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Linear Stability Analysis of Time-Averaged Flow Past a Cylinder

Sanjay Mittal1

Abstract: Flow past a circular cylinder looses
stability at a Reynolds number, Re ∼ 47. It has
been shown, in the past, that the linear stability
analysis (LSA) of the steady state solution can
predict not only the critical Re, but also the non-
dimensional frequency, St, of the associated insta-
bility. For larger Re the non-linear effects become
important and the LSA of the steady-state flow
does not predict the correct St. It is shown that,
in general, the LSA applied to the time-averaged
flow can result in useful information regarding its
stability. This idea is applied to the Re = 100
flow past a circular cylinder. The LSA of the
time-averaged flow results in the correct value
of St. Proper Orthogonal (POD) or Karhunen-
Loéve (K-L) decomposition of the unsteady flow
using the snapshot method is also carried out. The
modes from this decomposition are compared to
the unstable modes computed using the LSA.

Keyword: Circular Cylinder, Linear Stability
Analysis, Finite Element Method, Reynolds Av-
eraged Navier Stokes Equations, Proper Orthog-
onal Decomposition, Karhunen-Loéve (K-L) de-
composition.

1 Introduction

The steady flow past a circular cylinder be-
comes unstable beyond Re ∼ 47 and eventually
leads to von Karman vortex shedding (Williamson
(1996)). Various investigations, in the past, have
shown that the Linear Stability Analysis (LSA)
of the steady-state flow can provide a reasonably
accurate estimate of the critical Reynolds num-
ber (Rec) and the non-dimensional vortex shed-
ding frequency (Stc) at the onset of the instabil-
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ity (Jackson (1987); Morzynski, Afanasiev, and
Thiele (1999); Ding and Kawahara (1999); Mittal
and Kumar (2003); Kumar and Mittal (2006)). In
a recent study (Kumar and Mittal (2006)) it has
been shown, via the LSA analysis, that to a large
extent the blockage can explain the scatter in the
data for the critical parameters at the onset of the
instability, from various researchers in the past.
The extrapolated values for a computational do-
main with infinite lateral width are Rec = 47.380
and Stc = 0.1163.

For Re beyond Rec, the non-linear terms become
increasingly important and the LSA of the steady-
state flow ceases to provide any useful informa-
tion. For example, the St predicted by the LSA
of the stationary solution for Re = 100 is much
lower than the value observed via experiments
and direct time integration of the governing equa-
tions. In addition, it becomes increasingly diffi-
cult to generate a steady-state solution for higher
Re. Mittal (2008) has shown that linear stabil-
ity analysis of the time-averaged flows can lead
to useful information. In this paper we investi-
gate the possibility of generating useful informa-
tion, especially for the St, from the linear stability
analysis of the time-averaged flow past a circular
cylinder.

The Proper Orthogonal (POD) or Karhunen-
Loéve (K-L) decomposition of unsteady flows us-
ing the snapshot method has been used in the past
for extracting the most relevant spatial structures
for constructing a low-dimensional flow model
(Sirovich (1987); Noack, Afanasiev, Morzynski,
Tadmor, and Thiele (2003); Hasan and Sanghi
(2007)). The K-L decomposition for the Re = 100
unsteady flow past a cylinder is carried out in this
work. The modes are compared to the unstable
modes predicted by LSA.

A stabilized finite element formulation is



64 Copyright c© 2008 Tech Science Press CMES, vol.27, no.2, pp.63-78, 2008

used that allows one to employ equal-order-
interpolation functions for velocity and pressure.
The SUPG (Streamline-Upwind/Petrov-Galerkin)
and PSPG (Pressure-Stabilizing/Petrov-Galerkin)
stabilization technique (Tezduyar, Mittal, Ray,
and Shih (1992)) is employed to stabilize the
computations against spurious numerical oscil-
lations. The formulation for the linear stability
analysis with the stabilized finite element method,
being used here, was proposed in one of our ear-
lier articles (Mittal and Kumar (2003)). The
linear stability analysis involves the solution to an
eigenvalue problem. A sub-space iteration proce-
dure (Morzynski, Afanasiev, and Thiele (1999))
in conjunction with shift-invert transformation is
utilized.

2 The Governing Equations

2.1 The incompressible flow equations

We begin by reviewing the equations governing
the flow of an incompressible fluid:

ρ(
∂u
∂ t

+u ·∇∇∇u− f)−∇∇∇ ·σσσ = 0, (1)

∇∇∇ ·u = 0. (2)

Here ρ , u, f and σσσ are the density, velocity, body
force and the stress tensor, respectively. The
stress tensor is written as the sum of its isotropic
and deviatoric parts: σσσ = −pI + T, where, T =
μ((∇∇∇u)+ (∇∇∇u)T ). Here p and μ are the pressure
and coefficient of dynamic viscosity, respectively.
These equations are accompanied with appropri-
ate boundary conditions on the velocity and stress
and an initial condition on the velocity.

2.2 Linearized Disturbance Equations (LDE)
and Linear Stability Analysis (LSA) of the
flow

To derive the equations for disturbance field, the
unsteady flow is expressed as a combination of
the steady flow and the disturbance: u = U + u′

and p = P+ p′. Here, (U, P) represent the steady-
state solution obtained by solving Eqs. (1) and (2)
without the unsteady terms. u′ and p′ are the per-
turbation fields of the velocity and pressure, re-
spectively. Substituting for this flow decomposi-
tion in Eqs. (1)-(2) and subtracting from them, the

equations for steady flow, one obtains the follow-
ing equations for the disturbance fields:

ρ(
∂u′

∂ t
+u′ ·∇∇∇U+U ·∇∇∇u′ +u′ ·∇∇∇u′)−∇∇∇ ·σσσ ′ = 0,

(3)

∇∇∇ ·u′ = 0. (4)

Here, σσσ ′ is the stress tensor due to the perturbed
solution (u′, p′). We further assume that the dis-
turbances are small and drop the non-linear term.
This leads to the Linearized Disturbance Equa-
tions (LDE) of the form:

ρ(
∂u′

∂ t
+u′ ·∇∇∇U+U ·∇∇∇u′)−∇∇∇ ·σσσ ′ = 0, (5)

∇∇∇ ·u′ = 0. (6)

For conducting the linear stability analysis (LSA)
we assume the disturbance field to have the form:
u′(x, t) = û(x)eλt , p′(x, t) = p̂(x)eλt . This allows
us to conduct a global, linear stability analysis of a
general, non-parallel but steady flow. Substituting
this form of the disturbance in Eqs. (5)-(6) we get:

ρ(λ û+ û ·∇∇∇U+U ·∇∇∇û)−∇∇∇ · σ̂σσ = 0 (7)

∇∇∇ · û = 0. (8)

Here, λ is the eigenvalue of the fluid system and
governs its stability. In general, λ = λr + iλi

where, λr and λi are the real and imaginary parts,
respectively. The boundary conditions for (û, p̂)
are the homogeneous versions of the ones for
(U,P).

2.3 Equations for the time-averaged flow and
their stability

For an unsteady flow, one can also express the ve-
locity and pressure fields as a combination of the
time-averaged solution and the disturbance field
(Mittal (2008)): u = u + u′′, p = p + p′′. Here,
(u, p) represent the time-averaged flow while u′′

and p′′ are the perturbation fields, with respect
to (u, p), of the velocity and pressure, respec-
tively. On substituting this flow decomposition
in Eqs. (1)-(2), and then time averaging them,
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one obtains the Reynolds Averaged Navier Stokes
equations (RANS):

ρ(u ·∇∇∇u)−∇∇∇ ·σσσ = −ρ∇∇∇ ·u′′u′′, (9)

∇∇∇ ·u = 0. (10)

Here, σσσ is the stress tensor for the time-averaged
flow, (u, p). −ρu′′u′′ is the Reynolds stress tensor
arising from the non-linearities in the advection
term. Often, for computing time-averaged turbu-
lent flows, the Reynolds stress are represented in
terms of the time-averaged flow variables via a
turbulence model. We subtract Eqs. (9)-(10) from
Eq. (1)-(2) to obtain the time evolution equations
for the disturbance field (u′′, p′′):

ρ(
∂u′′

∂ t
+u′′ ·∇∇∇u+u ·∇∇∇u′′)−∇∇∇ ·σσσ ′′ = ρ∇∇∇ ·u′′u′′,

(11)

∇∇∇ ·u′′ = 0. (12)

Here, σσσ ′′ is the stress tensor for the perturba-
tions, (u′′, p′′), in the flow. In Eq. (11) the right
hand side depends on the Reynolds stress. This is
a known quantity for the time evolution of dis-
turbance using this equation. In addition, for
small disturbance the nonlinear term, u′′ ·∇∇∇u′′, is
dropped from the left hand side of the equation.
For future use in the paper we refer to these equa-
tions as the Linearized Disturbance Equations
about Average (LDEA). The solution to Eqs. (11)-
(12) is the combination of the homogeneous and
the particular solutions. We observe that the ho-
mogeneous version of Eqs. (11)-(12) are identical
to linearized version of Eqs. (3)-(4). Therefore,
the stability of the time-averaged solution can be
analyzed in a manner very similar to that for the
steady-state flow. In certain situations, such as
high Re flows, it is very difficult and sometimes
even impossible to obtain a steady-state solution.
However, it is significantly easier to generate a
time-averaged solution using RANS (Eqs. (9)-
(10)). The present analysis shows that, in such
situations, the linear stability analysis of the time-
averaged flow can be carried out to assess its sta-
bility. In this paper we will restrict ourselves to
laminar flows and utilize these observations to in-
vestigate the Re = 100 flow past a cylinder.

3 Proper Orthogonal Decomposition (POD)

In the present work the snapshots from the direct
time integration of the flow equations are utilized
to generate the Karhunen-Loéve modes. Let ui

represent the ith of the N snapshots of the flow
u(x, t) and u[i](x) be the ith of the N Karhunen-
Loéve modes of the flow. Using the N snapshots
of the flow we can approximate it as:

u(x, t)∼ u(x)+
N

∑
i=1

ai(t)u[i](x) (13)

Here, u(x) is the mean flow and ai(t) the time
dependent Fourier coefficients which can be ex-
pressed as:

ai = (u−u,u[i])Ω, (14)

where, (v,w)Ω =
∫

Ω v ·w dΩ is the inner prod-
uct between two divergence free fields v and w.
A temporal correlation matrix, K is constructed
from the snapshots of the flow. Its components
are given as

Ki j = (ui −u,u j −u)Ω. (15)

After forming K we compute its eigenvalues, λi,
and eigenvectors. The eigenvectors are utilized
to compute the Karhunen-Loéve modes (Sirovich
(1987); Noack, Afanasiev, Morzynski, Tadmor,
and Thiele (2003); Hasan and Sanghi (2007)).
Half the value of each eigenvalue (λi/2) repre-
sents the kinetic energy of the ith Karhunen-Loéve
mode.

4 Problem set up and boundary conditions

The cylinder resides in a computational domain
whose outer boundary is a rectangle. All the
boundaries are located at a distance of 50D from
the center of the cylinder, where D is the diam-
eter of the cylinder. The radius of the cylinder
is 1 unit; time is non-dimensionalized using the
free-stream speed and the radius of the cylinder.
The finite element mesh, used in this work, con-
sists of 19,696 quadrilateral elements and 20,034
nodes. The structure of the mesh is same as the
one used in our earlier studies (for example, Mit-
tal and Kumar (2003)). A picture of the mesh is
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Figure 1: Re = 100 flow past a cylinder: a close-up view of the finite element mesh with 20,034 nodes and
19,696 quadrilateral elements.

shown in Figure 1. The following boundary con-
ditions are applied. Free-stream value is assigned
to the velocity at the upstream boundary. At the
downstream boundary, a Neumann-type boundary
condition for the velocity is specified that corre-
sponds to zero stress vector. On the upper and
lower boundaries a "slip-wall" boundary condi-
tion is employed, i.e., the component of veloc-
ity normal to and the component of stress vec-
tor along these boundaries are prescribed a zero
value. For the linear stability analysis, as well
as the disturbance equations, the boundary con-
ditions are the homogeneous versions of the ones
used for determining the steady state solutions.

5 The finite element formulation

5.1 The Incompressible Flow Equations

Consider a finite element discretization of the do-
main, Ω, into subdomains Ωe, e = 1,2, ...,nel,
where nel is the number of elements. Based on
this discretization let S h

uuu and S h
p be the finite el-

ement trial function spaces for velocity and pres-
sure, respectively and V h

uuu and V h
p be the weight-

ing function spaces. The stabilized finite element
formulation of Eqs. (1)-(2) is written as follows:
find uh ∈ S h

uuu and ph ∈ S h
p such that ∀wh ∈ V h

uuu ,
qh ∈ V h

p

∫
Ω

wh ·ρ
(

∂uh

∂ t
+uh ·∇∇∇uh − f

)
dΩ

+
∫

Ω
εεε(wh) : σσσ(ph,uh)dΩ

+
∫

Ω
qh∇∇∇ ·uhdΩ

+
nel

∑
e=1

∫
Ωe

1
ρ

(
τSUPGρuh ·∇∇∇wh +τPSPG∇∇∇qh

)
.

[
ρ

(
∂uh

∂ t
+uh ·∇∇∇uh − f

)
−∇∇∇ ·σσσ(ph,uh)

]
dΩe

+
nel

∑
e=1

∫
Ωe

τLSIC∇∇∇ ·whρ∇∇∇ ·uhdΩe

=
∫

Γh

wh ·hhdΓ. (16)

Here, Γg and Γh are complementary subsets of
the boundary Γ on which Dirichlet and Neumann-
type boundary conditions are assigned as follows:

u = g on Γg, n ·σσσ = h on Γh, (17)

where, n is the unit normal vector to Γh. In the
variational formulation given by Eqn. (16), the
first three terms and the right-hand side consti-
tute the Galerkin formulation of the problem. It
is well known that the Galerkin formulation is un-
stable with respect to the advection operator as
the cell Reynolds number(based on the local flow
velocity and mesh size) becomes larger. Also,
not all combinations of the velocity and pres-
sure interpolations are admissible in the Galerkin
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formulation. Elements that do not satisfy the
Babuska-Brezzi condition lead to oscillatory so-
lutions and, sometimes, no solution at all. For ex-
ample, the equal-order interpolations for velocity
and pressure lead to oscillatory solutions if they
are used with a Galerkin formulation. To give sta-
bility to the basic Galerkin formulation, a series
of element-level integrals are added. The first se-
ries of element-level integrals are the SUPG and
PSPG stabilization terms added to the variational
formulations (Tezduyar, Mittal, Ray, and Shih
(1992)). The SUPG formulation for convection
dominated flows was introduced by Hughes and
Brooks (1979) and Brooks and Hughes (1982).
The Petrov-Galerkin term for Stokes flows, to ad-
mit the use of equal-order interpolations for ve-
locity and pressure without producing oscillations
in the pressure field, was proposed by Hughes,
Franca, and Balestra (1986). Tezduyar, Mittal,
Ray, and Shih (1992) proposed a formulation us-
ing the SUPG and PSPG stabilizations for finite
Reynolds number flows. The second series of el-
ement level integrals are stabilization terms based
on the least squares of the divergence-free condi-
tion on the velocity field. The definition for τPSPG

and τSUPG is given by the following relations based
on its values for the advection and diffusion lim-
its.

τSUPG = τPSPG =
(

1
τ2

ADV

+
1

τ2
DIF

)− 1
2

, (18)

where,

τADV =
he

2‖uh‖ ,τDIF =
(he)2

12ν
. (19)

Here, he is the element length and various defini-
tions have been used by researchers in the past.
Mittal (2000) conducted a systematic numerical
study to investigate the effect of high aspect ratio
elements on the performance of the finite element
formulation for three commonly used definitions
of he. In this work we use the definition based
on the minimum edge length of an element. The
coefficient τLSIC is defined as

τLSIC =
(

1
δ 2

ADV

+
1

δ 2
DIF

)− 1
2

, (20)

where

δADV =
he‖uh‖

2
,δDIF =

(he)2(‖uh‖)2

12ν
. (21)

The nonlinear equation system resulting from the
finite element discretization of the flow equa-
tions are solved using the Generalized Minimal
RESidual (GMRES) technique (Saad and Schultz
(1986)) in conjunction with diagonal precondi-
tioners. The implicit method used in the present
work allows us to seek steady-state solutions by
simply dropping the unsteady terms in the govern-
ing equations. Several alternate formulations for
solving the unsteady flow equations exist. Some
examples can be found in the work by Nicolas and
Bermudez (2007) and Mai-Duy, Mai-Cao, and
Tran-Cong (2007).

5.2 The Equations for Linear Stability Analy-
sis

Let Ŝ h
u and Ŝ h

p be the finite element trial func-

tion spaces and V̂ h
u and V̂ h

p the weighting func-
tion spaces for the perturbations in the velocity
and pressure fields, respectively. The finite ele-
ment formulation for the perturbation equations,
(7) and (8), is given as: find ûh ∈ Ŝ h

u and p̂h ∈ Ŝ h
p

such that ∀ŵh ∈ V̂ h
u and q̂h ∈ V̂ h

p

∫
Ω

ŵh ·ρ
(

λ ûh +Uh ·∇∇∇ûh + ûh ·∇∇∇Uh
)

dΩ

+
∫

Ω
εεε(ŵh) : σσσ(p̂h, ûh)dΩ

+
∫

Ω
q̂h∇∇∇ · ûhdΩ

+
nel

∑
e=1

∫
Ωe

1
ρ

(
τSUPGρUh ·∇∇∇ŵh +τPSPG∇∇∇q̂h

)
.

[
ρ

(
λ ûh +Uh ·∇∇∇ûh + ûh ·∇∇∇Uh

)

−∇∇∇ ·σσσ(p̂h, ûh)
]

dΩe

+
nel

∑
e=1

∫
Ωe

τLSIC∇∇∇ · ŵhρ∇∇∇ · ûhdΩe = 0. (22)

The stabilization coefficients for the linear stabil-
ity analysis are given by the same definition as
defined in Equations (18)-(21) except that they are
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based on the steady-state velocity field, Uh. Equa-
tion (22) leads to a generalized eigenvalue prob-
lem of the form AX −λ BX = 0, where A and B
are nonsymmetric matrices. In this study we use
the shift-invert transformation in conjunction with
the subspace iteration method (Stewart (1975)) to
track the eigenvalue with the largest real part.

6 Results: Re = 100 flow past a cylinder

6.1 2D Direct Numerical Simulation (DNS)

The steady-state solution to Eqs. (1)-(2) is com-
puted by dropping the unsteady terms. The vor-
ticity field for the steady flow past a cylinder for
Re = 100 is shown in the top row of Figure 2.
The unsteady flow past a cylinder is obtained via
time integration of Eqs.(1-2) with a time step size
of 0.10 (non-dimensional units). The computa-
tions begin with a steady state flow. Two strate-
gies were tried to achieve a fully developed un-
steady flow. In the first method, the vortex shed-
ding is excited by perturbing the flow via rotat-
ing the cylinder. First, the cylinder is rotated
clockwise for 10 time steps with a rotation rate
that corresponds to a tip speed that is 10% of the
free-stream speed. This is followed by a counter-
clockwise rotation for 5 time-steps with twice the
rotation rate. The cylinder, then, remains station-
ary and the unsteady flow is allowed to develop
for the uniform inflow. In the second method
the computations begin by adding a small random
disturbance (of the order of half the machine pre-
cision ∼ 10−6) to the steady solution. Both meth-
ods lead to the same developed unsteady flow.
The results shown in this paper are the ones ob-
tained with the latter strategy. The vorticity field
for the fully developed unsteady flow is shown
in the middle row of Figure 2. The lowest panel
in this figure shows the disturbance field obtained
by subtracting the steady flow from the instanta-
neous fully developed unsteady flow. Through-
out this paper, the magnitude of a flow quantity is
displayed in gray-scale: darker the shade, larger
is the magnitude. White contour lines indicate a
positive value while the black ones represent neg-
ative value.

The St, corresponding to the vortex shedding fre-

quency, is 0.163. As a result of the unsteady flow,
the cylinder experiences time-varying lift and
drag forces. The amplitude of the lift coefficient is
0.309. The time histories of the drag and lift coef-
ficients are shown in Figure 3. Computations with
a finer mesh, with 40,000 quadrilateral elements
and 40,480 nodes, result in St = 0.164, and an
amplitude of lift coefficient of 0.319. These val-
ues are in excellent agreement with already pub-
lished data. For example, Kravchenko, Moin, and
Shariff (1999) used a B-Spline method in con-
junction with zonal grids to compute flow past a
cylinder up to Re = 300. For the Re = 100 flow,
they report the Strouhal number to be 0.164 and
the amplitude of the lift coefficient to be 0.314.
Persillon and Braza (1998) have reported a paral-
lel, 2D type vortex shedding for their simulations
with slip end-walls at Re = 100 and L/D = 2.25.
From their computations the Strouhal number is
0.164. Williamson (1989) measured St = 0.1648
for parallel shedding.

The fully developed unsteady solution obtained
from the direct numerical simulation is time-
averaged for, approximately, 75 vortex shedding
cycles. The Reynolds stresses (u′′u′′, u′′v′′ and
v′′v′′) are shown in Figure 4. Compared to the
far wake, the Reynolds stresses are more signif-
icant in the near wake of the cylinder. As a re-
sult of these stresses the time-averaged drag coef-
ficient is significantly larger than the one for the
steady-state flow. This can be observed from the
time history of the drag coefficient shown in Fig-
ure 3. The distribution of the Reynolds stresses
is in good agreement with the computational re-
sults of Mittal and Balachander (1995). The vor-
ticity field for the time-averaged flow is shown in
Figure 5. Compared to the steady flow, the time-
averaged flow is associated with a much smaller
recirculating flow bubble. Although the region of
high vorticity is restricted to the very near wake,
the lateral width of the wake of the time-averaged
flow is slightly larger than the one for steady flow.
Also shown in this figure is the disturbance field
with respect to the time-averaged flow. The in-
stantaneous flow for which the disturbance field
is shown corresponds to the unsteady flow shown
in Figure 2.
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steady

unsteady

disturbance

Figure 2: Re = 100 flow past a cylinder: vorticity field of the fully developed steady (top), unsteady flow
(middle) and the disturbance (below).

Figure 3: Re = 100 flow past a cylinder: time histories of the drag and lift coefficients.
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Figure 4: Re = 100 flow past a cylinder: (from top to bottom) Reynolds stresses u′′u′′, u′′v′′ and v′′v′′ for the
unsteady flow.

ω−

ω−ω−

Figure 5: Re = 100 flow past a cylinder: vorticity fields of the time-averaged unsteady flow (top) and the
disturbance field with respect to the time-averaged flow. The instantaneous flow for which the disturbance
field is shown corresponds to the unsteady flow shown in Figure 2.

6.2 Linear stability analysis of the steady flow

A linear stability analysis for the Re = 100 steady
flow past a cylinder is carried out. As expected,
the LSA predicts the flow to be unstable. Figure 6
shows the vorticity field for the real and imaginary

parts of the most unstable eigenmode. While the
steady-state vorticity field is anti-symmetric with
respect to the flow axis, the perturbation field is
symmetric. A linear combination of the two re-
sults in a non-symmetric field that resembles the
von Karman vortex shedding as shown in Fig-
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imaginary

real

Figure 6: Linear stability analysis of the steady Re = 100 flow past a cylinder: vorticity fields of the real and
imaginary parts of the most unstable eigen-mode.

Figure 7: Re = 100 flow past a cylinder: vorticity field of obtained from the linear combination of the
steady-state flow and the eigenmodes corresponding to the most unstable conjugate pair of eigenvalues.

ure 7. The vorticity field shown in the figure
corresponds to the flow at t = 9 obtained from
U(x)+ û(x)eλt + û(x)eλt . Here, û(x) and û(x)
are the eigen-functions corresponding to the con-
jugate pair of the most unstable eigen-values (λ
and λ ). The St corresponding to the most unsta-
ble mode is 0.115 while its growth rate is λr =
5.8×10−2. This value of St is much lower than
the actual shedding frequency (∼ 0.164) observed
from the direct numerical simulation. This is also
observed from the difference between the longitu-
dinal spacing of the vortices in the two cases. This
reflects the inadequacy of the LSA of the steady-
state flow in predicting the correct St. We have
observed from our 2D direct numerical simula-
tions that in the initial stages of the simulation,
when the disturbances are weak, the shedding fre-
quency is very close to 0.115. However, as the
disturbances grow, the non-linear terms become

larger and modify the disturbance field including
the shedding frequency. The finite element mesh
that is being used in the computations here is suffi-
ciently refine to capture all the details of the flow.
We have experimented with more refined meshes;
no significant change in the results was observed.

6.3 Time integration of Linear Disturbance
Equations (LDE)

To study the effect of non-linear terms in the gov-
erning equations, and investigate the correctness
of the results predicted from the the Linear Stabil-
ity Analysis, direct time integration of the Linear
Disturbance Equations (LDE, Eqn.(5)-6)) is car-
ried out. The computations are initiated with the
same random disturbance field as described in the
previous section. The random disturbance excites
several modes. However, most of them decay with
time except the mode that is responsible for vor-
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Figure 8: Re = 100 unsteady flow past a cylinder: time evolution of the kinetic energy of the disturbance
obtained with Direct Numerical Simulation (DNS) and Linearized Disturbance Equations (LDE).

tex shedding. In the absence of the non-linear
terms the flow does not reach a limit cycle and
the disturbance field continues to grow exponen-
tially with the growth rate predicted by the Linear
Stability Analysis (LSA). As expected, after a cer-
tain number of time steps, the numbers become
too large causing an ’overflow’ and the program
terminates. The disturbance field generated from
the time integration of LDE are identical to to the
modes predicted by LSA.

We define the kinetic energy of the disturbance in
the computational domain as: E(t) = 1/2

∫
Ω u′ ·

u′dΩ. The time evolution of the energy of the
disturbance, E(t), is shown in Figure 8 with and
without the non-linear terms. It can be observed
that till t ∼ 200, since the disturbance field is rel-
atively small the effect of non-linear terms is neg-
ligible. Till this time the growth rate of the energy
is∼ 0.1157. As expected, this is roughly twice the
value of the growth rate of the disturbance (u′, p′)
predicted by LSA. While the energy of the distur-
bance computed with the LDE continues to grow
with this rate, the non-linear terms lead to a satu-
ration of the energy extracted from the base flow
thereby putting the fluid system through a limit
cycle.

6.4 Linear stability analysis of the time-
averaged flow

The vorticity field for the time-averaged flow
for, approximately, 75 vortex shedding cycles is
shown in Figure 5. In line with the homoge-
neous version of Eqs. (11)-(12), a linear stabil-
ity analysis for this time-averaged flow is carried
out. This flow is also found to be unstable, al-
though it is associated with a very small growth
rate (λr = 3.2× 10−4). Interestingly, only one
unstable mode (complex conjugate pair) is found
and the St corresponding to the imaginary part of
the eigenvalue is 0.16. Unlike the results from the
LSA of the steady state flow, this value of St is in
very good agreement with the actual vortex shed-
ding frequency observed from the experiments
and direct numerical simulations. The vorticity
field corresponding to the real and imaginary parts
of the most unstable eigenmode is shown in Fig-
ure 9. Shown in Figure 10 is the linear combi-
nation of the time-averaged flow and the eigen-
modes corresponding to the most unstable pair of
conjugate eigenvalues. Compared to the flow in
Figure 7, from the steady-state analysis, this looks
much closer to the solution from direct numerical
simulation (Figure 2). The longitudinal spacing
between the vortices, that is related to St, is quite
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real

imaginary

Figure 9: Linear stability analysis of the time-averaged Re = 100 flow past a cylinder: vorticity field of the
real and imaginary parts of the most unstable eigen-mode.

Figure 10: Re = 100 flow past a cylinder: vorticity field of obtained from the linear combination of the
time-averaged flow and the eigenmodes corresponding to the most unstable conjugate pair of eigenvalues.

comparable in Figures 2 and 10.

6.5 Direct time integration of Linearized
Disturbance Equations about Average
(LDEA)

To further explore the relevance of the results
from the linear stability analysis of time aver-
aged flow, a direct time integration of the homo-
geneous form of LDEA (Eqns (11)-(12) without
the Reynolds stress terms) is carried out. The base
flow is the time averaged flow shown in Figure 5.
Figure 11 shows the time evolution of the energy
of the disturbance and lift coefficient due to the
disturbance field. The energy of the disturbance
field is defined as E(t) = 1/2

∫
Ω u′′ ·u′′dΩ. Also

shown in the figure is the instantaneous vorticity
field of the disturbance. As expected, the distur-
bance field is very similar to the mode from the

LSA of the homogeneous version of the RANS.
The growth rate of the energy, marked as the slope
of the loge(E(t)) vs. t in Figure 11, is nearly twice
the value of the growth rate of u′′.

6.6 Proper Orthogonal Decomposition (POD)

In this work the Karhunen-Loéve modes are com-
puted using 125 snapshots of the fully devel-
oped periodic unsteady flow which are uniformly
sampled during two periods of the time varia-
tion of lift coefficient. It was shown by Deane,
Kevrekidis, Karniadakis, and Orszag (1991) that
20 snapshots are enough to compute the first 8
Karhunen-Loéve modes of the flow. Figure 12
shows the first eight Karhunen-Loéve modes. It
can be observed that the modes appear to form
pairs. Each of the two modes of the pair seem
quite similar albeit with a phase difference. This
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0.00073

Figure 11: Re = 100 flow past a cylinder computed using the homogeneous form of the Linearized Distur-
bance Equations about Average (LDEA): time evolution of the energy of the disturbance and lift coefficient.
Also shown is the instantaneous vorticity field of the disturbance.

is quite similar to the difference between the real
and imaginary part of the complex eigenmodes
obtained from the LSA. In addition, each alter-
nate pair of modes is symmetric about the x−axis.
These results are in very good agreement with
those reported by Noack, Afanasiev, Morzynski,
Tadmor, and Thiele (2003). Figure 13 shows
the kinetic energy content in each of the first 15
modes of the flow. The energy in the ith mode is
equal to λi/2, where, λi is the Karhunen-Loéve
eigenvalue. Most of the energy is contained in
the first pair of modes. On comparing the modes

from POD in Figure 12 and LSA of time-averaged
flow in Figure 9 it can be seen that the two tech-
niques result in different modes. Also shown in
Figure 13 is the distribution of eigenvalues for
the POD conducted for the snapshots of flow ob-
tained from solving the Linearized Disturbance
Equations (LDE, Eqns.(3)-(4)). As expected, the
higher modes are much weaker for the linearized
system. Also the strongest mode from POD is
almost identical to the one predicted by LSA of
steady state flow.

One obvious advantage of LSA over POD is the
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Figure 12: Proper Orthogonal Decomposition of the Re = 100 unsteady flow past a cylinder: the vorticity
field for the first eight Karhunen-Loéve modes.
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Figure 13: Proper Orthogonal Decomposition of the Re = 100 unsteady flow past a cylinder: eigenvalues
corresponding to the first fifteen Karhunen-Loéve modes. Results are shown for flow snapshots obtained by
solving the non-linear equations (DNS) as well as the Linearized Disturbance Equations (LDE).

information on Strouhal number that it provides.
In this particular flow problem, the analysis uti-
lizes the time-averaged unsteady solution which
has been explicitly computed, and therefore, al-
ready known to be unstable. Nevertheless, the ex-
ercise demonstrates that the LSA can still provide
useful information such as the dominant eigenval-
ues and eigenmodes. It also opens up the possi-
bility of evaluating the stability of time-averaged
flows computed via solutions to the RANS equa-
tions.

7 Concluding Remarks

Linear stability analysis of the Re = 100 flow past
a circular cylinder has been carried out. LSA
for the steady-state flow results in a significantly
lower St as compared to the value from exper-
iments and direct numerical simulations. LSA
of the time-averaged flow results in the correct
value of St. In many engineering situations,
RANS equations in conjunction with a turbulence
model are employed to calculate a time-averaged
flow. In such situations, LSA can provide use-
ful information regarding the stability of these
flows. Proper Orthogonal (POD) or Karhunen-
Loéve (K-L) decomposition of the unsteady flow

using the snapshot method is also carried out. The
modes from this decomposition are compared to
the unstable modes computed using the LSA. It is
found that in the absence of non-linear terms in
the disturbance equations the LSA and POD lead
to very similar modes. However, in the presence
of non-linear terms the mode shapes from the two
methods are not same. One advantage of POD,
over LSA is the information on the value of St
that it provides.
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