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Dynamics Analysis of Mechanical Components: a Discrete Model For
Damping

F. Cosmi1

Abstract: The Cell Method is a recent numeri-
cal method that can be applied in several fields of
physics and engineering. In this paper, the elasto-
dynamics formulation is extended to include sys-
tem internal damping, highlighting some interest-
ing characteristics of the method. The developed
formulation leads to an explicit solving system.
The mass matrix is diagonal (without lumping)
and in the most general case a time-dependent
damping coefficient can be defined for each node.
Accuracy and convergence rate have been tested
with reference to the classical problem of a parti-
cle free vibration with viscous damping.
An application to mechanical components anal-
ysis has been included in order to illustrate the
potentialities of the method for fatigue behaviour
assessment of mechanical parts.
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1 Introduction

All vibrating structures dissipate energy and this
phenomenon is named damping. Generally, an-
alytical models simulate damping by means of
forces that are a function of the structural re-
sponse. Such forces are usually able to reproduce
the structural behaviour, even when the actual en-
ergy dissipation mechanism is different.

Simulation of damping is subjected to computa-
tional constraints; the structure model usually in-
cludes the correct order of magnitude of damp-
ing but the damping distribution in the real struc-
ture can be quite different. Two approaches to
damping modelling are used in the Finite Element
Method (FEM) [Hitchings D. (1992)].
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Modal damping is included in the model only af-
ter the definition of each vibration mode equa-
tions, so that the component damping can be re-
lated to the experimental values. This approach is
possible only for modal form solutions.

Proportional damping models arbitrarily assume
that damping is a linear combination of the com-
ponent stiffness and mass matrixes. This hypoth-
esis has no physical significance but is convenient
from the computational point of view.

Notwithstanding the importance and diffusion of
FEM, efforts are still required in order to im-
prove solution accuracy and computational speed,
supplying a motivation for the development of
alternative algorithms. In this framework the
Cell Method (CM) has been introduced [Tonti
(2001a)]. Opposite to FEM, which can be re-
garded as a method for the discretization of bal-
ance equations written in differential form, CM
stems from the effort of expressing static and dy-
namic equilibrium condition directly in a discrete
form. Several applications of CM have been de-
veloped by a number of authors since its intro-
duction, i.e. in elasticity problems [Cosmi(2001),
Ferretti (2005)] and electrostatics [Heshmatzadeh
and Bridges (2007)]. Dynamics formulations
have been developed for acoustics in fluids by
Tonti (2001b) and for fluid dynamics by Straface,
Troisi and Gagliardi (2006), by Marrone, Fras-
son and Hernàndez-Figueroa (2002) in the elec-
tromagnetic field, and by Cosmi (2005) for the
elastic analysis of components. Some character-
istics of CM were pointed out in these works. The
CM mass matrix is diagonal and an explicit solv-
ing system is obtained without solution degrada-
tion due to lumping. Both structured and unstruc-
tured meshes can be used with accurate results.
Convergence rate is two, same as II order Runge
Kutta method, but CM accuracy is better.
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In this work, the dynamic balance formulation de-
veloped by Cosmi (2005) has been modified to in-
clude system internal damping, highlighting fur-
ther characteristics of CM, i.e. that, in the most
general case, the developed formulation allows
the definition of a time-dependent damping coef-
ficient in each node.

In the next section, the addition of viscous damp-
ing forces to the original elastodynamics formu-
lation is shown to result in a model in which both
mass and damping terms are diagonal and an ex-
plicit solving system is obtained again. The for-
mulation is directly written in discrete form and
does not require the linear combination of stiff-
ness and mass matrixes – in this sense a non-
proportional damping model is devised.

The results of several simulations are discussed
in the third section. In particular, a simple case
for which the analytical exact solution is known
in literature has been used to test the CM solu-
tion convergence rate and accuracy in comparison
with II order Runge Kutta method.

The potentialities of the method in application for
mechanical components analysis are illustrated in
the fourth section.

In the last section the conclusions are drawn.

2 CM elastodynamics formulation with vis-
cous damping forces

Previous works [Tonti (2001b), Cosmi (2005)]
have shown that the most important advantages in
the CM solution of elastodynamics problems can
be summarized as follows:

• diagonal mass matrix and explicit solving
system (no locking-induced errors);

• accuracy and stability of the results with both
structured and unstructured meshes;

• reduced computation time and memory re-
quirements also in the case of meshes with a
very large number of elements.

In order to extend the elastodynamic formulation
to include system internal damping, it is neces-
sary to modify the dynamic balance equation to

account for viscous damping forces, which are
proportional to nodal velocity.

The system configuration, namely its geometry
and kinematics, is described by nodes that in the
Cell Method formulation are associated to a pri-
mal cell complex. Displacements, strain tensor,
velocity are examples of variables associated with
primal cell complexes, as shown in Fig. 1(a).

(b) 

(a)

n-1   n n+1

  τ 
t

Figure 1: Examples of primal complex: (a) in 1D,
2D and 3D and (b) for the time variable.

Variables such as forces, momenta, stress tensor,
which can be regarded as sources of the displace-
ment field described by the configuration vari-
ables, are associated to a second cell complex, de-
fined in a way that each node, or time instant, of
the primal complex falls inside a cell of the dual
cell complex. An example is shown in Fig.2(a).
Each cell of this dual complex can be considered
an influence region for the node inside.

When the Cell Method balance condition is writ-
ten, it is not enforced on the node, but for the
whole dual cell surrounding the node. The bal-
ance equation is therefore directly written in finite
terms, using only global variables.

It can thus be noted that the Cell Method formu-
lation imposes no limitations due to derivability
conditions, in contrast with the requirements of
differential formulations (used by FEM and other
numerical methods), which enforce restrictions
on the field equations, limitations that are not re-
lated to the physics of the problem.

In the CM formulation of a time-dependent prob-
lem the use of a dual complex is extended to the
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time variable, as shown in Fig.1(b) and Fig.2(b).
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Figure 2: Examples of dual complex: (a) in 1D,
2D and 3D and (b) for the time variable.

The association rule for time-dependent variables
can be summarized as follows.

Quantities whose sign is changed when time is
reversed, such as displacements, are associated
to elements of the primal time-complex, while
variables that are invariant with respect to time-
inversion, i.e. the impulse of a force, will be as-
sociated to elements of the dual time-complex.
Moreover, the constant time step, τ , is assumed to
be the same for the two complexes, so that time in-
tervals in the primal complex will be associated to
the corresponding central instant in the dual time
complex and vice-versa.

With respect to the variables used, the following
associations hold:

Displacements are associated to nodes of the pri-
mal cell complex and to instants of the pri-
mal time complex;

Velocities are associated to nodes of the primal
cell complex and to intervals of the primal
time complex, which are instants of the dual
time complex, see Fig.2(b);

Forces are associated to the dual cell complex
and to instants of the primal time complex;

Impulses are associated to the dual cell complex
and to intervals of the dual time complex,
which are instants of the primal time com-
plex.

Velocity for a generic node h can be computed
from the nodal displacements un−1

h and un
h evalu-

ated at instants n-1 and n of the primal complex
and is therefore associated to the instant n-1/2 of
the corresponding dual time complex:

vn−1/2
h =

1
τ
(
un

h −un−1
h

)
(1)

Assuming that the centre of mass of the dual cell
is coincident with the node inside the dual cell,
the linear momentum pn−1/2

h can be computed:

pn−1/2
h =

mh

τ
(
un

h −un−1
h

)
(2)

where mh is the mass of the dual cell. This hy-
pothesis is approximately verified for the nodes
that don’t rest on the boundary of the system, see
Fig.1(a). It might introduce a larger error for the
boundary nodes, but these are usually a very small
percentage of the total number of nodes.

Dynamics balance imposes that the change in mo-
mentum of the dual cell is equal to the impulse.
Keeping in mind the above associations, since
momenta are computed at instants in the dual time
complex, a difference between momenta will be
associated to the corresponding instant of the pri-
mal time complex. Equilibrium can be then writ-
ten for each of the N dual cells as

pn+1/2
h −pn−1/2

h = τTn
h +τFn

h (3)

where, at instant n, Tn
h represents the surface

forces acting on the sides of the influence region
of node h and Fn

h are the resultant of the volume
force acting on the influence region and the exter-
nal forces applied on the influence region through
its boundary.

The surface forces acting on the sides of the influ-
ence region of node h can be computed at instant
n by integration of the stress components and col-
lected in the expression

{T}n = −[K]n{u}n (4)

While meaning and properties of stiffness matrix
[K]n are the same as in FEM, its terms depend on
the choice adopted for the dual cell, which also
influences convergence rate and accuracy. In this
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work, barycentric dual cell complexes have been
adopted. The corresponding expressions for [K]n

were derived in detail in Cosmi (2005).

With the appropriate substitutions, equations (2)
and (3) can be written as an explicit system that
can be solved for each time-step:

{
{u}n = {u}n−1 +τ [1/M]{p}n−1/2

{p}n+1/2 = {p}n−1/2−τ [K]{u}n +τ{F}n

(5)

where

[1/M] = diag [1/m1, ...,1/mh, ...,1/mN]

An application of this formulation for the dy-
namics analysis of mechanical components is dis-
cussed in the successive section 4.

In order to bring damping in the model, the dy-
namics balance equation (3) must be modified:

pn+1/2
h −pn−1/2

h = τTn
h +τFn

h +τVn
h (6)

where Vn
h are the viscous damping forces acting

on the dual cell of node h at instant n.

Since forces in eq. (6) are referred to instants
of the primal time complex, while velocities are
computed at instants of the dual time complex, the
expression for a viscous force at instant n can be
computed form the average velocity of node h at
instants n+1/2 and n-1/2:

V n
h = −cvn

h = −c
(

vn+1/2
h +vn−1/2

h

)
= − c

2mh

(
pn+1/2

h + pn−1/2
h

) (7)

where c represents the damping coefficient, nu-
merically equal to the damping force when the ve-
locity is equal to one.

With the appropriate substitutions, equations (2)
and (6) can be re-written as:

⎧⎪⎨
⎪⎩
{u}n = {u}n−1 +τ [1/M]{p}n−1/2

{p}n+1/2 =
[C]
(
[D]{p}n−1/2−τ [K]{u}n +τ{F}n

)
(8)

where

[C] = diag

[(
1

1+ τ ·c1
2m1

)
, . . . ,

(
1

1+ τ ·ch
2mh

)
, . . .,

(
1

1+ τ ·cN
2mN

)]
;

[D] = diag

[(
1− τ · c1

2m1

)
, . . . ,

(
1− τ · ch

2mh

)
, . . .,(

1− τ · cN

2mN

)]
.

Some important consequences emerge from the
above. It is worth noting that, coherently with
the Cell Method approach, the solving system has
been directly written in discrete form without us-
ing a differential formulation. Therefore, the pro-
cedure described is not equivalent to a discretiza-
tion of the operators.

The Cell Method approach to elastodynamics
problems leads to a diagonal mass matrix and ex-
plicit solving system with no limitation as to the
typology of the mesh, that can be both structured
and unstructured [Cosmi (2005)]. This is also true
when viscous damping forces are introduced in
the model, as both mass and damping expressions
appear as diagonal terms. The explicit system ob-
tained is conditionally stable: Courant condition
must be satisfied, i.e. the integration step must be
smaller than the minimum period of time required
for a disturbance to travel between two nodes of
the mesh. Moreover, and quite important from
the applicative point of view, it is not necessary
in any way to introduce the damping matrix as a
linear combination of stiffness and mass matrixes.
In principle, it is therefore possible to define a
unique, time-varying damping model in each sin-
gle node of a component at no additional compu-
tational cost.

3 Convergence rate and accuracy

The problem of a particle free vibration with vis-
cous damping [Thomson (1993), Timoshenko and
Young, (1955)], was examined in order to test
convergence rate and accuracy of Cell Method in
comparison with other methods.
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Let m be the mass of the body, x(t) the coordi-
nate determining the configuration of the system,
c the damping coefficient and k the spring con-
stant. The well-known balance equation

ẍ(t)+2ςωnẋ(t)+ω2
n x(t) = 0 (9)

where ω2
n = k/m and ςωn = c/2m, then leads to

the exact solution

x = Ae−ς ωnt sinωt,

ω2 = ω2
n

(
1−ς 2) ,

A = ẋ(0)/ω .

(10)

In order to test the convergence rate and accuracy
of the proposed formulation, eq. (8) is rewritten
as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn = xn−1 +
τ
m

pn−1/2

pn+1/2 =

⎛
⎜⎝ 1

1+
τ · c
2m

⎞
⎟⎠[(1− τ · c

2m

)
pn−1/2−τkxn

]

(11)

It can be recognized that the algorithm (11) can
be formally reduced to the Verlet algorithm [Ver-
let (1967)], a central difference integrator scheme
very popular for molecular dynamics modeling.
This is only a formal coincidence, as the cen-
tral difference integrators assume a (continuously)
differentiable function, while the Cell Method al-
gorithm has been obtained within a direct discrete
framework.

Figure 3 compares the results obtained with the
Cell Method and with II order Runge Kutta for
different values of the damping factor c in the in-
terval 0 – 0.5 s, assumed m=1 kg, k= 4000N/m,
initial position x(0) = 0, initial velocity ẋ(0)= 300
m/s.

A simple approximation for the starting value of
momentum, p1/2, can be obtained by doing a sin-
gle half step (the consequent error is introduced
only once and does not lower the order of the
method). This leads to

p1/2 =
1− τ · c

4m

1+
τ · c
4m

p0. (12)
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Figure 3: Time-displacement plot for different
values of the damping coefficient. CM = Cell
Method, RK_II = II order Runge Kutta method.

In the simulations, an integration step τ = 0.008s
has been adopted. The differences among the
methods and accuracy of the Cell Method can be
appreciated.

For the same system, the maximum errors ob-
tained with the Cell Method and with II order
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Runge Kutta are compared in Figure 4. The Cell
Method shows the same convergence rate of II or-
der Runge Kutta method, but its accuracy is better.
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Figure 4: Convergence rate and accuracy. CM
= Cell Method, RK_II = II order Runge Kutta
method.

4 Application

Simulations on virtual prototypes, usually per-
formed by dynamics analysis software (i.e.

ADAMS) and Finite Element codes (i.e. ANSYS,
NASTRAN) can help cutting development time
and costs in the first structural evaluation phases
of design.

The application of the Cell Method for the dynam-
ics analysis of a mechanical component has been
developed using as a test case a 5 mm thick L-
shaped plate, as shown in Fig.5. One end of the L
is fixed and the load Fz(t) is applied at the other
end.

200 mm 

50 mm 
Fz(t)

   r = 10 mm 

    200 mm 

output cell 

Figure 5: L-shaped plate geometry, model and
output cell.

The higher stresses appear in the output cell, sit-
uated in the fillet area, also shown in Fig. 5. The
parameters of the simulations are shown in Tab.1.

Table 1: Parameters of the simulations.
Material elastic moduli

E = 210 GPa, ν
= 0.3

density
ρ = 7820
kg/m3

Mesh 5184 primal
cells
(4 nodes tetra-
hedra)

1485 nodes

Simulation time step
τ =2·10−7 s

number of
steps
N = 5·106

4.1 Impulse load

In the first simulation, an impulse load Fz = 540
N, uniformly distributed on the loaded end of the
plate, was applied only at the first step and then
removed.

The implemented code could solve the system
very quickly. Storage and post-processing of out-
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put were more time consuming and will be opti-
mized in future.

Principal components of stress in the examined
cell are shown in Fig. 6 for the first 1000 steps
of the simulation. It can be seen that the impulse
load in input does not result in incoherent spikes
in output. Therefore, it is not necessary to smooth
the input time signal, as in general required by the
FEM approach. Thus, a distinctive aspect of the
Cell Method is possibility to simulate the applica-
tion of impulse loads with increased realism.
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Figure 6: Impulse load – Principal components of
stress in the examined cell (1000 steps).

4.2 Random load

In these simulations, a random (white noise) load,
characterized by a rectangular power spectral den-
sity, was used in input. The input force time-
history is shown in Fig. 7 for (a) the first 2500
steps and (b) for 106 steps.

In Fig. 8, the results of the simulation are shown
for (a) the first 2500 steps and (b) for 106 steps.
No damping was included in this model.

In Fig. 9, the results of the simulation with a 0.05
damping coefficient in all nodes are shown for (a)
the first 2500 steps and (b) for 106 steps. Again,
no incoherent spikes are detected.

Such time-histories of stress components are of
practical interest as, for example, they constitute
the first step from which a mechanical part fatigue
life can be evaluated.
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Figure 7: Impulse load – Input time history (a) for
the first 2500 steps and (b) for 106 steps.

5 Conclusions

In this work, an elastodynamics formulation that
takes into account the dissipative phenomena usu-
ally named damping has been developed based on
the Cell Method. Within this approach, an ex-
plicit solving system is directly obtained in dis-
crete form and a time-dependent damping coef-
ficient can be defined for each node. The linear
combination of stiffness and mass matrixes, typi-
cal of the FEM approach, is not required. Accu-
racy and convergence rate of the algorithm have
been discussed.

Simulations showing the application of the
method for the dynamic stress analysis of a com-
ponent subjected to dynamic loading have been
illustrated and can constitute the first step for fa-
tigue behaviour assessment of mechanical parts.

Acknowledgement: The author gratefully ac-



194 Copyright c© 2008 Tech Science Press CMES, vol.27, no.3, pp.187-195, 2008

0 500 1000 1500 2000 2500
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

steps

pr
in

ci
pa

l s
tre

ss
 (M

P
a)

NO DAMPING

σ1
σ3
σ2

0 1 2 3 4 5 6 7 8 9 10

x 105

-80

-60

-40

-20

0

20

40

60

80

steps

pr
in

ci
pa

l s
tre

ss
 (M

P
a)

NO DAMPING

σ1
σ3
σ2

Figure 8: Random load, no damping – Principal
components of stress in the examined cell (a) for
the first 2500 steps and (b) for 106 steps.
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