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A Lie-Group Shooting Method for Simultaneously Estimating the
Time-Dependent Damping and Stiffness Coefficients

Chein-Shan Liu1

Abstract: For the inverse vibration problem, a
Lie-group shooting method is proposed to simul-
taneously estimate the time-dependent damping
and stiffness functions by using two sets of dis-
placement as inputs. First, we transform these
two ODEs into two parabolic type PDEs. Sec-
ond, we formulate the inverse vibration problem
as a multi-dimensional two-point boundary value
problem with unknown coefficients, allowing us
to develop the Lie-group shooting method. For
the semi-discretizations of PDEs we thus obtain
two coupled sets of linear algebraic equations,
from which the estimation of damping and stiff-
ness coefficients can be written out explicitly. The
present approach is very interesting, which result-
ing to closed-form estimating equations without
needing of any iteration and initial guess of co-
efficient functions, and more importantly, it does
not require to assume a priori the functional forms
of unknown coefficients. The estimated results
are rather accurate convicing that the new method
can be employed in the vibrational engineering to
identify viscoelastic property of time-aging mate-
rials.

Keyword: Inverse vibration problem, Time-
dependent damping and stiffness coefficients,
Lie-group shooting method

1 Introduction

One of the major purposes of structural dynam-
ics is to analyze and determine the mechanical
parameters and responses of a given structure
subjected to various external loading conditions.
Based on the results analyzed, structural engi-
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neers are able to check whether a proposed struc-
tural design meets the requirements of adequate
resistance to a combination of loading conditions
and, if necessary, to revise a proposed design un-
til all such requirements are satisfied. In the last
several decades elastic analysis of structures has
been used primarily as the basis for the calcula-
tion of forces to obtain a great amount of results in
the design of engineering structure. Even, struc-
tures may exhibit linearly elastic behavior, there
are many structures respond inelastically and ex-
hibit hysteretic behavior [Liu (1997); Liu (2004);
Liu and Huang (2004)]. Hysteresis depicts the
hereditary and memory nature of an inelastic sys-
tem, in which the restoring force of the struc-
tural member depends not only on current input
of loading but also on the past history of load-
ing. Hysteretic models have been used for several
vibrational damping isolator made of viscoelas-
tic materials. Since it is important to be informed
about the possible dissipation losses, one needs to
know their viscoelastic properties in dependence
on frequency and temperature. This usually leads
to a time-depenent viscoelastic behavior of struc-
tures.

The dissipation of energy in a mechanical struc-
ture is most frequently described by a viscous
damping model. The resulting equation of vi-
bration is attractive because of the ease with
which it can be mathematically treated. How-
ever, sometimes we may encounter the prob-
lem that the viscoelastic properties in structure
or the external force are not yet known, and
then the resulting problem is an inverse vibra-
tion problem. It is concerned with the estima-
tions of these properties such as damping coef-
ficient [Adhikari and Woodhouse (2001a); Ad-
hikari and Woodhouse (2001b); Ingman and Suz-
dalnitsky (2001); Liang and Feeny (2006)], stiff-
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ness [Huang (2001); Shiguemori, Chiwiacowsky
and de Campos Velho (2005)], as well as exter-
nal force [Huang (2005); Feldman (2007)]. With
the aid of measurable vibration data, such as fre-
quency, mode shape, displacement or velocity at
different time, the researchers are interesting to
estimate these properties.

In the realm of linear inverse vibration prob-
lems by estimating constant damping or stiffness
coefficients there were many papers, for exam-
ple, Gladwell (1986), Gladwell and Movahhedy
(1995), Lancaster and Maroulas (1987), Starek
and Inman (1991, 1995, 1997), and Starek, In-
man and Kress (1992). However, when the co-
efficients are time-dpendent the inverse vibration
problems are nonlinear and they are more diffi-
cult to solve. Huang (2001) has employed the
conjugate gradient method to solve the nonlinear
inverse vibration problem for the estimation of
time-dependent stiffness coefficient. To the best
knowledge of author, in addition the works by Liu
(2008a) and Liu, Chang, Chang and Chen (2008),
there does not have study to concern with the
nonlinear inverse vibration problem for estimat-
ing both the time-dependent damping and stiff-
ness coefficients. For this reason we are going to
develop an accurate method to solve this nonlin-
ear inverse vibration problem.

Let us consider a second-order ordinary differen-
tial equation (ODE) describing the forced vibra-
tion of a linear structure with time-dependent pa-
rameters c(t) and k(t):

φ̈ +c(t)φ̇ +k(t)φ = F(t), 0 ≤ t ≤ t f , (1)

φ (0) = A0, (2)

φ̇ (0) = B0. (3)

The direct problem is for the given initial condi-
tions in Eqs. (2) and (3) and the given functions
c(t), k(t) and F(t) in Eq. (1) to find the displace-
ment φ (t) in a time interval of t ∈ [0, t f ]. How-
ever, our present inverse vibration problem is to
estimate c(t) and k(t) with t ∈ [0, t f ] by using
some measured data of φ (t) in a time interval of
t ∈ [0, t f ]. Because we have only one equation (1),
it is difficult to estimate two unknown functions
c(t) and k(t). Therefore, in order to supplement

another equation we consider

ψ̈ +c(t)ψ̇ +k(t)ψ = H(t), 0 ≤ t ≤ t f , (4)

ψ(0) = C0, (5)

ψ̇(0) = D0. (6)

When we use these two sets of data φ and ψ as
inputs on our estimation equations, we may esti-
mate c(t) and k(t) simultaneously. Here, for the
later convenience we use two different symbols
φ and ψ in the same equation of motion; how-
ever, when either external forces or initial values
are different the two functions φ (t) and ψ(t) are
different. In practice, in order to obtain two dif-
ferent functions φ (t) and ψ(t) we can prepare two
specimens made of the same material, and impose
them by different external loadings and/or differ-
ent initial conditions.

The present approach is original. One may appre-
ciate that the present approach is very interesting,
which resulting to closed-form estimating equa-
tions without needing of any iteration and initial
guess of coefficient functions. More importantly,
the novel method does not require to assume a pri-
ori the functional forms of unknown coefficients.

Recently, Liu (2006a, 2006b, 2006c) has made a
breakthrough to extend the method of group pre-
serving scheme (GPS) previously developed by
Liu (2001) for ODEs to boundary value problems
(BVPs), namely the Lie-group shooting method
(LGSM), and the numerical results revealed that
the LGSM is a rather promising method to effec-
tively solve the two-point BVPs. In the construc-
tion of Lie-group method for the calculations of
BVPs, Liu (2006a) has introduced the idea of one-
step GPS by utilizing the closure property of Lie
group, and hence, the new shooting method has
been named the Lie-group shooting method.

On the other hand, in order to effectively solve
the backward in time problems of parabolic type
PDEs, a past cone structure and a backward group
preserving scheme have been successfully devel-
oped, such that the one-step Lie-group numeri-
cal methods have been used to solve the back-
ward in time Burgers equation by Liu (2006d),
and the backward in time heat conduction equa-
tion by Liu, Chang and Chang (2006a).
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In a series of papers by the author and his cowork-
ers, the Lie-group method reveals its excellent
behavior on the numerical solutions of different
problems, for example, Chang, Liu and Chang
(2005) to calculate the sideways heat conduction
problem, Chang, Chang and Liu (2006) to treat
the boundary layer equation in fluid mechanics,
and Liu (2004), Liu, Chang and Chang (2006a),
and Chang, Liu and Chang (2007a, 2007b) to treat
the backward heat conduction equation, and Liu,
Chang and Chang (2006b) to treat the Burgers
equation.

It needs to stress that the one-step Lie-group prop-
erty is usually not shared by other numerical
methods, because those methods do not belong
to the Lie-group types. This important property
as first pointed out by Liu (2006d) was employed
to solve the backward in time Burgers equation.
After that, Liu (2006e) has used this concept to
establish a one-step estimation method to esti-
mate the temperature-dependent heat conductiv-
ity, and then extended to estimate the thermo-
physical properties of heat conductivity and heat
capacity by Liu (2006f, 2007) and Liu, Liu and
Hong (2007). Recently, Liu (2008b,2008c) has
explored its superiority by using the LGSM to es-
timate parameters in parabolic type PDEs. The
Lie-group method possesses a great advantage
than other numerical methods due to its group
structure, and it is a powerful technique to solve
the inverse problems of parameters identification.

In the paper by Liu, Chang, Chang and Chen
(2008), the estimation equations are based on the
data of displacement and velocity of one motion.
It appears that the accuracy and stability are not
so good. This paper will extend this parame-
ters identification technique to the inverse vibra-
tion problems but using a different technique of
LGSM based on two different displacement sets,
which is arranged as follows. We introduce a
novel approach of inverse vibration problem in
Section 2 by transforming it into an identifica-
tion problem of parabolic type PDEs, and then
the discretizations of PDEs into a system of ODEs
at the discretized times are derived. Here we ex-
plain why a multi-dimensional two-point bound-
ary value problem appears naturally. In Section 3

we give a brief sketch of the GPS for ODEs for a
self-content reason. Due to the good property of
Lie-group, we will propose an integration tech-
nique, such that the one-step GPS can be used
to identify the parameters appeared in the intro-
duced PDEs. The resulting algebraic equations
are derived in Section 4 when we apply the one-
step GPS to identify c(t) and k(t). In Section 5
numerical examples are examined to test the Lie-
group shooting method (LGSM). Finally, we give
some conclusions in Section 6.

2 Two transformations

Basically the set of Eqs. (1)-(3) and the set of
Eqs. (4)-(6) have the same form. So we only
consider the mathematical derivations for the first
set of Eqs. (1)-(3), and after deriving the required
equations, we can directly apply them to Eqs. (4)-
(6).

2.1 Transformation into a PDE

In the solutions of linear PDE, a common tech-
nique is the seperation of variables, from which
the PDE is transformed into some ODEs. In this
study we reverse this process by considering

u(x, t) = (1+x)φ (t), (7)

such that Eqs. (1)-(3) can be changed to a
parabolic type PDE:

∂u(x, t)
∂x

=
∂ 2u(x, t)

∂ t2 +c(t)
∂u(x, t)

∂ t
+k(t)u(x, t)+φ (t)− (1+x)F(t), (8)

u(0, t) =φ (t), (9)

u(x,0) =A0(1+x), (10)

u(x, t f ) =φ (t f )(1+x), (11)

where φ (t f ) is a measured displacement at a fi-
nal time t f . In Eq. (8) c(t) and k(t) are time-
dependent functions to be identified, where the
domain we consider is 0≤ t ≤ t f , 0 < x≤ x f . The
coordinate x is a fictitious one; however, from it
together with t we can work in a two-dimensional
domain and is therefore more easy to view the
variations of c(t) and k(t) from the x-direction.
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The above idea by transforming ODE into PDE
is first proposed by Liu (2008d) to treat an in-
verse Sturm-Liouville problem. There is maybe
another selection of Eq. (7) by using for example
u(x, t)= q(x)φ (t), where we require that q(0)= 0.
However, when q(x) is more complex than 1 + x
the resulting PDE is more complex than Eq. (8),
and there seems no good reason to select a com-
plex q(x).

2.2 Transformation into a set of ODEs

Applying a semi-discrete procedure to PDE yields
a coupled system of ODEs. For Eq. (8), we adopt
the following discretizations:

∂u(x, t)
∂ t

∣∣∣∣
t=iΔt

=
ui+1(x)−ui(x)

Δt
, (12)

∂ 2u(x, t)
∂ t2

∣∣∣∣
t=iΔt

=
ui+1(x)−2ui(x)+ui−1(x)

(Δt)2 ,

(13)

where Δt = t f /(n + 1) is a uniform time incre-
ment, and ui(x) = u(x, iΔt) for a simple notation.
Hence, Eq. (8) can be approximated by

u′i(x) =
1

(Δt)2 [ui+1(x)−2ui(x)+ui−1(x)]

+
ci

Δt
[ui+1(x)−ui(x)]+kiui(x)+hi(x), (14)

where ci = c(ti), ki = k(ti), and hi(x) = φi − (1 +
x)Fi with φi = φ (ti) and Fi = F(ti), i = 1, . . . ,n.

When i = 1 the term u0(x) in Eq. (14) is replaced
by the boundary condition (10) with u0(x) =
A0(1+x). Similarly, when i = n the term un+1(x)
is replaced by the boundary condition (11) with
un+1(x) = φn+1(1 + x) = φ (t f )(1 + x). Eq. (14)
has totally n coupled linear ODEs for the n vari-
ables ui(x), i = 1, . . .,n.

In this section we have transformed the inverse
vibration problem of the second-order ODE in
Eq. (1) to an inverse problem for the PDE in
Eq. (8), and this is also true for Eq. (4). There-
fore we come to an estimation of 2n coefficients
ci and ki in a 2n-dimensional ODEs system.

Now the problem becomes a two-point boundary
value problem with Eq. (14) not only subjecting to
an initial condition ui(0) = φi and also subjecting

to a final condition ui(x f ) = (1 + x f )φi obtained
from Eq. (7) by inserting x = x f , where x f is a new
constant chosen by the user. Therefore, we have
overspecified conditions for the 2n-dimensional
ODEs system (14) and its counterpart for Eq. (4);
however, because ci and ki are unknown, we can
use this two-point boundary value problem for-
mulation to find ci and ki. Below, we will develop
a Lie-group shooting method to solve this prob-
lem.

3 GPS for differential equations system

3.1 Group-preserving scheme

Upon letting u = (u1, . . . ,un)T and denoting by f
the right-hand side of Eq. (14) we can write it as
a vector form:

u′ = f(u,x), u ∈ R
n, x ∈ R. (15)

Liu (2001) has embedded Eq. (15) into an aug-
mented differential equations system as follows:

d
dx

[
u

‖u‖
]

=

⎡
⎣ 0n×n

f(u,x)
‖u‖

fT(u,x)
‖u‖ 0

⎤
⎦[ u

‖u‖
]
. (16)

It is obvious that the first row in Eq. (16) is the
same as the original equation (15), but the in-
clusion of the second row in Eq. (16) gives us
a Minkowskian structure of the augmented state
variables of X := (uT,‖u‖)T, which satisfies the
cone condition:

XTgX = 0, (17)

where

g :=
[

In 0n×1

01×n −1

]
(18)

is a Minkowski metric, In is the identity matrix of
order n, and the superscript T stands for the trans-
pose. In terms of (u,‖u‖), Eq. (17) becomes

XTgX = u ·u−‖u‖2 = ‖u‖2 −‖u‖2 = 0, (19)

where the dot between two vectors denotes their
Euclidean inner product.
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Consequently, we have an n+1-dimensional aug-
mented system:

X′ = AX (20)

with a constraint (17), where

A :=

⎡
⎣ 0n×n

f(u,x)
‖u‖

fT(u,x)
‖u‖ 0

⎤
⎦ (21)

is a Lie algebra so(n,1) of the proper or-
thochronous Lorentz group SOo(n,1), because of
A satisfying

ATg+gA = 0. (22)

This fact prompts us to devise the group-
preserving scheme (GPS), whose discretized
mapping G must exactly preserve the following
properties:

GTgG = g, (23)

det G = 1, (24)

G0
0 > 0, (25)

where G0
0 is the 00th component of G.

Although the dimension of the new system is rais-
ing one more, it has been shown that the new sys-
tem permits a GPS given as follows [Liu (2001)]:

X�+1 = G(�)X�, (26)

where X� denotes the numerical value of X at x�,
and G(�)∈ SOo(n,1) is the group value of G at x�.
If G(�) satisfies the properties in Eqs. (23)-(25),
then X� satisfies the cone condition in Eq. (17).

The Lie group can be generated from A ∈ so(n,1)
by an exponential mapping,

G(�) = exp[ΔxA(�)]

=

⎡
⎢⎣ In + (a�−1)

‖f�‖2 f�fT
�

b�f�
‖f�‖

b�fT�
‖f�‖ a�

⎤
⎥⎦ , (27)

where

a� := cosh

(
Δx‖f�‖
‖u�‖

)
, (28)

b� := sinh

(
Δx‖f�‖
‖u�‖

)
. (29)

Substituting Eq. (27) for G(�) into Eq. (26), we
obtain

u�+1 = u� +η�f�, (30)

‖u�+1‖ = a�‖u�‖+
b�

‖f�‖ f� ·u�, (31)

where

η� :=
b�‖u�‖‖f�‖+(a� −1)f� ·u�

‖f�‖2 . (32)

3.2 One-step GPS

Throughout this paper the superscript f denotes
the value at x = x f , while the superscript 0 denotes
the value at x = 0. Assume that the total length x f

is divided by K steps, that is, the stepsize we use
in the GPS is Δx = x f /K.

Starting from X0 = X(0) we want to calculate the
value X(x f ) at x = x f . By Eq. (26) we can obtain

X f = GK(Δx) · · ·G1(Δx)X0. (33)

However, let us recall that each Gi, i = 1, . . .,K, is
an element of the Lie group SOo(n,1), and by the
closure property of Lie group, GK(Δx) · · ·G1(Δx)
is also a Lie group denoted by G. Hence, we have

X f = GX0. (34)

This is a one-step Lie-group transformation from
X0 to X f .

3.2.1 A generalized mid-point rule

We can calculate G by a generalized mid-point
rule, which is obtained from an exponential map-
ping of A by taking the values of the argument
variables of A at a generalized mid-point. The
Lie group generated from such an A ∈ so(n,1) is
known as a proper orthochronous Lorentz group,
which admits a closed-form representation as fol-
lows:

G =

⎡
⎢⎣ In + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎥⎦ , (35)
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where

û = ru0 +(1− r)u f , (36)

f̂ = f(û, x̂), (37)

a = cosh

(
x f‖f̂‖
‖û‖

)
, (38)

b = sinh

(
x f‖f̂‖
‖û‖

)
. (39)

Here, we use the initial u0 and the final u f through
a suitable weighting factor r to calculate G, where
0 < r < 1 is a parameter and x̂ = (1− r)x f . The
above method was applied a generalized mid-
point rule on the calculation of G, and the resul-
tant is a single-parameter Lie group element G(r).
After developing the LGSM, we can determine
the best r by matching the given final condition.

3.2.2 A Lie group mapping between two points
on the cone

Let us define a new vector

F :=
f̂

‖û‖ , (40)

such that Eqs. (35), (38) and (39) can also be ex-
pressed as

G =

⎡
⎣ In + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (41)

a = cosh(x f‖F‖), (42)

b = sinh(x f‖F‖). (43)

From Eqs. (34) and (41) it follows that

u f = u0 +ηF, (44)

‖u f‖ = a‖u0‖+b
F ·u0

‖F‖ , (45)

where

η :=
(a−1)F ·u0 +b‖u0‖‖F‖

‖F‖2 . (46)

Substituting

F =
1
η

(u f −u0) (47)

into Eq. (45) and dividing both the sides by ‖u0‖
we can obtain

‖u f‖
‖u0‖ = a+b

(u f −u0) ·u0

‖u f −u0‖‖u0‖ , (48)

where

a = cosh

(
x f‖u f −u0‖

η

)
, (49)

b = sinh

(
x f‖u f −u0‖

η

)
(50)

are obtained by inserting Eq. (47) for F into
Eqs. (42) and (43).

Let

cosθ :=
[u f −u0] ·u0

‖u f −u0‖‖u0‖ , (51)

S := x f ‖u f −u0‖, (52)

and from Eqs. (48)-(50) it follows that

‖u f‖
‖u0‖ = cosh

(
S
η

)
+cosθ sinh

(
S
η

)
. (53)

By defining

Z := exp

(
S
η

)
, (54)

we obtain a quadratic equation for Z from
Eq. (53):

(1+cosθ )Z2 − 2‖u f‖
‖u0‖ Z +1−cos θ = 0. (55)

The solution is found to be

Z =

‖u f ‖
‖u0‖ +

√( ‖u f ‖
‖u0‖

)2 −1+cos2 θ

1+cosθ
, (56)

and then from Eqs. (54) and (52) we can obtain

η =
x f‖u f −u0‖

lnZ
. (57)

Therefore, between any two points (u0,‖u0‖) and
(u f ,‖u f‖) on the cone, there exists a Lie group
element G ∈ SOo(n,1) mapping (u0,‖u0‖) onto
(u f ,‖u f‖), which is given by[

u f

‖u f‖
]

= G
[

u0

‖u0‖
]
, (58)
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where G is uniquely determined by u0 and u f

through the following equations:

G =

⎡
⎣ In + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (59)

a = cosh(x f‖F‖), (60)

b = sinh(x f‖F‖), (61)

F =
1
η

(u f −u0). (62)

4 Identifying c(t) and k(t) by the LGSM

In this section we start to estimate the time-
dependent coefficient functions c(t) and k(t).
From Eqs. (40) and (44) it follows a useful equa-
tion:

u f = u0 +η
f̂

‖û‖ . (63)

By using Eq. (7) we have

u f
i = (1+x f )u0

i = (1+x f )φi, (64)

and thus the vector u f with components u f
i is pro-

portional to u0 with components u0
i by a multiplier

being 1 + x f larger than 1. Under this condition
we have cosθ = 1 by Eq. (51), and from Eqs. (55)
and (64) it follows that

Z = 1+x f . (65)

Hence from Eqs. (57) and (64) we have

η =
x2

f‖u0‖
ln(1+x f )

. (66)

Moreover, by using Eqs. (36) and (64) we have

‖û‖ = xr‖u0‖, (67)

where

xr := 1+ x̂ = r +(1− r)(1+x f ). (68)

Substituting Eqs. (66) and (67) into Eq. (63) we
have

u f = u0 +η0 f̂, (69)

where

η0 =
x2

f

xr ln(1+x f )
. (70)

By applying Eq. (69) to Eq. (14) we obtain

u f
i = u0

i +
η0

(Δt)2 (ûi+1−2ûi + ûi−1)

+
η0ci

Δt
(ûi+1 − ûi)

+η0kiûi +η0φi −η0(1+ x̂)Fi, (71)

where

ûi = xrφi, i = 1, . . .,n. (72)

After inserting Eq. (72) for ûi and Eq. (70) for η0,
it is not difficult to rewrite Eq. (71) as

kiφi +
ci

Δt
(φi+1−φi) =

φi ln(1+x f )
x f

− 1
(Δt)2 (φi+1−2φi +φi−1)− φi

xr
+Fi. (73)

Similarly for Eq. (4) we can derive

kiψi +
ci

Δt
(ψi+1 −ψi) =

ψi ln(1+x f )
x f

− 1
(Δt)2 (ψi+1 −2ψi +ψi−1)− ψi

xr
+Hi, (74)

where ψi = ψ(ti) and Hi = H(ti).

Denoting Eq. (73) by

Ai
1ki +Bi

1ci = Ci
1, (75)

we have

Ai
1 =φi, (76)

Bi
1 =

φi+1 −φi

Δt
, (77)

Ci
1 =

φi ln(1+x f )
x f

− 1
(Δt)2 (φi+1−2φi +φi−1)

− φi

xr
+Fi. (78)

On the other hand, from Eq. (74) we have

Ai
2ki +Bi

2ci = Ci
2, (79)
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where

Ai
2 =ψi, (80)

Bi
2 =

ψi+1 −ψi

Δt
, (81)

Ci
2 =

ψi ln(1+x f )
x f

− 1
(Δt)2 (ψi+1 −2ψi +ψi−1)

− ψi

xr
+Hi. (82)

From Eqs. (75) and (79) we can solve

ki =
Bi

2C
i
1 −Bi

1Ci
2

Ai
1Bi

2 −Ai
2Bi

1
, (83)

ci =
Ai

1C
i
2 −Ai

2Ci
1

Ai
1Bi

2 −Ai
2Bi

1
. (84)

Because of Eq. (68), the above estimating equa-
tions depend on r. Now, the problem is how to
choose a suitable r. The numerical procedures
for determining r are described as follows. In the
range of r ∈ (0,1) we insert each r into the above
equations to obtain ci and ki, and we can integrate
Eq. (14) from x = 0 to x = x f by noting Eq. (7).
Then, u f

i is given by

u f
i = (1+x f )φi +

1
2

x f (2+x f )[
1

(Δt)2 (φi+1 −2φi +φi−1)

+
ci

Δt
(φi+1−φi)+kiφi −Fi

]
. (85)

By the same token we also have

v f
i = (1+x f )ψi +

1
2

x f (2+x f )[
1

(Δt)2 (ψi+1 −2ψi +ψi−1)

+
ci

Δt
(ψi+1 −ψi)+kiψi −Hi

]
, (86)

by defining v by v = (1 + x)ψ(t) as that defining
u by Eq. (7). By comparing the above u f

i and v f
i

with the targets given exactly by Eq. (64) and (1+
x f )ψi, we can pick up the best r by satisfying

min
r∈(0,1)

√
n

∑
i=1

[u f
i − (1+x f )φi]2 +[v f

i − (1+x f )ψi]2.

(87)

When r is selected we can insert it into Eqs. (83)
and (84) to calculate ki and ci.

In Eqs. (83) and (84) there appears a common de-
nominator Ai

1Bi
2 −Ai

2Bi
1 := Di, which in view of

Eqs. (76), (77), (80) and (81) can be seen as a dis-
cretized approximation of

D(t) := φ (t)ψ̇(t)−ψ(t)φ̇(t). (88)

With the help of Eqs. (1) and (4) it is easy to derive

Ḋ(t)+c(t)D(t)= φ (t)H(t)−ψ(t)F(t). (89)

From it we have

D(t) = exp

[∫ t

0
c(ξ )dξ

]
D(0)+

∫ t

0
exp

[∫ t

ξ
c(ζ )dζ

]
[φ (ξ )H(ξ )−ψ(ξ )F(ξ )]dξ .

(90)

If we can choose the external forces F(t) and
H(t) as such that φ (t)H(t)− ψ(t)F(t) has the
same sign as that of the initial value of D(0) =
A0D0 −B0C0 for all time of 0 < t ≤ t f then D(t)
would be nonzero, and thus Eqs. (83) and (84) can
be well defined without worrying that dividing by
a zero value.

In the present method, the key points hinge on the
formulation of two-point boundary value prob-
lems, the construction of two one-step GPS for
the estimation of parameters, and the full use of
the n + 1 equations (44) and (45). To distin-
guish the present method by a combining use of
the one-step GPS and the closed-form solution
with the aid of the above equations, we may call
the present method a Lie-group shooting method
(LGSM).

5 Numerical examples

5.1 Example 1

Let us consider

c(t) = 3+2cos(2πt), (91)

k(t) = 20+2sin(2πt), (92)

F(t) = F0 +F1t, (93)

H(t) = H0 +H1t. (94)
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In order to obtain the data of φ (t) and ψ(t)
we have applied the fourth-order Runge-Kutta
method (RK4) to Eqs. (1)-(3) and to Eqs. (4)-(6)
by using the initial conditions of A0 = 1, B0 = 3,
C0 = 1.5 and D0 = 6.

We use the vibration data of displacements φi and
ψi as the inputs to estimate ci and ki. In this calcu-
lation we have fixed Δt = 1/200, F0 = 40, F1 = 0,
H0 = 70, H1 = 10, and x f = 0.01. First we plot the
error of mismatching with respect to r in Fig. 1(a),
where the minimum is occurred at r = 0.5. The
profile of c(t) is plotted in Fig. 1(b) by the dashed
line, which is compared with the exact one plot-
ted by the solid line. The maximum estimation
error of c is about 2.03×10−2. Then, the profile
of k(t) is plotted in Fig. 1(c) by the dashed line,
which is compared with the exact one plotted by
the solid line, and the maximum estimation error
of k is about 1.67×10−2.
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Figure 1: For Example 1: (a) showing the error
of mismatching, (b) comparing the estimated and
exact damping functions, and (c) comparing the
estimated and exact stiffness functions.

5.2 Example 2

Then, we consider

c(t) = 3+ t2, (95)

k(t) = 20+ t. (96)

For this example we use the following parameters
Δt = 1/150, F0 = 50, F1 = 20, H0 = 50, H1 = 0,
A0 = 1, B0 = 5, C0 = 1.5, D0 = 3 and x f = 0.01
to estimate c and k. The error of mismatching
with respect to r is plotted in Fig. 2(a). The max-
imum estimation error of c is about 4.14× 10−2

as shown in Fig. 2(b), and the maximum estima-
tion error of k is about 7.02× 10−2 as shown in
Fig. 2(c).
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Figure 2: For Example 2: (a) showing the error
of mismatching, (b) comparing the estimated and
exact damping functions, and (c) comparing the
estimated and exact stiffness functions.
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5.3 Example 3

Let us consider discontinuous and oscillatory pa-
rameters:

c(t) =

⎧⎪⎪⎨
⎪⎪⎩

2 t ∈ [0,0.1],
10 t ∈ (0.1,0.3),
8 t ∈ (0.3,0.6],
5+ sin(10πt) t ∈ (0.6,1],

(97)

k(t) =

⎧⎨
⎩

20 t ∈ [0,0.3],
30 t ∈ (0.3,0.6],
20+ sin(10πt) t ∈ (0.6,1].

(98)

For this example we use the following parameters
Δt = 1/250, F0 = 40, F1 = 0, H0 = 80, H1 = 5,
A0 = 1, B0 = 3, C0 = 0, D0 = 8 and x f = 0.1 to
estimate c and k. The error of mismatching with
respect to r is plotted in Fig. 3(a). Exact and es-
timated value of c is compared in Fig. 3(b), while
k is shown in Fig. 3(c). Even for the discontinu-
ous and oscillatory case the estimation accuracy
is still better.

5.4 Example 4

In the above three examples the data of φi and ψi

used in Eqs. (84) and (85) to estimate ki and ci are
obtained through numerical integrations by RK4,
which means that the data are maybe not the exact
ones. In this example we use the following exact
data:

φ (t) = t2 +1, (99)

ψ(t) =
t3

3
+5t +1, (100)

and the functions of c(t) and k(t) to be estimated
are

c(t) = 3+2cos(2πt), (101)

k(t) = 40+ t3. (102)

To obtain this φ and ψ the external forces are
given by

F(t) = 2+2t[3+2cos(2πt)]+(40+ t3)(t2 +1),

(103)

H(t) = 2t +(t2 +5)[3+2cos(2πt)] (104)

+(40+ t3)
(

t3

3
+5t +1

)
.
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Figure 3: For Example 3: (a) showing the error
of mismatching, (b) comparing the estimated and
exact damping functions, and (c) comparing the
estimated and exact stiffness functions.

We use the vibration data of displacements at dis-
cretized time by inserting ti into the given func-
tions φi = φ (ti) and ψi = ψ(ti) and the forcing
functions given by Fi = F(ti) and Hi = H(ti) as the
inputs in Eqs. (84) and (85) to estimate ki and ci.
In this calculation we have fixed x f = 0.2, r = 0.5
and Δt = 0.001. The estimation errors of c and k
are plotted in Figs. 4(a) and 4(b) with respect to
time, which are smaller than 3×10−3. As com-
pared with the accuracy obtained in Examples 1
and 2, the present accuracy is increased one order.

6 Conclusions

The inverse vibration problem of simultaneous es-
timation of both the damping and stiffness coef-
ficients is rather difficult. To overcome this dif-
ficulty we have used two sets of displacement
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Figure 4: For Example 4: (a) showing the estima-
tion error of damping, and (b) the estimation error
of stiffness.

data generated by two different inputs on equa-
tion of motion as our formulation variables. In the
present paper we offer a rather accurate and sim-
ple method without any iteration to estimate both
the damping and stiffness coefficients simultane-
ously. The key points hinge on two type trans-
formations, a two-point boundary value problem
formulation as well as an establishment of the Lie-
group shooting method. In order to avoid the ap-
pearance of zero denominator in the estimation
equations, we also provided a criterion to choose
the inputing forces in our equations. When two
displacement sets are chosen as inputs, the esti-
mation accuracy assessed by using the absolute
error can be controlled within the second decimal
point or to third decimal point by using exact data.
Especially, for the discontinuous and oscillatory
case the estimation accuracy is still better.

Acknowledgement: Taiwan’s National Sci-
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