
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computations were performed for sonic speed of
340 m/s. The transverse dimensions “H” and the
panel length L (L = L1 +L2 +L3) have the default
option values of 0.3 m and 0.44 m respectively,
whereas L1 and L3 are 0.14 m long each. Un-
less mentioned otherwise, the flow resistivity of
the acoustic materials in panel (η) as well as the
base (ηb) has the default value of 1.6×104 Ns/m4.
The base length L4 and air gap length L5 are taken
constant at 0.1 m each.

Fig. 3 shows the pressure reflection coefficients
(R) for different values of the flow resistivity of
the panel. The pressure reflection coefficient for
different values of flow resistivity differs substan-
tially at the lower frequencies when it increases
with increasing value of η . This is due to the
higher resistance offered by the fibrous material
to absorb sound energy. Beyond a certain value
of η , the performance deteriorates on further in-
crements. Here, the sound wave experiences a
higher impedance mismatch at the interface and
thus fails to enter the panel. This leads to a
stronger reflection back to the source. So, there
is a limiting value of flow resistivity for an opti-
mal sound absorption coefficient.

Figure 3: Pressure reflection coefficient for differ-
ent values of the flow resistivity of the panel (η).–
– – , 1.0×104; – · – , 2.0×104 and ——, 3.0×104

Ns/m4.

For a constant overall panel length L, and L1 = L3,
the shape of the panel changes with length L1.
Effect of L1 on pressure reflection coefficient is
shown in Fig. 4. A set of four curves has been

Figure 4: Pressure reflection coefficient for differ-
ent values of L1 for η = ηb =1.6×104 Ns/m4 and
L = 0.44 m. – – –, 0.1 m; · · · · · · , 0.15 m; – · – ,
0.18 m and ——, 0.22 m.

shown. They exhibit a common trend. While
comparing any two of them, it may be noticed that
whichever has got a lower trough, has got a higher
peak. This is due to the following reasons. For a
smaller value of length L1 (with L = L1 +L2 +L3

fixed), the included angle θ of Fig. 2 of the do-
main ΞΞΞ2 is less, and so is also the depth (per-
pendicular distance between both the perforated
plates) of the panel. Thus, a panel with smaller L1

would offer lower impedance and hence a lower
pressure reflection coefficient. Performance of the
panel wedge at the next frequency band (200-400
Hz) is controlled by the air-cavity between the
panel and the base. The smaller the value of L1,
the larger the cavity volume. This cavity acts as a
compliance of a resonator and controls the ampli-
tude of the reflection coefficient.

Fig. 5 shows the pressure reflection coefficient
for different values of the panel length L. Longer
panels have lower pressure reflection coefficient.
But with a constant L1, the trapped air cavity at
the back of the panel becomes larger for longer
elements. As mentioned above, this large volume
resonator raises the peak of the reflection coeffi-
cient spectrum. So, there is an optimal value of
the panel length for which the absorption coeffi-
cient will be the most desirable.
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Figure 5: Pressure reflection coefficient for differ-
ent values of L for η = ηb =1.6×104 Ns/m4 and
L1 = 0.15 m. – – –, 0.5 m; ——, 0.4 m and – · –,
0.35 m.

9 Concluding Remarks

Here, an alternative to both the conventional
wedge and the flat panel has been analyzed. The
“panel wedge”, as it has been termed here, has
an intermediate performance level. The panel is
analyzed by making use of the matrix calculus
and the boundary condition transfer algorithm. A
parametric study has been performed for some of
the geometrical attributes of the panel wedge. Un-
like the conventional wedge, the air cavity has its
distinct signature over the pressure reflection co-
efficient.
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