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Wave Characteristics of Multi-Walled Carbon Nanotubes

Mira Mitra1 and S. Gopalakrishnan 2

Abstract: In this paper, the wave characteris-
tics, namely, the spectrum and dispersion rela-
tions of multi-wall carbon nanotubes (MWNTs)
are studied. The MWNTs are modeled as mul-
tiple thin shells coupled through van der Waals
force. Each wall of the MWNT has three dis-
placements, i.e, axial, circumferential and radial
with variation along the axial and circumferen-
tial directions. The wave characteristics are ob-
tained by transforming the governing differential
wave equations to frequency domain via Fourier
transform. This transformation is first done in
time using fast Fourier transform (FFT) and then
in one spatial dimension using Fourier series.
These transformed equations are solved by posing
them as polynomial eigenvalue problem (PEP).
The solution gives the wavenumbers and the wave
speeds. First, the wave properties are studied
for infinite length MWNT which does not have
any variation along the axial direction. Next, the
wavenumbers are studied for finite length MWNT
with small and large radii. The analysis is done
for single, double and three-walled carbon nan-
otubes.

Keyword: Carbon nanotubes; wave propaga-
tion; wavenumbers; wave speeds.

1 Introduction

The recent trend of research in the area of car-
bon nanotubes (CNTs) shows a growing inter-
est in studying their vibrational and wave char-
acteristics. The understanding of the dynamical
properties of CNTs is essential for applications
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like sensors, high frequency oscillators and sev-
eral other nano-devices [Dresselhaus and Eklund
(2000),Jiang, Lu, Yu, and Huang (2008)]. Though
an extensive experimental research is ongoing to
understand the behavior of CNTs, a parallel effort
is being given to develop high fidelity theoretical
models of CNTs and their devices. The atomistic
simulation, though very realistic and accurate, has
restricted use for the large computational cost in-
volved. This is more prominent for device ap-
plications of CNTs, where they are used in con-
junction with host materials and there is a scale
difference between the CNT and the host [Srivas-
tava, Wei, and Cho (2003)]. Continuum model-
ing of CNTs based on different beam and shell
theories is found to give appreciable comparison
with experimental and atomistic simulation re-
sults. There are also hybrid atomistic-continuum
modeling which are recently being explored by
researchers [Theodosiou and Saravanos (2007);
Park, Cho, Kim, Jun, and Im (2006)]

Vibration and wave propagation in multi-walled
carbon nanotubes (MWNTs) have been studied by
modeling them as Euler-Bernoulli beam [Yoon,
Ru, and Mioduchowski (2003b,a)] and later the
model has been extended to Timoshenko [Yoon,
Ru, and Mioduchowski (2004)] beam theory. The
wave properties of MWNTs modeled as multi-
ple Euler-Bernoulli beam with non-coaxial de-
formation has been studied by Chakraborty and
Gopalakrishnan (2006). Nano-composite beam
with MWNT embedded in different matrix ma-
terials is modeled using higher order layer-wise
beam theory [Mitra and Gopalakrishnan (2006)].
The model incorporated partial stress transfer be-
tween the MWNT and the matrix. The vibration
properties of MWNT were also studied by im-
plementing micropolar mechanics [Xie and Long
(2006)]. Continuum 3-D elasto-dynamic equa-
tions have also been considered to study the vi-
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bration and wave characteristics of mainly single-
walled carbon nanotubes (SWNTs) [Mitra and
Gopalakrishnan (2007); Chico and Pérez-Álvarez
(2004); Suzuura and Ando (2002); Raichura,
Dutta, and Stroscio (2003)]. MWNTs have been
commonly modeled as multiple shell coupled
through van der Waals force using shell theory.
The wave characteristics of MWNTs are studied
by modeling them as multiple elastic cylindrical
structures [Xie, Han, and Long (2007)]. In ref-
erence [Wang, Ru, and Mioduchowski (2004b)],
the viability of using shell theory for buckling and
free vibration analysis of SWNT and MWNT is
discussed. Vibrational characteristics of MWNT
are studied using Flügge’s equation in refer-
ence [Wang, Ru, and Mioduchowski (2005a,b)].
Natsuki, Endo, and Tsuda (2006, 2007) used
Flügge’s equation to study wave propagation in
embedded single and double-walled CNTs and
also fluid-filled CNT. Vibrational properties of
MWNTs are also studied using Donnell shell the-
ory [Sun and Liu (2007)]. However, these refer-
ences except [Natsuki, Endo, and Tsuda (2007)]
are restricted to the study of fundamental natu-
ral frequencies. In the reference [Natsuki, Endo,
and Tsuda (2007)], the dispersion relations were
obtained, but only for double-walled carbon nan-
otube. The present paper aims on obtaining the
wave properties namely, spectrum and disper-
sion relations, i.e, the wavenumbers and wave
speeds of MWNT with different configurations.
The mathematical technique implemented in the
present work can be used to obtain the wave char-
acteristics of MWNT with arbitrary number of
walls coupled through van der Waals forces. The
study of these wave properties brings out several
new wave characteristics that are not observed in
conventional structures. It is essential to properly
understand these properties prior to using CNTs
for nano-scale devices and also to explore new ap-
plications of CNTs.

Here, the MWNT is modeled as multiple thin
shell coupled through inter-wall van der Waals
forces using Flügge’s shell theory. Each wall
has axial, circumferential and radial degrees of
freedom with variation along axial and circum-
ferential directions. The governing equations

are first reduced to frequency domain through
Fourier transform in time. The Fourier trans-
form is implemented through fast Fourier trans-
form (FFT). Next, a Fourier series approximation
is performed in the axial/circumferential direc-
tion, to further reduce the equations to ordinary
differential equations (ODEs) in the frequency-
wavenumber domain. These ODEs have constant
coefficients and are solve by posing them as poly-
nomial eigenvalue problem (PEP). This method
has been implemented to study wave propaga-
tion in laminated composite plate [Chakraborty
and Gopalakrishnan (2005)]. The solution of
the PEP provides the wavenumbers and wave
amplitude as a function of the frequency and
axial/circumferential wavenumber, depending on
the direction along which the Fourier series ap-
proximation is performed. The main advantage of
the technique is that it is fully automated and can
solve complicated structures. The study is per-
formed, first, for infinite length MWNT without
any variation of the displacements along axial di-
rection. For this case, the axial mode is uncou-
pled, while the radial and circumferential modes
are coupled. Next, the example of finite length
MWNT with variation along both axial and cir-
cumferential directions are studied. Here, all the
three modes are coupled.

The paper is organized as follows. In the next
section there are three subsections on the govern-
ing differential equations, reduction of the equa-
tions through Fourier transform and calculation
of wavenumbers and wave speeds, respectively.
Section 3 presents the numerical experiments per-
formed. The examples are presented for single,
double and three-walled carbon nanotubes. How-
ever, the technique can be implemented for any
arbitrary number of walls. The wavenumbers and
wave speeds are obtained for different values of
axial/circumferential wavenumbers for MWNTs
of different radii. The paper ends with important
conclusions.
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2 Mathematical Formulation

2.1 Governing Differential Equations

As mentioned earlier, the wave characteristics of
MWNT are studied by modeling them as mul-
tiple thin shell using Flügge’s equation [Markus
(1988)]. These equations for MWNTs are
much simplified due to the absence of pre-
stresses [Wang, Ru, and Mioduchowski (2004b)].
The set of equations for each wall is coupled to the
adjacent walls through inter-wall van der Waals
forces. The equations for the pth wall are given as
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where, up, vp and wp are the axial, circumferen-
tial and radial displacements of the pth wall re-
spectively. These displacements are function of
x, θ and t. Rp is the centerline radius of the pth

and h is the thickness of each wall, also the inter-
wall distance. E, ρ , ν and D are the Young’s
modulus, mass density, Poisson’s ratio and the ef-
fective bending stiffness respectively. The numer-
ical values of these parameters are explained in
Section 3 on numerical experiments.

The inter-wall van der Waals force denoted as
Pp for the pth wall in Eqn. 3 has the following
form [Wang, Ru, and Mioduchowski (2005a)],

Pp = c(wp+1 −wp)−c
Rp−1

Rp
(wp −wp−1)

for p = 2, 3, . . . , P−1 (4)

and for p = 1 and p = P, it is given as,

P1 = c(w2−w1) and PP =−c
RP−1

RP
(wP−wP−1)

(5)

The value of the van der Waals interaction coeffi-
cient c is given as [Wang, Ru, and Mioduchowski
(2005a)],

c =
320×erg/cm2

0.16d2 where, d = 0.142 nm (6)

Thus, the governing equations for one wall are
coupled to that of the others through the inter-wall
van der Waals interaction given by Pp for the pth

wall as shown in Eqn. 3.

In this paper, the wave characteristics are pre-
sented first for an infinite length MWNT. To sim-
ulate this condition, the variation along the axial,
(x) direction is neglected. This assumption makes
the Eqn. 1 for axial displacement uncoupled to the
other two Eqns. 2 and 3. Next, the wave charac-
teristics are obtained considering variation along
both axial, (x) and circumferential (θ ) directions.
In the next subsection, the governing equations
(Eqns. 1 to 3) are reduced to ODEs through FFT
and Fourier series transformation in time and ax-
ial directions respectively. The reduced ODEs are
solved by posing them as PEP.
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2.2 Calculation of Wavenumbers

The displacements up, vp and wp for an arbitrary
wall p is approximated using FFT is time and
Fourier series in axial, x direction as given below,

up(x,θ , t) =
N−1

∑
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ûp(θ )cos(ξmx)e− jωnt (7)
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where, N and M are the number of time sampling
points and number spatial sampling points respec-
tively. ωn is the circular frequency at the nth time
sample. Similarly, ξm is the axial wavenumber at
the mth spatial sample point. Substituting Eqns. 7
to 9 into the governing wave equations (Eqns. 1
to 3), we get the reduced equations as follows.
Hereafter the subscripts n and m in Eqns. 7 to 9
are dropped for simplified notations.
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d2ûp

dθ 2 +
(1+ν)ξ

2Rp

dv̂p

dθ
+

ν
Rp

ξ ŵp
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dθ

]
= −ω2 ρh(1−ν2)

Eh
v̂p (11)

− ν
Rp

ξ ûp +
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The above ODEs are required to be solve for the
transformed displacements ûp, v̂p and ŵp. For
these constant coefficient equations, the solutions
are of the following form,

ûp(θ ) = ∑ ũpe− jkθ (13)

v̂p(θ ) = ∑ ṽpe− jkθ (14)

ŵp(θ ) = ∑ w̃pe− jkθ (15)

Substituting Eqns. 13 to 15 in Eqns. 10 to 12, ne-
glecting the coupling term and writing it in matrix
form, we get the PEP as,
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p
and κ = ρh(1−ν2)

Eh . Next, the

PEP for the coupled P-walled MWNT is obtained
as,

A0k4 +A1k3 +A2k2 +A3k +A4 = 0 (17)

where, the dimensions of A0 to A4 is 3P×3P and
the matrix Ai, i = 1 to 4 is of the form
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where, [C] is the coupling matrix obtained from
Eqn. 4 and is of dimension 3P×3P. The matrix

has the following form,

[C] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

· · · ...
...

· · · −cβ Rp−2

Rp−1
cβ

(
1+ Rp−2

Rp−1

)
· · · 0 −cβ Rp−1

Rp

· · · 0 0

· · · ...
...

...
...

... · · ·
−cβ 0 0 · · ·

cβ
(

1+ Rp−1

Rp

)
−cβ 0 · · ·

−cβ Rp

Rp+1
cβ

(
1+ Rp

Rp+1

)
−cβ · · ·

...
...

... · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

where, β = (1−ν2)
Eh . The above PEP given by

Eqn. 17 is very generalized and can be solved
easily for MWNT with arbitrary number of walls.
The solution is done for the wavenumbers in cir-
cumferential direction k. As said earlier, these
wavenumbers are function of frequency ω and
axial wavenumber ξ . The corresponding phase
speed is calculated as Cp = real

(ω
k

)
. Similarly,

the group speed is derived as Cg = real
(

dω
dk

)
It should be mentioned here that, to obtain the
wavenumbers in axial direction, the Fourier series
transform should be performed in the circumfer-
ential direction.

3 Numerical Experiments

In this section, numerical experiments are pre-
sented to analyze the wave properties of MWNTs.
First, the wavenumber, phase and group speeds
are obtained for MWNT of infinite length, i.e,
the displacements do not have variation along ax-
ial direction. Next, the radial wavenumbers of a
MWNT for given axial wavenumbers are stud-
ied . These examples are presented for differ-
ent values of the innermost radius. Finally, the
axial wavenumbers are studied for a given radial
wavenumber. All the above results are presented
for single, double and three-walled carbon nan-
otubes. However, as said earlier, the analysis tech-
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nique can be easily applied for any arbitrary num-
ber of walls.

The bulk material properties of each wall of
the MWNT are as follows, Young’s modulus,
Eh = 360 J/m2 [Yakobsen, Brabec, and Bernholc
(1996)], mass density, ρh = 2.27× 0.34 kg/m3

and Poisson’s ratio, ν = 0.2 [Wang, Ru, and Mio-
duchowski (2004a)]. In particular, these parame-
ters are dependent on the definition of wall thick-
ness 2h [Yakobsen, Brabec, and Bernholc (1996)].
The effective bending stiffness, D is taken as
D = 2 eV, as suggested by Saito, Takeya, Kimura,
Dresselhaus, and Dresselhaus (1998). This value
of D gives a better comparison between the atom-
istic simulation and the continuum model simu-
lation. The conversion factor from eV to Nm2 is
1.6021× 10−19. The distance between the walls
of the MWNT is taken as 0.34 nm.

Figs. 1(a), (b) and (c) show the real and imag-
inary parts of the circumferential wavenumber
of single, double and three-walled carbon nan-
otubes respectively. These wavenumbers are ob-
tained assuming variation only in the circumfer-
ential direction. The thick lines represent the
real part and the thin lines show the imaginary
part of the wavenumbers. The innermost radius
in all the cases is considered as R = 0.678 nm.
From Fig. 1(a), for single walled carbon nanotube
(SWNT), it can be seen that there are three modes
of wave propagation, namely, axial, circumferen-
tial and radial. The wavenumbers for the axial
mode has a linear variation with the frequency
which is in the THz range. The linear varia-
tion of the wavenumbers denote that the waves
will propagate non-dispersively, ı.e, the waves do
not change their shapes as they propagate. On
the other hand, the circumferential wavenumbers
have a non-linear variation with the frequency,
which indicates that the waves are dispersive in
nature. However, the wavenumbers of this cir-
cumferential wave mode have a substantial real
part starting from the zero frequency. This im-
plies that the mode starts propagating at any exci-
tation frequency and does not have a cut-off fre-
quency. The radial mode, however, has a certain
frequency band within which the corresponding
wavenumbers are purely imaginary. Thus, the ra-

dial mode does not propagate at frequencies ly-
ing within this band. Both the circumferential and
radial wavenumbers have a substantial imaginary
part along with the real part, thus these waves at-
tenuate as they propagate.

Similar observations can be done from Fig. 1(b),
where the wavenumbers are plotted for a dou-
ble walled carbon nanotube. Here, there are six
modes, three corresponding to each wall. The
wavenumbers for the outer wall are higher than
that for the inner wall, for all the three modes.
In Fig. 1(c), the wavenumbers are presented for a
three-walled carbon nanotube. As expected, here
there are nine modes, three corresponding to each
of the three walls. It should be mentioned that
these wave characteristics are not effected signif-
icantly by the van der Waals interaction between
the walls.

Fig. 2(a), plots the phase speeds for the three-
walled carbon nanotube used in the previous ex-
ample. The phase speed for the axial mode has a
constant value for all the frequencies and hence,
the wave does not change its shape as it propa-
gates. It can also be observed, that the axial phase
speed is nearly similar for all the three walls. This
is because the variation of the axial phase speed
with the radius of the nanotube wall is not signif-
icant. Similarly, the circumferential phase speeds
for the three walls also do not defer much. In tune
with that observed from the wavenumber plots
shown in Fig. 1(c), the phase speed for the radial
mode does not exist between a frequency band.
The range of this band shifts for different walls of
the MWNT. In Fig. 2(b), the corresponding group
speeds are presented. For the group speeds, ex-
cept the axial mode, the difference in the values
for different walls of the MWNT is quite signifi-
cant unlike the phase speed and the speed of the
outer wall is higher than that of the inner wall.

In Figs. 3(a) to (c), the variation of circumferential
wavenumbers are plotted for single, double and
three-walled carbon nanotubes respectively, with
innermost radius of 0.678 nm. These wavenum-
bers are plotted for an axial wavenumber of KzR =
1. Here, a finite length MWNT is considered and
for such case a coupling exists between the ax-
ial, circumferential and radial wave modes. In
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Figure 1: Real (thick line) and imaginary (thin
line) parts of the wavenumbers of (a) single, (b)
double and (c) three walled carbon nanotubes.
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Figure 2: (a) Phase and (b) group speeds of a three
walled carbon nanotube

Fig. 3(a), it can be seen that the axial mode has a
non-linear variation with frequency unlike that for
an infinite MWNT shown in Fig. 1(a). This non-
linear variation occur due to the coupling arising
from the finiteness of the MWNT. Thus, here, the
axial modes are dispersive in nature. Next, the
real part of the wavenumbers for the circumfer-
ential mode exists after a certain frequency re-
ferred as the cut-off frequency. This implies that
the mode start propagating only after the cut-off
frequency. This behavior is also not in tune with
that observed for infinite MWNT in Figs. 1, where
such cut-off frequency does not exist for the cir-
cumferential mode. The radial mode, however,
shows similar pattern as in Fig. 1 and has a fre-
quency band within which the waves do not prop-



132 Copyright c© 2008 Tech Science Press CMES, vol.27, no.2, pp.125-136, 2008

0 2 4 6

2

4

6

8

10

Frequency (THz)

W
av

en
um

be
r 

(1
/n

m
)

Axial

Circumferential

Radial

(a)

0 2 4 6

2

4

6

8

10

Frequency (THz)

W
av

en
um

be
r 

(1
/n

m
)

Axial

Circumferential

Radial

(b)

0  2  4  6  

2

4

6

8

10

Frequency (THz)

W
av

en
um

be
r 

(1
/n

m
)

Axial

Circumferential

Radial

(c)
Figure 3: Real (thick line) and imaginary (thin
line) parts of the wavenumbers of (a) single, (b)
double and (c) three walled carbon nanotubes at
axial wavenumber kzR = 1.

agate. In addition to this real part of the wavenum-
bers, there is a substantial imaginary part shown
as thin lines in the plot. This imaginary part atten-
uates the waves as they propagate. In Figs. 3(b)
and (c), similar wavenumber plots are presented
for double and three-walled carbon nanotubes.
The plots show similar trend and the wavenum-
bers are higher for the outer walls for all the three
modes. The cut-off frequencies for the circumfer-
ential modes also decrease for the outer walls.

Figs. 4(a) to (c), show the wavenumber plot sim-
ilar to that presented in the previous example
(Fig. 3), except that the axial wavenumber here
is KzR = 5. It can be seen, that the change in the
axial wavenumber results in substantial change in
the pattern and the amplitude of the wavenum-
bers. The dimensions of the MWNT are kept
same as before, i.e, the innermost diameter is
0.678 nm and the inter-wall spacing is 0.34 nm. In
addition to the increase in amplitude as compared
to the Fig. 3, the cut-off frequency band of the ra-
dial wave mode has also increased considerably,
while the cut-off frequency of the circumferential
mode has increased slightly (≈ 1 THz).

Next, the wavenumbers are obtained for three-
walled carbon nanotubes with different radii of
the innermost wall. The three different radii con-
sidered are 1.0, 2.0 and 5.0 nm and the corre-
sponding wavenumbers are plotted in Figs. 5(a),
(b) and (c) respectively. The axial wavenum-
ber is kzR = 1 and the inter-wall spacing is 0.34
nm. With the increase in the radius of the inner-
most wall of the nanotube, the amplitude of the
wavenumbers increases for all the three modes.
The cut-off frequencies for the circumferential
modes also decreases with increase in the radius.
The most substantial difference is observed in
the cut-off frequency band for the radial mode,
which reduces from ≈ 2.0 THz for R = 1.0 nm
to almost zero for R = 5.0 nm. The main con-
clusion that can be drawn from this numerical
experiment is that for higher values of the ra-
dius of the innermost wall of the MWNT, the
wavenumber plots for the different walls nearly
coincides. Thus, for a MWNT with radius than
a certain value can be modeled as equivalent
single-walled nanotube (SWNT) for wave prop-
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Figure 4: Real (thick line) and imaginary (thin
line) parts of the wavenumbers of (a) single, (b)
double and (c) three walled carbon nanotubes at
axial wavenumber kzR = 5.

agation analysis. This will reduce the complex-
ities of modeling a MWNT. It should be men-
tioned here that the above observation is in tune
with that observed with Euler-Bernoulli beam
model of MWNT studied by Chakraborty, Sivaku-
mar, and Gopalakrishnan (2006). The spectrum
relation of MWNT modeled as multiple Euler-
Bernoulli beam coupled through van der Waals
force are presented by Chakraborty, Sivakumar,
and Gopalakrishnan (2006). For such case also,
the wavenumber plots nearly coincide for the
outer walls of the MWNT.

Finally, the axial wavenumbers corresponding to
a fixed circumferential wavenumber ksR = 1 are
plotted in Figs. 6(a), (b) and (c) for single, dou-
ble and three-walled carbon nanotubes respec-
tively. The trend is quite similar to the wavenum-
bers in circumferential direction presented in all
the previous examples. The axial mode shows a
non-linear variation with the frequency. The cir-
cumferential wave mode propagates after a cer-
tain cut-off frequency. This cut-off frequency in-
creases from the inner to the outer walls. For
the radial mode, there is a cut-off frequency band
within which the corresponding wave does not
propagates. This is in congruence with that ob-
served for the wavenumbers in circumferential di-
rection, shown in the previous examples.

4 Conclusions

In this paper, wave characteristics of multi-walled
carbon nanotubes are studied by modeling them
as multiple thin shells coupled through van der
Waals force. The modeling is done based on
Flügge’s shell theory, with each wall having ax-
ial, circumferential and radial degrees of free-
dom. The wavenumbers are obtained by trans-
forming the governing wave equations to fre-
quency and wavenumber domain through FFT.
The transformed ODEs are solved by posing them
as polynomial eigenvalue problem. Numerical
examples are presented to study the wavenum-
ber, phase speed and group speed of an infinite
length MWNT, i.e, without any variation along
the axial direction. For such case, the axial wave
mode is non-dispersive while the other two modes
are dispersive in nature. In addition, the ax-
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Figure 5: Real (thick line) and imaginary (thin
line) parts of the wavenumbers of three walled
carbon nanotubes at axial wavenumber kzR = 1
for (a) R = 1 nm, (b) R = 2 nm and R = 5 nm.
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Figure 6: Real (thick line) and imaginary (thin
line) parts of the axial wavenumbers of (a) single,
(b) double and (c) three walled carbon nanotubes.
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ial and radial wave modes do not have any cut-
off frequency, but the radial mode has a cut-off
frequency band within which it does not propa-
gates. Next, wavenumbers are calculated for fi-
nite length MWNT, where, the three modes are
coupled due to the finiteness of the MWNT. Here,
all the modes are dispersive. The circumferential
mode has a cut-off frequency and this decrease
from the inner wall to the outer wall. On the other
hand, the radial mode shows a cut-off frequency
band within which the wave do not propagate.
Another important conclusion that can be drawn
from the analysis is that for MWNTs with the
innermost radius higher than a certain value, the
wave characteristics of each of the walls nearly
coincide. Thus, in such case, the MWNT can
be modeled considering an equivalent single wall
instead of the multiple walls. This is in congru-
ence with that observed for the spectrum relation
of MWNT modeled as multiple Euler-Bernoulli
beam coupled through van der Waals force.
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