
Copyright c© 2008 Tech Science Press CMES, vol.28, no.1, pp.15-38, 2008

Finite Rotation Geometrically Exact Four-Node Solid-Shell Element with
Seven Displacement Degrees of Freedom

G. M. Kulikov1 and S. V. Plotnikova1

Abstract: This paper presents a robust non-
linear geometrically exact four-node solid-shell
element based on the first-order seven-parameter
equivalent single-layer theory, which permits us
to utilize the 3D constitutive equations. The term
"geometrically exact" reflects the fact that geom-
etry of the reference surface is described by ana-
lytically given functions and displacement vectors
are resolved in the reference surface frame. As
fundamental shell unknowns six displacements of
the outer surfaces and a transverse displacement
of the midsurface are chosen. Such choice of dis-
placements gives the possibility to derive strain-
displacement relationships, which are invariant
under arbitrarily large rigid-body shell motions
in a convected curvilinear coordinate system. To
avoid shear and membrane locking and have no
spurious zero energy modes, the assumed strain
and stress resultant fields are invoked. To im-
prove a geometrically non-linear shell response,
the modified ANS method is applied. Addi-
tionally, analytical integration throughout the el-
ement is employed to evaluate the tangent stiff-
ness matrix. As a result, the present finite rota-
tion solid-shell element formulation allows using
coarse meshes and very large load increments.

Keyword: geometrically exact solid-shell ele-
ment, finite rotations, seven-parameter shell for-
mulation

1 Introduction

In recent years, a large number of works has been
carried out on the 3D continuum-based non-linear
finite elements that can handle the analysis of
thin shells satisfactorily. These elements are typi-
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cally defined by two layers of nodes at the bottom
and top surfaces of the shell with three displace-
ment degrees of freedom per node and known
as isoparametric solid-shell elements [Kim and
Lee (1988), Simo, Rifai and Fox (1990), Braun,
Bischoff and Ramm (1994), Betsch and Stein
(1995), Park, Cho and Lee (1995), Lee, Cho and
Lee (2002), Sze, Chan and Pian (2002), Basar and
Kintzel (2003)]. Unfortunately, a six-parameter
solid-shell element formulation on the basis of
the complete 3D constitutive equations is defi-
cient because thickness locking occurs. This is
due to the fact that the linear displacement field in
the thickness direction results in a constant trans-
verse normal strain, which in turn causes artifi-
cial stiffening of the element in the case of non-
vanishing Poisson’s ratios. To prevent thickness
locking at the finite element level, the efficient en-
hanced assumed strain method [Braun, Bischoff
and Ramm (1994), Betsch and Stein (1995)] can
be applied. In order to circumvent a locking phe-
nomenon at both mechanical and computational
levels, the 3D constitutive equations have to be
modified [Kim and Lee (1988), Park, Cho and Lee
(1995), Sze, Chan and Pian (2002)]. However, the
use of complete 3D constitutive laws within the
shell analysis is of great importance for engineer-
ing applications. Thus, a seven-parameter solid-
shell element formulation [Parisch (1995), San-
sour (1995), Basar, Itskov and Eckstein (2000),
El-Abbasi and Meguid (2000), Brank (2005)] is
best suited for this purpose because such a for-
mulation is optimal with respect to a number of
degrees of freedom employed. We refer to re-
view papers [Sze (2002), Bischoff, Wall, Blet-
zinger and Ramm (2004)], where the reader may
find additional references on this subject.

In the isoparametric solid-shell element formula-
tion, initial and deformed geometry are equally
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interpolated allowing one to describe rigid-body
shell motions precisely. The development of non-
linear isoparametric solid-shell elements was not
straightforward. In order to overcome element
deficiencies such as shear, membrane and curva-
ture thickness locking, advanced finite element
techniques including assumed natural strain, en-
hanced assumed strain and assumed stress or/and
strain methods were applied. Still, the isopara-
metric solid-shell element formulation is compu-
tationally inefficient because stresses and strains
are analyzed in the global and local orthogo-
nal Cartesian coordinate systems, although the
normalized element coordinates represent already
convected curvilinear coordinates.

An alternative way is to develop non-linear ge-
ometrically exact solid-shell elements based on
presentation of displacement vectors in the refer-
ence surface frame that finds its point of depar-
ture in papers of Kulikov (2004) and Kulikov and
Plotnikova (2003, 2006, 2007), devoted to the six-
parameter shell formulation. The term "geometri-
cally exact" reflects the fact that coefficients of the
first and second fundamental forms, and Christof-
fel symbols are taken exactly at every integration
point. Therefore, no approximation of the refer-
ence surface is needed. The feature of the above
geometrically exact solid-shell element formula-
tion is that it is based on the strain-displacement
relationships, which precisely represent arbitrar-
ily large rigid-body motions in a convected curvi-
linear coordinate system.

Herein, a more general study on the basis of the fi-
nite rotation first-order seven-parameter shell the-
ory is considered. As fundamental unknowns
six displacements of the outer surfaces of the
shell and an additional transverse displacement
of the middle surface are chosen. Such choice
of displacements gives the possibility to represent
the proposed geometrically exact solid-shell ele-
ment formulation in a compact form and to de-
rive strain-displacement relationships, which are
invariant again under large rigid-body motions. It
should be mentioned that in some works develop-
ing the isoparametric solid-shell element formula-
tion [see e.g. Parisch (1995)], displacement vec-
tors of outer and middle surfaces are also utilized,

but these vectors are resolved in the fixed orthog-
onal unit basis. An idea of this approach can be
traced back to the contribution of Schoop (1986).
However, in the developed seven-parameter shell
theory selecting as unknowns the displacements
of outer and middle surfaces has a principally an-
other mechanical sense and allows us additionally
to obtain strain-displacement relationships with
aforementioned attractive properties.

The finite element formulation is based on the
simple and efficient approximation of shells via
four-node curved shell elements. To avoid shear
and membrane locking and have no spurious zero
energy modes, the assumed strain and stress resul-
tant fields are invoked. This approach was devel-
oped for the linear and non-linear geometrically
exact six-parameter solid-shell elements by Ku-
likov and Plotnikova (2002, 2003). Here, this as-
sumed stress-strain formulation is extended to the
geometrically exact multilayered four-node solid-
shell element based on the seven-parameter equiv-
alent single-layer shell theory, which allows us to
utilize the 3D constitutive equations.

Taking into account that displacement vectors of
outer and middle surfaces of the shell are re-
solved in the reference surface frame, the pro-
posed geometrically exact solid-shell element for-
mulation has computational advantages compared
to the conventional isoparametric solid-shell ele-
ment formulations, since it reduces the computa-
tional cost of numerical integration in the evalua-
tion of the stiffness matrix. This is due to the fact
that the element matrix developed requires only
direct substitutions, i.e., no numerical matrix in-
version is needed. This is unusual for the isopara-
metric hybrid/mixed shell element formulations.
Additionally, we use the efficient 3D analytical in-
tegration [Kulikov and Plotnikova (2005), (2006)
and (2007)] that gives the possibility to employ
coarse meshes.

2 Kinematic description of undeformed shell

Let us consider a shell of thickness h. The shell
can be defined as a 3D body of volume V bounded
by two outer surfaces Ω− and Ω+, located at the
distances d− and d+ measured with respect to
the reference surface Ω such that h = d− + d+,



Finite Rotation Geometrically Exact Four-Node Solid-Shell Element 17

and the edge boundary surface εεε . The reference
surface is assumed to be sufficiently smooth and
without any singularities. As has been shown re-
cently by Kulikov and Plotnikova (2007), this as-
sumption cannot introduce any serious limitation
in the shell theory because in the case of the ro-
bust choice of the reference surface we are able to
model general surface geometry such as shell in-
tersections and shell edges efficiently. Let the ref-
erence surface be referred to the convected curvi-
linear coordinates θ 1 and θ 2, whereas the coordi-
nate θ 3 is oriented along the unit vector a3 = a3

normal to the reference surface.

Figure 1: Geometry of the shell

Introduce in accordance with Figures 1 and 2 the
following notations: r = r

(
θ 1, θ 2

)
is the posi-

tion vector of any point of the reference surface;
aα = r,α are the covariant base vectors of the ref-
erence surface; aβ are the contravariant base vec-
tors of the reference surface defined by the stan-
dard relation aα · aβ = δ β

α ; aαβ = aα · aβ and
aαβ = aα · aβ are the covariant and contravariant
components of the metric tensor of the reference
surface; a = det

[
aαβ
]

is the determinant of the

metric tensor of the reference surface; bβ
α are the

mixed components of the curvature tensor defined
as

bβ
α = −aβ ·a3,α (1)

R is the position vector of any point in the shell
body given by

R = r+θ 3a3 (2)

in particular, position vectors of outer and middle
surfaces are

RI = r+ zI a3 (3)

where zI are the transverse coordinates of outer
and middle surfaces defined as

z− = −d−, z+ = d+, zM =
1
2

(
z− + z+) (4)

μβ
α are the mixed components of the 3D shifter

tensor expressed as

Figure 2: Initial and current configurations of the
shell

μβ
α = δ β

α −θ 3bβ
α (5)

in particular, components of the shifter tensor at
outer and middle surfaces are

μ Iβ
α = δ β

α − zIbβ
α (6)

gi are the covariant base vectors in the shell body
defined as

gα = R,α = μβ
α aβ , g3 = R,3 = a3 (7)

in particular, base vectors of outer and middle sur-
faces are

gI
α = RI

,α = μ Iβ
α aβ , gI

3 = a3 (8)

gi j are the covariant components of the 3D metric
tensor given by

gαβ = gα ·gβ = μγ
α μδ

β aγδ , gi3 = gi ·g3 = δi3 (9)

in particular, components of the metric tensors of
outer and middle surfaces are

gI
αβ = gI

α ·gI
β = μ Iγ

α μ Iδ
β aγδ ,

gI
i3 = gI

i ·gI
3 = δi3

(10)
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g = det [gi j] is the determinant of the 3D met-

ric tensor; gI = det
[
gI

i j

]
are the determinants of

the metric tensors of outer and middle surfaces;
μ =

√
g/a is the determinant of the shifter tensor;

μ I =
√

gI/a are the determinants of the shifter
tensor at outer and middle surfaces; (. . .),i are
the partial derivatives in V with respect to coor-
dinates θ i; (. . .) |α are the covariant derivatives in
Ω with respect to coordinates θ α . Here and in
the following developments, Greek tensorial in-
dices α , β , γ , δ range from 1 to 2; Latin tenso-
rial indices i, j, m, n range from 1 to 3; Greek
indices A, B identify the belonging of any quan-
tity to the bottom and top surfaces and take values
– and +; Latin indices I,J identify the belonging
of any quantity to the outer and middle surfaces
and take values −, + and M.

3 Kinematic description of deformed shell

Now, we introduce the first assumption for the
proposed shell theory.

Assumption 1. The displacement field is approx-
imated in the thickness direction according to the
quadratic law

u = ∑
I

LI uI (11)

where uI
(
θ 1, θ 2

)
are the displacement vectors of

outer and middle surfaces; LI
(
θ 3
)

are the La-
grange polynomials of the second order expressed
as

L− =
2
h2

(
zM −θ 3)(z+−θ 3)

LM =
4
h2

(
θ 3 − z−

)(
z+−θ 3)

L+ =
2
h2

(
θ 3 − z−

)(
θ 3 − zM

)
(12)

such that LI
(
zJ
)

= 1 for J = I and LI
(
zJ
)

=
0 for J �= I. Thus, we deal with the higher-
order nine-parameter shell model because nine
displacements of outer and middle surfaces are in-
troduced by Eq. 11.

It is convenient to rewrite Eqs. 2 and 7 in more
general forms

R = ∑
I

LIRI , RM =
1
2

(
R− +R+) (13)

and

gα = ∑
I

LIgI
α , gM

α =
1
2

(
g−α +g+

α
)

(14a)

g3 = ∑
A

NAgA
3 , gA

3 = a3 (14b)

where NA
(
θ 3
)

are the polynomials of the first or-
der defined as

N− =
1
h

(
z+−θ 3) , N+ =

1
h

(
θ 3 − z−

)
(15)

such that NA
(
zB
)

= 1 for B = A and NA
(
zB
)

= 0
for B �= A.

Using Eqs. 11 and 13, we arrive at the formula for
the position vector of the deformed shell

R = R+u = ∑
I

LIR
I

(16)

where R
I (θ 1, θ 2

)
are the position vectors of

outer and middle surfaces given by

R
I = RI +uI (17)

The covariant base vectors in the current shell
configuration are

gα = R,α = ∑
I

LIgI
α (18a)

g3 = R,3 = ∑
A

NAgA
3 (18b)

Here, gI
α and gA

3 are the base vectors of outer and
middle surfaces of the deformed shell expressed
as

gI
α = R

I
,α = gI

α +uI
,α , gA

3 = a3 +βββ A (19)

where

βββ A = u,3
(
zA) (20a)

that can be represented by using Eqs. 11 and 12
as follows:

βββ− =
1
h

(−3u− +4uM −u+)
βββ + =

1
h

(
u−−4uM +3u+) (20b)
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4 Strain-displacement relationships

The Green-Lagrange strain tensor can be written
as

2εi j = gi ·g j −gi ·g j (21)

Substituting base vectors (14) and (18) into rela-
tionships (21), one finds

2εαβ = ∑
I,J

LILJ
(

uI
,α ·gJ

β +uJ
,β ·gI

α +uI
,α ·uJ

,β

)

2εα3 = ∑
A,I

NALI (uI
,α ·a3 +βββ A ·gI

α +βββ A ·uI
,α
)

2ε33 = ∑
A,B

NANB (β A ·a3 +βββ B ·a3 +βββ A ·βββ B)
(22)

It is seen from Eqs. 12, 15 and 22 that in-plane
strains εαβ are the polynomials of the fourth or-
der, transverse shear strains εα3 are the polyno-
mials of the third order and a transverse normal
strain ε33 is the polynomial of the second order.
To simplify the higher-order nine-parameter shell
formulation, we introduce the next assumption.

Assumption 2. From the mechanical point of
view it is convenient to assume that all compo-
nents of the Green-Lagrange strain tensor are dis-
tributed through the thickness of the shell accord-
ing to the displacement distribution (11), i.e.,

ε̌i j = ∑
I

LIε I
i j (23)

where ε I
i j = εi j

(
zI
)

are the exact values of Green-
Lagrange strains at the outer and middle surfaces
defined as

2ε I
αβ = uI

,α ·gI
β +uI

,β ·gI
α +uI

,α ·uI
,β

2ε I
α3 = uI

,α ·a3 +βββ I ·gI
α +βββ I ·uI

,α

2ε I
33 = 2β I ·a3 +βββ I ·βββ I (24)

Here, an additional notation (see Eq. 20) has been
introduced

βββ M = u,3
(
zM)=

1
h

(
u+−u−) (25)

Actually, this assumption implies that now all
strain components ε̌i j are the polynomials of the
second order that simplifies sufficiently the non-
linear higher-order nine-parameter shell formula-
tion.

Remark 1. It can be verified by using Eqs. 12
and 15 that components of the simplified and ex-
act Green-Lagrange strain tensors satisfy linking
conditions

ε̌i j
(
zI)= εi j

(
zI)= ε I

i j (26)

These links are illustrated by means of Figure 3. It
should be also noticed that the non-uniform distri-
bution of the transverse normal strain in the thick-
ness direction permits us to utilize 3D constitutive
laws. In principle, the linear strain distribution is
sufficient for this purpose [Parisch (1995), San-
sour (1995)].

We next represent displacement vectors of outer
and middle surfaces as follows:

uI = uI
ia

i (27)

It is seen that displacement vectors are resolved
in the contravariant reference surface basis ai that
allows us to reduce the costly numerical integra-
tion by evaluating the stiffness matrix [Kulikov
and Plotnikova (2006) and (2007)]. The deriva-
tives of displacement vectors βββ I from Eqs. 20 and
25 can be represented in a similar way

βββ I = β I
i ai (28a)

where

β−
i =

1
h

(−3u−i +4uM
i −u+

i

)
β +

i =
1
h

(
u−i −4uM

i +3u+
i

)

β M
i =

1
h

(
u+

i −u−i
)

(28b)

The derivatives of displacement vectors of outer
and middle surfaces are written as

uI
,α = uI

i |α ai (29)

uI
i |α = uI

i,α −Γ j
iα uI

j (30)
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Figure 3: Approximate (—) and exact (– –) distri-
butions of (a) in-plane, (b) transverse shear and (c)
transverse normal strains through the thickness of
the shell for the higher-order nine-parameter shell
theory

where Γ j
iα are the Christoffel symbols defined as

Γi
αβ = ai ·aα ,β , Γβ

3α = −bβ
α , Γ3

3α = 0 (31)

Substituting Eqs. 8, 28 and 29 into strain-
displacement relationships (24), we arrive at a
scalar form of these relationships

2ε I
αβ = μ Iγ

β uI
γ |α + μ Iγ

α uI
γ |β +ai juI

i |α uI
j|β

2ε I
α3 = uI

3|α + μ Iγ
α β I

γ +ai jβ I
i uI

j|α

2ε I
33 = 2β I

3 +ai jβ I
i β I

j (32)

where for convenience it has been introduced
an additional notation ai3 = δ i3. In orthogo-
nal curvilinear surface coordinates, the strain-
displacement relationships (32) can be repre-
sented in a simpler form (see Appendix A).

We now formulate the fundamental statement
concerning the Green-Lagrange strain tensor de-
veloped.

Proposition 1.1 The Green-Lagrange strain com-
ponents (23) are objective, i.e., they represent pre-
cisely large rigid-body shell motions in any con-
vected curvilinear coordinate system.

Proof. The large rigid-body shell displacements
can be defined as

(u)Rigid = Δ+ΦR−R (33)

where Δ = Δiai is the constant displacement
(translation) vector; Φ is the orthogonal rotation
matrix (see e.g. Kulikov, 2004). In particular,
rigid-body shell displacements of outer and mid-
dle surfaces are written as(
uI)Rigid = Δ+ΦRI −RI (34)

The derivatives of the translation vector and the
rotation matrix with respect to convected coordi-
nates are zero, that is,

Δ,α = 0 and Φ,α = 0 (35)

Allowing for Eqs. 8 and 35, the derivatives of
displacement vectors (34) are expressed as(
uI

,α
)Rigid = ΦgI

α −gI
α (36)

Using Eqs. 20, 25 and 34, and taking into account
formulas for the position vectors of outer and mid-
dle surfaces (3) and (13) as well, one obtains(
βββ I)Rigid

= Φa3 −a3 (37)

It may be verified by employing Eqs. 36 and 37
that strains of outer and middle surfaces (24) are
all zero in a general large rigid-body shell motion:

2
(
ε I

i j

)Rigid =
(
ΦgI

i

) · (ΦgI
j

)−gI
i ·gI

j = 0 (38)

This conclusion is true because the orthogonal
transformation retains the scalar product of vec-
tors. Therefore, due to Eq. 38 the simplified
Green-Lagrange strains (23) exactly represent ar-
bitrarily large rigid-body motions, i.e.,

(ε̌i j)
Rigid = 0 (39)

1 This proposition has been proved recently for the non-
linear higher-order nine-parameter plate theory by Ku-
likov (2007)
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that completes the proof.

Thus, we have derived strain-displacement rela-
tionships (23) and (32) of the higher-order nine-
parameter shell model, which exactly represent
arbitrarily large rigid-body motions in a convected
curvilinear coordinate system. However, for the
better computational efficiency we have to reduce
a number of degrees of freedom. It is apparent
that a first-order2 seven-parameter shell model is
best suited for this purpose because such a model
allows one to utilize the 3D constitutive equations
and is optimal with respect to a number of de-
grees of freedom employed [Parisch (1995), San-
sour (1995)].

To diminish a number of unknown displacements,
we should accept an additional assumption.

Assumption 3. It is assumed, first, that in-plane
and transverse normal components of the Green-
Lagrange strain tensor are linear, whereas trans-
verse shear components are constant through the
thickness of the shell:

ε̂αβ = ∑
A

NAεA
αβ (40a)

ε̂α3 = εa
α3 =

1
2

(
ε−

α3 +ε+
α3

)
(40b)

ε̂33 = ∑
A

NAεA
33 (40c)

where εa
α3 are the average values of transverse

shear strains at the bottom and top surfaces. Sec-
ond, the in-plane displacements are considered to
be linear, while the transverse displacement re-
mains quadratic in the thickness direction, that is,

uα = ∑
A

NAuA
α (41a)

u3 = ∑
I

LIuI
3 (41b)

Remark 2. It may be shown by using Eqs. 22
and 40, and taking Eqs. 12, 15 and 24 into ac-
count that in-plane and transverse normal compo-
nents of the simplified and exact Green-Lagrange

2 This is due to the linear strain distribution through the
thickness of the shell

Figure 4: Approximate (—) and exact (– –) distri-
butions of (a) in-plane, (b) transverse shear and (c)
transverse normal strains through the thickness of
the shell for the first-order seven-parameter shell
theory

strain tensors satisfy linking conditions at the bot-
tom and top surfaces

ε̂αβ
(
zA)= εαβ

(
zA)= εA

αβ (42a)

ε̂33
(
zA)= ε33

(
zA)= εA

33 (42b)

This fact is illustrated in Figure 4.

As we shall see later, strains (40) in conjunction
with relationships (32) provide a very simple and
convenient way to overcome thickness locking in
the case of utilizing the complete 3D constitutive
equations because only seven displacements u−i ,
u+

i and uM
3 are introduced into the shell formula-

tion.

5 Hu-Washizu variational equation for mul-
tilayered shell

The first-order seven-parameter shell theory de-
veloped is based on the assumed approxima-
tions of displacements (41) and displacement-
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dependent strains ε̂i j (Eq. 40) in the thick-
ness direction. Additionally, to circumvent shear
and membrane locking, we introduce the simi-
lar approximation for the assumed displacement-
independent strains

εAS
αβ = ∑

A

NAEA
αβ (43a)

εAS
α3 = Eα3 (43b)

εAS
33 = ∑

A

NAEA
33 (43c)

Now, we consider a more general shell configura-
tion built up by the arbitrary superposition across
the wall thickness of NL layers of thickness hk

(Figure 5). The kth layer may be defined as a
3D body of volume Vk bounded by two surfaces
Ωk−1 and Ωk, located at the distances zk−1 and
zk measured with respect to the reference sur-
face Ω, and the edge boundary surface εεεk. The
constituent layers of the shell are supposed to be
rigidly joined, so that no slip on contact surfaces
and no separation of layers can occur. The mate-
rial of each layer is assumed to be linearly elas-
tic, anisotropic, homogeneous or fiber-reinforced,
such that in each point there is a single surface of
elastic symmetry parallel to the reference surface.
Here and in the following developments, the in-
dex k identifies the belonging of any quantity to
the kth layer and runs from 1 to NL.

For the sake of simplicity, our discussion is lim-
ited to the case of zero body forces and conser-
vative surface loading. To arrive at the assumed
stress-strain element formulation, we consider the
Hu-Washizu functional

JHW =
∫∫
Ω

∑
k

zk∫
zk−1

[
1
2

εAS
i j Ci jmn

k εAS
mn

−Si j
k

(
εAS

i j − ε̂i j

)]
μ
√

adθ 1dθ 2dθ 3

−
∫∫
Ω

(
μ+pi

+u+
i −μ−pi

−u−i
)√

adθ 1dθ 2−W ext

(44)

where Si j
k are the contravariant components of the

second Piola-Kirchhoff stress tensor of the kth

layer; Ci jmn
k are the contravariant components of

the material tensor of the kth layer; Wext is the
work done by external loads acting on the edge
boundary surface εεε ; pi− and pi

+ are the contravari-
ant components of the traction vectors p− and p+

applied to the bottom and top surfaces.

Figure 5: Geometrically exact multilayered
seven-parameter shell element, where Pr denotes
the element node

Substituting assumed approximations of displace-
ments and strains (40), (41) and (43) in the thick-
ness direction into functional (44) and introducing
stress-resultants

Hαβ
A = ∑

k

zk∫
zk−1

μSαβ
k NAdθ 3

H33
A = ∑

k

zk∫
zk−1

μS33
k NAdθ 3

Hα3 = ∑
k

zk∫
zk−1

μSα3
k dθ 3

(45)

and invoking the stationarity of this functional
with respect to independent variables, one derives
the following mixed variational equation for the
geometrically exact solid-shell element formula-
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tion:

∫∫
Ω̃el

[
δET (H−DE)+δHT (E−εεε)

−δεεε TH+δVTP
]√

aΛdξ 1dξ 2 +δW ext
el

= 0 (46)

where Ω̃el = [−1, 1]× [−1, 1] is the biunit square
in
(
ξ 1, ξ 2

)
-space (see Figure 6); Λ is the deter-

minant of the transformation matrix; V is the dis-
placement vector3; P is the surface traction vec-
tor; εεε and E are the displacement-dependent and
displacement-independent strain vectors; H is the
stress resultant vector; D is the laminate constitu-
tive stiffness matrix given by

Λ = det

[
∂θ β

∂ξ α

]
(47)

V =
[
u−1 u−2 u−3 u+

1 u+
2 u+

3 uM
3

]T

P =
[−μ−p1

− −μ−p2
− −μ−p3

− μ+p1
+

μ+p2
+ μ+p3

+ 0
]T

εεεεεεεεε =
[
ε−

11 ε+
11 ε−

22 ε+
22 ε−

33 ε+
33 2ε−

12 2ε+
12 2εa

13 2εa
23

]T

E =
[
E−

11 E+
11 E−

22 E+
22 E−

33 E+
33 2E−

12 2E+
12

2E13 2E23]
T

H =
[
H11
− H11

+ H22
− H22

+ H33
− H33

+ H12
− H12

+

H13 H23
]T

3 From this point, any vector of order M means the standard
column matrix of order M×1

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111
00 D1111

01 D1122
00 D1122

01 D1133
00

D1111
11 D1122

01 D1122
11 D1133

01
D2222

00 D2222
01 D2233

00
D2222

11 D2233
01

D3333
00

sym.

D1133
01 D1112

00 D1112
01 0 0

D1133
11 D1112

01 D1112
11 0 0

D2233
01 D2212

00 D2212
01 0 0

D2233
11 D2212

01 D2212
11 0 0

D3333
01 D3312

00 D3312
01 0 0

D3333
11 D3312

01 D3312
11 0 0

D1212
00 D1212

01 0 0
D1212

11 0 0
D1313 D1323

D2323

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The elements of the constitutive stiffness matrix
are

Di jmn
r1r2

= ∑
k

zk∫
zk−1

μCi jmn
k

(
N−)2−r1−r2

(
N+)r1+r2 dθ 3

Dα3β3 = Dα3β3
00 +2Dα3β3

01 +Dα3β3
11 (48)

Throughout this and next sections indices r1 and
r2 take the values 0 and 1.

Remark 3. To carry out the exact analytical in-
tegration in Eq. 48, the determinant of the 3D
shifter tensor can be approximated through the
shell thickness by applying the linear law that has
already been used in previous developments:

μ = ∑
A

NAμA (49)

In practice, for thin-walled structures the simplest
approximation may be employed

μ = μa =
1
2

(
μ− + μ+) (50)

For very thin shells one can assume that metrics
of all surfaces parallel to the reference surface are
identical and equal to the metric of the midsur-
face [see e.g. works of Kulikov and Plotnikova
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(2002, 2003, 2007)]. This implies that in the case
of choosing the midsurface as a reference surface
the simplest approximation μ = 1 may be utilized.

Figure 6: Biunit square in
(
ξ 1, ξ 2

)
-space

mapped into the geometrically exact four-node
shell element in

(
x1, x2, x3

)
-space

6 Assumed stress-strain finite element for-
mulation

For the four-node curved solid-shell element the
displacement field (see Appendix A) is approxi-
mated according to the standard C0 interpolation

V = ∑
r

NrVr (51a)

V =
[
u̇−1 u̇−2 u̇−3 u̇+

1 u̇+
2 u̇+

3 u̇M
3

]
Vr =

[
u̇−1r u̇−2r u̇−3r u̇+

1r u̇+
2r u̇+

3r u̇M
3r

]T
(51b)

where Vr are the displacement vectors of the el-
ement nodes; Nr

(
ξ 1, ξ 2

)
are the bilinear shape

functions of the element and the index r denotes
a number of nodes and ranges from 1 to 4. The
surface traction vector is also assumed to vary bi-
linearly inside the element.

The displacement approximation (51) can be
rewritten as

V = ∑
r1,r2

(
ξ 1)r1

(
ξ 2)r2 Vr1r2 for r1, r2 = 0, 1

V00 =
1
4

(V1 +V2 +V3 +V4)

V10 =
1
4

(V1 −V2 −V3 +V4)

V01 =
1
4

(V1 +V2 −V3 −V4)

V11 =
1
4

(V1 −V2 +V3 −V4)

(52)

that is best suited for the implementation of the
analytical integration throughout the element.

The use of Eq. 52 in Eqs. A8 and A9 leads
to the biquadratic interpolation for displacement-
dependent strains

εεε = ∑
s1,s2

(
ξ 1)s1

(
ξ 2)s2 Es1s2 (53a)

εεε =
[
ε̇−

11 ε̇+
11 ε̇−

22 ε̇+
22 ε̇−

33 ε̇+
33 2ε̇−

12 2ε̇+
12 2ε̇a

13 2ε̇a
23

]T
εεε s1s2 =

[
ε̇−s1s2

11 ε̇+s1s2
11 ε̇−s1s2

22 ε̇+s1s2
22 ε̇−s1s2

33 ε̇+s1s2
33

2ε̇−s1s2
12 2ε̇+s1s2

12 2ε̇as1s2
13 2ε̇as1s2

23

]T
(53b)

where εεε s1s2 are the mode strain vectors, which
are constant throughout the element and evalu-
ated in Appendix B by means of non-conventional
schemes [Kulikov and Plotnikova (2006) and
(2007)], and the superscripts s1 and s2 run from
0 to 2.

It is convenient to introduce a displacement vector
of the shell element of order 28 as follows:

U =
[
VT

1 VT
2 VT

3 VT
4

]T
(54)

Using this notation in Eqs. B1-B4, we get a more
suitable form for the mode strain vectors (53b):

εεε s1s2 = Bs1s2 U+(As1s2 U)U = (Bs1s2 +As1s2U)U

(55)

where Bs1s2 are the constant matrices of or-
der 10 × 28 corresponding to the linear strain-
displacement transformation (B2) such that
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Bs1s2 = 0 for s1 = 2 or s2 = 2; As1s2 are the con-
stant 3D arrays of order 10×28×28 correspond-
ing to the non-linear strain-displacement trans-
formation (B3); As1s2 U are the matrices of order
10×28 whose elements are defined as

(As1s2U) lp = ∑
q

As1s2
lpq Uq (56a)

As1s2
lpq = As1s2

lqp for l = 1, 10 and p, q = 1, 28 (56b)

To avoid shear and membrane locking and have
no spurious zero energy modes, the assumed
displacement-independent strain and stress resul-
tant fields [Kulikov and Plotnikova (2003)] inside
the element are introduced

E = ∑
r1,r2

(
ξ 1)r1 (ξ 2)r2 Qr1 r2 Er1 r2 (57a)

E00 =
[
E−00

11 E+00
11 E−00

22 E+00
22 E−00

33 E+00
33

2E−00
12 2E+00

12 2E00
13 2E00

23

]T

E01 =
[
E−01

11 E+01
11 E−01

33 E+01
33 2E01

13

]T
E10 =

[
E−10

22 E+10
22 E−10

33 E+10
33 2E10

23

]T
E11 =

[
E−11

33 E+11
33

]T
H = ∑

r1, r2

(
ξ 1)r1

(
ξ 2)r2 Qr1 r2 Hr1 r2 (57b)

H00 =
[
H−00

11 H+00
11 H−00

22 H+00
22 H−00

33 H+00
33

H−00
12 H+00

12 H00
13 H00

23

]T

H01 =
[
H−01

11 H+01
11 H−01

33 H+01
33 H01

13

]T
H10 =

[
H−10

22 H+10
22 H−10

33 H+10
33 H10

23

]T
H11 =

[
H−11

33 H+11
33

]T

Q01 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q11 =
[

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

]T

(57c)

where Q00 is the unit matrix of order 10×10; E00

and H00 are the vectors of homogeneous states of
assumed strains and stress resultants; E01, E10,
E11 and H01, H10, H11 are the vectors of higher
approximation modes.

Substituting approximations (52), (53), (55) and
(57) into the mixed variational equation (46) and
integrating analytically throughout the element,
one obtains governing equations of the developed
finite element formulation

Er1r2 = (Qr1 r2)T (Br1r2 +Rr1r2U) U

Hr1r2 = (Qr1r2)T DQr1r2 Er1r2

∑
r1,r2

1
3r1+r2

(Br1r2 +2Rr1r2U)TQr1r2Hr1r2 = F (58)

where F is the element-wise surface force vector;
Rr1r2 are the 3D arrays of order 10×28×28 de-
fined as

R00 = A00 +
1
3

A02 +
1
3

A20 +
1
9

A22

R10 = A10 +
1
3

A12
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R01 = A01 +
1
3

A21, R11 = A11 (59)

It should be noticed that during the analytical inte-
gration, we have supposed that a product

√
aΛ is

constant inside the element and according to Eq.
B5 equals (

√
aΛ)00.

It is important that the described non-linear geo-
metrically exact four-node solid-shell element is
too stiff in the case of using coarse meshes and
some additional numerical procedure needs to be
applied. The best solution of the problem is to
employ the modified ANS method [Kulikov and
Plotnikova (2007)]. The main idea of such ap-
proach can be traced back to the ANS method
developed by Hughes and Tezduyar (1981) and
Bathe and Dvorkin (1986). In contrast with this fi-
nite element formulation, we treat the term “ANS
method” in a broader sense. In our formula-
tion all in-plane and transverse components of
the Green-Lagrange strain tensor in

(
ξ 1, ξ 2, ξ 3

)
-

space are assumed to vary bilinearly inside the el-
ement. This implies that instead of the expected
biquadratic interpolation (53) the more suitable
ANS interpolation has to be used.

So, to improve a geometrically non-linear
response of the shell, we interpolate the
displacement-dependent strains inside the ele-
ment as follows:

εεεANS = ∑
r

Nrεεε r (60)

where εεε r are the strain vectors of the element
nodes whose components can be calculated in ac-
cordance with Appendix B. However, it is more
convenient to rewrite the proposed strain interpo-
lation (60) with the help of Eq. 53 in the following
form:

εεεANS = εεε00 +εεε02 +εεε20 +εεε22

+ξ 1 (εεε10 +εεε12)+ξ 2 (εεε01 +εεε 21)
+ ξ 1ξ 2εεε11 (61)

Substituting approximations (52), (57) and (61)
into the variational equation (46), allowing for Eq.
55 and integrating analytically, one derives finite
element equations (58), where instead of 3D ar-
rays (59) the following 3D arrays should be used:

R00 = A00 +A02 +A20 +A22, R10 = A10 +A12

R01 = A01 +A21, R11 = A11 (62)

Comparing Eqs. 59 and 62, one can observe that
all corresponding arrays differ in multipliers 1/3
and 1/9. Therefore, no complication is involved
into the finite element formulation employing the
modified ANS method.

7 Incremental total Lagrangian formulation

Up to this moment, no incremental arguments are
needed in the total Lagrangian formulation. The
incremental displacements, strains and stress re-
sultants are needed for solving non-linear equa-
tions (58) on the basis of the Newton-Raphson
method. Further, the left superscripts t and t + Δt
indicate in which configuration at time t or time
t +Δt a quantity occurs. Then, in accordance with
this agreement we have

t+ΔtU = tU+ΔU
t+ΔtF = tF+ΔF

t+Δt Er1r2 = tEr1r2 +ΔEr1r2

t+Δt Hr1r2 = tHr1r2 +ΔHr1r2

(63)

where ΔU, ΔF, ΔEr1r2 and ΔHr1r2 are the incre-
mental variables.

Substituting relations (63) into governing equa-
tions (58) and taking into account the fact that ex-
ternal loads and second Piola-Kirchhoff stresses
constitute the self-equilibrated system in a config-
uration at time t, one can obtain the incremental
equations

ΔEr1r2 = (Qr1r2)T (tMr1r2 +Rr1r2 ΔU
)

ΔU

ΔHr1r2 = D
r1r2ΔEr1r2

∑
r1,r2

1
3r1+ r2

[
2(Rr1r2 ΔU)T Qr1r2 tHr1r2

+
(tMr1r2 +2Rr1r2ΔU

)T Qr1r2 ΔHr1r2

]
= ΔF

(64)

where

D
r1r2 = (Qr1r2)T DQr1r2

tMr1r2 = Br1r2 +2Rr1r2 tU
(65)
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Due to existence of non-linear terms in incremen-
tal equations (64), the Newton-Raphson iteration
process should be employed

ΔU[n+1] = ΔU[n] +ΔÛ[n],

ΔEr1r2[n+1] = ΔEr1r2[n] +ΔÊr1r2[n]

ΔHr1r2[n+1] = ΔHr1r2[n] +ΔĤr1r2[n]

for n = 0, 1, . . . (66)

As a result, we have

ΔhatEr1r2[n]− (Qr1r2)T tLr1r2[n]ΔÛ[n] =

(Qr1r2)T
(

tLr1r2[n] −Rr1 r2 ΔU[n]
)

ΔU[n]

−ΔEr1r2[n] (67)

ΔHr1r2[n]−D
r1r2 Δεεεr1r2[n] = D

r1r2 ΔEr1r2[n]

∑
r1,r2

1
3r1+ r2

[
2
(

Rr1r2 ΔY[n]
)T

Qr1r2

(
tHr1r2 +ΔHr1r2[n]

)
+
(

tLr1r2[n]
)T

Qr1r2 ΔHr1r2[n]
]

= ΔF− ∑
r1,r2

1
3r1+ r2

[
2
(

Rr1r2 ΔU[n]
)T

Qr1r2tHr1r2

+
(

tLr1r2[n]
)T

Qr1r2ΔHr1r2[n]
]

where

Dr1r2 = Qr1r2 D
r1r2 (Qr1r2)T

tLr1r2[n] = Br1r2 +2Rr1 r2

(
tU+ΔU[n]

)
(68)

Eliminating incremental strains ΔÊr1r2[n] and
stress resultants ΔĤr1r2[n] from Eq. 67 and taking
into account the matrix transformation (C3) from
Appendix C, one derives a system of linearized
equilibrium equations

KΔÛ[n] = ΔF̂[n] (69)

where

ΔF̂[n] = ΔF

− ∑
r1,r2

1
3r1+ r2

[(
tLr1r2[n]

)T
Dr1r2

(
tLr1r2[n]−Rr1r2ΔU[n]

)

+2
(
Qr1r2tHr1r2

)
Rr1r2

]
ΔU[n] (70)

and K = KD +KH denotes the elemental stiffness
matrix defined as

KD = ∑
r1,r2

1
3r1+r2

(
tLr1r2[n]

)T
Dr1r2 tLr1r2[n]

KH =

2 ∑
r1,r2

1
3r1+r2

(
Qr1r2 tHr1r2 +Qr1r2 ΔHr1r2[n]

)
Rr1r2

(71)

As expected, the tangent stiffness matrix K is
symmetric [see discussion on this subject in a pa-
per of Suetake, Iura and Atluri (2003)]. This is
due to the fact that both matrices KD and KH are
symmetric. The proof of symmetry of the second
matrix can be found in Appendix C.

Finally, we represent a formula that is used in Eq.
71 for computation of incremental stress resultant
vectors at the nth iteration step

Qr1r2ΔHr1r2[n] =

Dr1r2

[(
tMr1r2 +2Rr1r2ΔU[n−1]

)
ΔU[n]

−
(

Rr1r2 ΔU[n−1]
)

ΔU[n−1]
]

(72)

This formula holds for n ≥ 1, whereas at the be-
ginning of each iteration process one should set

ΔU[0] = 0 and ΔHr1r2[0] = 0 (73)

Remark 4. The proposed incremental approach
allows one to utilize load increments, which are
much larger than possible with the standard ge-
ometrically exact shell element formulation [Ku-
likov and Plotnikova (2006)]. This is because
of the fact that an additional load vector due to
so-called compatibility mismatch [Atluri (1973),
Boland and Pian (1977), Cho and Lee (1996)] is
present in linearized equilibrium equations (69)
and disappears only at the end of the iteration pro-
cess.

Remark 5. The tangent stiffness matrix possesses
a correct rank because 22 assumed strain param-
eters are accepted according to Eq. 57a. It is
worth noting that both elemental matrices (71) re-
quire only direct substitutions, i.e., no inversion is
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needed to derive them. Furthermore, our stiffness
matrix is evaluated by using the analytical inte-
gration.

The equilibrium equations (69)-(71) for each el-
ement are assembled by the usual technique to
form the global incremental equilibrium equa-
tions. These incremental equations should be per-
formed until the required accuracy of the solution
can be obtained. Herein, two convergence criteria
are employed to describe more carefully high po-
tential of the proposed finite element formulation,
namely,∥∥∥ΔU[n+1]

G −ΔU[n]
G

∥∥∥< ε
∥∥∥ΔU[n]

G

∥∥∥ (74)

and∣∣∣W [n+1]−W [n]
∣∣∣< ε

∣∣∣W [n]
∣∣∣ (75)

where ‖·‖ stands for the Euclidean norm; ΔUG is
the global vector of displacement increments; W
is the strain energy; ε is the prescribed tolerance.

8 Benchmark problems

The performance of the proposed geometrically
exact four-node solid-shell element is evaluated
by comparing with the best solid-shell elements
extracted from the literature. A listing of these
elements and the abbreviations used to identify
them are contained in Table I. All our results are
compared with those based, as a rule, on using
identical node spacing and the same convergence
criterion and tolerance. In each numerical ex-
ample, NStep denotes the number of load steps
employed to equally divide the maximum load,
whereas NIter stands for the total number of iter-
ations. Note also that all computations were per-
formed on a standard PC Pentium IV using Delphi
environment.

8.1 Cantilever curved beam

Consider first a geometrically linear thick can-
tilever curved beam whose centerline is one quar-
ter of the circle. The beam of the unit width is
subjected to the shear tip load as shown in Figure
7. Figure 8 displays results of solving the elas-
ticity problem [Atluri, Liu and Han (2006a) and

(2006b)] using the MLPG method with 25 nodes
in the θ -direction and 5 nodes in the thickness
direction. Thus, we have taken the same num-
ber of equally located nodes. The centerline dis-
placements in x- and y-directions are normalized
with respect to the values of uc

x (0) =−502.23 and
uc

y (0) = −321.10. These values are provided by
the exact solution of the plane stress problem in
Timoshenko and Goodier (1970). One can see
that the proposed 7-parameter model describes a
behavior of the thick curved beam well.

Figure 7: Cantilever curved beam under the shear
tip load with a = 13, b = 17, E = 1, ν = 0.25,
P = 1
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Figure 8: Normalized centerline displacements in
x- and y-directions of the curved beam



Finite Rotation Geometrically Exact Four-Node Solid-Shell Element 29

Table 1: Listing of non-linear solid-shell elements

Name Description
GEX7P4 Geometrically exact assumed stress-strain four-node element developed on the basis of the

seven-parameter shell formulation
GEX6P4 Geometrically exact assumed stress-strain four-node element on the basis of the six-

parameter shell formulation [Kulikov and Plotnikova (2007)]
ISO6P4 Isoparametric assumed stress four-node element on the basis of the six-parameter shell for-

mulation [Sze, Chan and Pian (2002)]
ISO6P8 Isoparametric displacement-based eight-node element on the basis of the six-parameter shell

formulation in conjunction with the enhanced assumed strain concept [Braun, Bischoff and
Ramm (1994)]

ISO6P9 Isoparametric assumed strain nine-node element on the basis of the six-parameter shell for-
mulation [Park, Cho and Lee (1995)]

S4R Isoparametric displacement-based four-node element with reduced integration and hourglass
control [ABAQUS (1998)]
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Figure 9: Rectangular two-layer cross-ply plate

8.2 Rectangular cross-ply plate

Next, we study a linear rectangular two-layer
cross-ply simply supported plate subjected to the
sinusoidally distributed pressure load. The geo-
metrical and material characteristics of the plate
are given in Figure 9. Due to symmetry of the
problem, only one quarter of the plate is modeled
by 32×32 mesh of GEX7P4 elements. A compar-
ison with analytical solutions based on the elas-
ticity theory [Pagano (1970)] and classical plate
theory (CPT) as well is given in Figure 10. As
can be seen, the average transverse displacement
at the center point ua

3 =
(
u−3 +u+

3

)
/2 practically

coincides with the midplane displacement uM
3 in a

Elasticity [Pagano (1970)] 

CPT

GEX7P4 (midplane displacement 
M
3U )

GEX7P4 (average displacement 
a
3U )

Figure 10: Transverse displacement at the cen-
ter point U3 = 100ET h3u3/p0a4 of the rectangular
two-layer cross-ply plate

range of a/h ≥ 10.

8.3 Pinched hemispherical shell

To investigate the capability of the proposed geo-
metrically exact shell element to model the inex-
tensional bending and large rigid-body motions,
we consider one of the most demanding non-
linear tests. A hemispherical shell with 18o hole
at the top is loaded by two pairs of opposite forces
on the equator. The geometrical and material data
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of the problem are shown in Figure 11. Owing to
symmetry, only one quarter of the shell is mod-
eled with regular meshes of GEX7P4 elements.
Table 2 lists midsurface displacements under ap-
plied loads employing geometrically exact and
isoparametric solid-shell elements from Table 1.
One can observe that the GEX7P4 element is a bit
stiff comparing to the GEX6P4 element because
of utilizing the complete 3D constitutive equa-
tions. At the same time it performs excellently for
coarse meshes. For example, a very coarse mesh
4× 4 yields 86 % of the reference displacement
value at point A provided by ABAQUS’s S4R el-
ement [Sze, Liu and Lo (2004)].

The data in Table 3 exhibit monotonic conver-
gence of the Newton-Raphson iteration scheme
through the Euclidean norm of the displace-
ment vector and the energy variation as well.
For a complete picture Figure 12 presents load-
displacement curves compared with those derived
by a 16× 16 mesh of S4R elements. It is seen
that all results agree closely but the GEX7P4 el-
ement is less expensive owing to the economical
derivation of its stiffness matrix.

Figure 11: Pinched hemispherical shell: (a) ge-
ometry and (b) deformed configuration (modeled
by 16×16 mesh)

8.4 Slit ring plate under line load

This example is considered in the literature to test
non-linear finite element formulations for thin-
walled shell structures and has been extensively
used by many investigators. The ring plate is sub-
jected to a line load P applied at its free edge of
the slit, while the other edge is fully clamped (Fig-
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Figure 12: Midsurface displacements of the
pinched hemispherical shell (modeled by 16×16
mesh)

Figure 13: Slit ring plate under the line load: (a)
geometry and (b) deformed configuration (mod-
eled by 6×30 mesh)

ure 13). The plate is modeled by a shell of revo-
lution with geometrical parameters

A1 = 1, A2 = r +θ 1, k1 = k2 = 0,

θ 1 ∈ [0, R− r] , θ 2 ∈ [0, 2π ] . (76)

The displacements at points A and B of the
plate, presented in Table 4 and Figure 14, have
been found by employing uniform meshes of
geometrically exact elements. A comparison
with ABAQUS’s S4R element [Sze, Liu and Lo
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Table 2: Midsurface displacements at points A and B of the pinched hemispherical shell using displacement-
based criterion (74) with tolerance of 10−4

Output GEX7P4 GEX7P4 GEX7P4 GEX6P4 S4R ISO6P4 ISO6P9
4×4mesh 8×8mesh 16×16mesh 16×16mesh 16×16mesh 16×16mesh 8×8mesh

u3 (B) 3.2631 3.9536 4.0545 4.0557 4.067 4.0488 4.0205
−u3 (A) 7.0379 8.0897 8.1232 8.1451 8.178 8.1173 8.0160
NStep/NIter 1/7 1/7 1/7 1/7 40/136a 1/8 1/8

a NIter = 136 in case of using 27 non-uniform load increments [Sze, Liu and Lo (2004)]

Table 3: Convergence results for the pinched hemispherical shell employing a 16× 16 mesh of GEX7P4
elements when the total load P = 400 is applied in one load step

Iteration
∥∥∥U[n+1]

G −U[n]
G

∥∥∥ ∣∣W [n+1] −W [n]
∣∣

0 2.1276E +2 3.6824E +3
1 9.8503E +1 2.7725E +8
2 3.8491E +1 2.6215E +8
3 1.0859E +1 1.3956E +7
4 2.5914E +0 1.1426E +6
5 7.3852E−1 8.0632E +3
6 1.4760E−2 2.1392E +0
7 3.4456E−6 1.9763E−5
8 3.2743E−11 5.2989E−9

Table 4: Midplane displacements at points A and B of the slit ring plate using displacement-based criterion
(74) with tolerance of 10−4

Output GEX7P4 GEX7P4 GEX7P4 GEX7P4 GEX6P4 S4R
2×4mesh 4×8mesh 16×32mesh 10×80mesh 10×80mesh 10×80mesh

u3 (A) 12.742 12.578 13.670 13.765 13.760 13.891
u3 (B) 16.029 16.096 17.307 17.402 17.398 17.528
NStep/NIter 1/6 1/7 1/10 1/13 1/12 640/346a

a NIter = 346 in case of using 67 non-uniform load increments [Sze, Liu and Lo (2004)]

(2004)] is also given. As can be seen, extremely
coarse meshes with the GEX7P4 element can be
used because the 2×4 mesh already yields 91 %
of the reference solution provided by a S4R ele-
ment. Note also that in this case only 6 Newton
iterations are needed to find a converged solution
with the chosen criterion and tolerance.

8.5 Pinched three-layer hyperbolic shell

Further, we consider cross-ply and angle-ply hy-
perbolic shells under two pairs of opposite forces.
The geometrical and material data of the three-
layer hyperbolic shell are shown in Figure 15.
This shell of revolution is characterized by the fol-

lowing geometrical parameters:

A1 =

√
1+

μ2z2

A2
2

, A2 = r

√
1+

μ z2

r2

k1 = − μr2

A3
1A3

2

, k2 =
1

A1A2
, μ =

R2 − r2

L2

where θ 1 = z ∈ [−L, L] and θ 2 ∈ [0, 2π] denote
meridional and circumferential midsurface coor-
dinates. Two cross-ply hyperbolic shells with dif-
ferent ply orientations of [0/90/0] and [90/0/90],
but the same ply thickness of

[
1
3 h/ 1

3h/ 1
3h
]

are
investigated, where 0◦ and 90◦ refer to the cir-
cumferential and meridional directions. Addition-
ally, we study an angle-ply hyperbolic shell with
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Table 5: Midsurface displacements at points A and C of the pinched three-layer hyperbolic shell using
displacement-based criterion (74) with tolerance of 10−4

Ply orientation = [0/90/0]
Output GEX7P4 GEX7P4 GEX7P4 GEX7P4 GEX6P4

4×4mesh 8×8mesh 16×16mesh 32×32mesh 32×32mesh
−uy(A) 2.5940 3.3076 3.4732 3.5217 3.5215
uy (C) 2.2453 2.5210 2.5224 2.5185 2.5179
NStep/NIter 1/7 1/7 1/7 1/7 1/8

Ply orientation = [90/0/90]
Output GEX7P4 GEX7P4 GEX7P4 GEX7P4 GEX6P4

4×4mesh 8×8mesh 16×16mesh 32×32mesh 32×32mesh
−uy(A) 3.0685 4.7555 5.6299 6.1294 6.1330
uy (C) 2.5310 2.9118 2.8972 2.6932 2.6914
NStep/NIter 1/10 2/16 2/20 5/25 5/29

Ply orientation = [γ/− γ/γ]
Output GEX7P4 GEX7P4 GEX7P4 GEX7P4 GEX6P4

4×16mesh 8×32mesh 16×64mesh 32×128mesh 32×128mesh
−uy(A) 3.0426 4.8838 5.7172 5.9587 5.9566
uy (C) 2.5013 2.8945 2.8038 2.7063 2.7080
NStep/NIter 2/12 4/18 4/18 4/22 4/25
a Results have been found by using a GEX6P4 element and are published for the first time
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Figure 14: Midplane displacements of the slit ring
plate (modeled by 10×80 mesh)

[γ/− γ/γ] and
[

1
4h/ 1

2h/ 1
4h
]
, where γ is the an-

gle between the asymptotic line of the midsurface
and the tangent to the meridian measured in the
clockwise direction. This angle can be found by a

Figure 15: Pinched three-layer hyperbolic shell:
geometry and deformed configuration for the ply
orientation [90/0/90] (modeled by 28×28 mesh)
with r = 7.5, R = 15, L = 20, h = 0.04, EL =
4×107, ET = 106, GLT = GT T = 6×105, νLT =
νTT = 0.25, P = 80 f , f = 5

simple formula

cosγ =
A1√
1+ μ
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Figure 16: Midsurface displacements of the
pinched three-layer hyperbolic shell for ply ori-
entations: (a) [0/90/0] and (b) [90/0/90] (modeled
by 28×28 mesh), and (c) [γ/−γ/γ] (modeled by
32×128 mesh)

Due to symmetry of the problem, only one octant
of the cross-ply shell and one half of the angle-ply
shell are discretized with uniform meshes. Table
5 and Figure 16 present displacements derived by
using geometrically exact elements for all ply se-
quences, where ux and uy denote displacements of
the midsurface in x- and y-directions. The results
for cross-ply configurations are compared with
those obtained by Basar, Ding and Schultz (1993),
and Braun, Bischoff and Ramm (1994) employ-
ing the 28×28 mesh of bilinear degenerated-shell
and the 14×14 mesh of quadratic solid-shell el-
ements, respectively. One can observe that the
GEX7P4 element performs excellently because
only one load step and 7 Newton iterations are
needed to derive a converged solution for the
[0/90/0] ply orientation. Unfortunately, we have
no possibility to compare these results with those
based on the isoparametric finite element formu-
lation because in the above papers, a convergence
criterion and load increments are not mentioned.

9 Conclusions

The simple and efficient geometrically exact as-
sumed stress-strain four-node solid-shell element
GEX7P4 has been developed for analyses of
homogeneous and multilayered composite shells
undergoing finite rotations. The finite element
formulation is based on the non-linear strain-
displacement relationships, which are invariant
under arbitrarily large rigid-body shell motions
in convected curvilinear coordinate system. This
is due to our approach in which the displace-
ment vectors of outer and middle surfaces are
introduced and resolved in the reference surface
frame. The proposed geometrically exact solid-
shell element model is free of assumptions of
small displacements, small rotations and small
loading steps because it is based on the objective
fully non-linear strain-displacement relationships.
This model is robust because it allows us, first, to
use much larger load increments than existing ge-
ometrically exact shell element models and, sec-
ond, to utilize the complete 3D constitutive equa-
tions.

The tangent stiffness matrix developed does not
require expensive numerical matrix inversions
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that is unusual for the isoparametric hybrid/mixed
shell element formulations and it is evaluated by
using the 3D analytical integration. It is notewor-
thy that the GEX7P4 element permits one to em-
ploy very coarse meshes even in shell problems
with extremely large displacements and rotations,
and it is insensitive to the number of load incre-
ments.
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by Russian Foundation for Basic Research
(RFBR) under Grant No 08-01-00373 is grate-
fully acknowledged.

Appendix A Strain-Displacement Relation-
ships in Orthogonal Curvilinear Coordinate
System

Herein, we briefly summarize the strain-
displacement relationships for one particular
case. If the orthogonal curvilinear coordinates
are referred to the lines of principal curvatures of
the reference surface Ω, then

aα = Aα eα , a3 = e3

b1
1 = −k1, b2

2 = −k2, b2
1 = b1

2 = 0
(A1)

where ei are the orthonormal base vectors of the
reference surface; Aα and kα are the coefficients
of the first fundamental form and principal curva-
tures of the reference surface. The use of Eq. A1
in Eqs. 6 and 8 leads to

μ I1
1 = cI

1 = 1+k1zI , μ I2
2 = cI

2 = 1+k2zI

μ I2
1 = μ I1

2 = 0
(A2)

gI
α = Aα cI

α eα , gI
3 = e3 (A3)

From Eqs. 24 and A3 follow the needed strain-
displacement relationships

2ε̇ I
αβ =

1
Aα

cI
β uI

,α · eβ +
1

Aβ
cI

αuI
,β · eα

+
1

AαAβ
uI

,α ·uI
,β

2ε̇ I
α3 = cI

αβββ I · eα +
1

Aα
uI

,α · (e3 +βββ I)
2ε̇ I

33 = βββ I · (2e3 +βββ I) (A4)

where ε̇ I
i j are the components of the Green-

Lagrange strain tensor at outer and middle sur-
faces in the orthonormal reference surface frame.

The displacement vectors and their derivatives
with respect to coordinate θ 3 at outer and mid-
dle surfaces can be represented in this orthonor-
mal frame as follows:

uI = ∑
i

u̇I
iei (A5)

βββ I = ∑
i

β̇ I
i ei (A6)

Taking into account Eq. A5 and well-known for-
mulas for the derivatives of orthonormal vectors ei

with respect to coordinates θ α [see e.g. Kulikov
and Plotnikova (2007)], one derives

1
Aα

uI
,α = ∑

i

λ I
iα ei (A7)

where

λ I
αα =

(
1

Aα
u̇I

α

)
,α

+Bαα u̇I
α +Bαβ u̇I

β +kα u̇I
3

for β �= α

λ I
βα =

(
1

Aα
u̇I

β

)
,α

+Bαα u̇I
β −Bαβ u̇I

α

for β �= α

λ I
3α =

(
1

Aα
u̇I

3

)
,α

+Bαα u̇I
3 −kα u̇I

α

Bαβ =
1

Aα Aβ
Aα ,β

(A8)

Substituting Eqs. A6 and A7 into Eq. A4, we ar-
rive at the final strain-displacement relationships

2ε̇ I
αβ = cI

α λ I
αβ +cI

β λ I
βα +∑

i
λ I

iα λ I
iβ

2ε̇ I
α3 = cI

α β̇ I
α +λ I

3α +∑
i

β̇ I
i λ I

iα

2ε̇ I
33 = 2β̇ I

3 +∑
i

β̇ I
i β̇ I

i (A9)

It is worth noting that strain-displacement rela-
tionships A9 are also invariant under arbitrarily
large rigid-body motions.
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Appendix B Evaluation of Mode Strain Vectors

As in Appendix A, we consider strain-
displacement relationships in orthogonal curvi-
linear coordinates, which are referred to the lines
of principal curvatures of the reference surface.
Allowing for biquadratic interpolation (53) and
strain-displacement relationships (40) and (A9),
one finds

ε̇As1s2
αβ = eAs1s2

αβ +ηAs1s2
αβ , ε̇As1s2

33 = eAs1s2
33 +ηAs1s2

33

ε̇as1s2
α3 =

1
2

(
e−s1s2

α3 +e+s1s2
α3

)
+

1
2

(
η−s1s2

α3 +η+s1s2
α3

)
(B1)

where eAs1s2
i j and ηAs1s2

i j are the linear and non-
linear parts of mode Green-Lagrange strains of
the bottom and top surfaces defined as

2eAr1r2
αβ = cA00

α λ Ar1r2
αβ +cA00

β λ Ar1r2
βα , eAr1r2

33 = β̇ Ar1r2
3

2eAr1r2
α3 = cA00

α β̇ Ar1r2
α +λ Ar1r2

3α

eAs1s2
i j = 0 for s1 = 2 or s2 = 2 (B2)

and

2ηAs1s2
αβ = ∑

r1+r3=s1
r2+r4=s2

(
∑

i

λ Ar1r2
iα λ Ar3r4

iβ

)

2ηAs1s2
α3 = ∑

r1+r3=s1
r2+r4=s2

(
∑

i

β̇ Ar1r2
i λ Ar3r4

iα

)

2ηAs1s2
33 = ∑

r1+r3=s1
r2+r4=s2

(
∑

i

β̇ Ar1r2
i β̇ Ar3r4

i

)
(B3)

where according to Eq. 28 and A8 the following
notations are introduced:

λ Ar1r2
αα =

{
1

Ãα
u̇A

α

}r1r2

α

+
(

Bαα u̇A
α +Bαβ u̇A

β +kα u̇A
3

)r1r2

for β �= α

λ Ar1r2
βα =

{
1

Ãα
u̇A

β

}r1r2

α
+
(

Bαα u̇A
β −Bαβ u̇A

α

)r1r2

for β �= α

λ Ar1r2
3α =

{
1

Ãα
u̇A

3

}r1r2

α
+
(
Bαα u̇A

3 −kα u̇A
α
)r1r2

β̇−r1r2
i =

1
h

(−3u̇−i +4u̇M
i − u̇+

i

)r1r2

β̇ +r1r2
i =

1
h

(
u̇−i −4u̇M

i +3u̇+
i

)r1r2

Ã1 = �1A1, Ã2 = �2A2 (B4)

Here, ξ α = (θ α −cα)/�α are the normalized
curvilinear coordinates and, as we remember, the
superscripts r1, r2, r3 and r4 run from 0 to 1,
whereas the superscripts s1 and s2 run from 0 to
2. Note also that due to Eq. 52 and Figure B1
convenient mesh notations are employed

f 00 =
1
4

[
f
(
P̃1
)
+ f

(
P̃2
)
+ f

(
P̃3
)
+ f

(
P̃4
)]

f 10 =
1
4

[
f
(
P̃1
)− f

(
P̃2
)− f

(
P̃3
)
+ f

(
P̃4
)]

f 01 =
1
4

[
f
(
P̃1
)
+ f

(
P̃2
)− f

(
P̃3
)− f

(
P̃4
)]

f 11 =
1
4

[
f
(
P̃1
)− f

(
P̃2
)
+ f

(
P̃3
)− f

(
P̃4
)]

{ f}00
1 = f 10, { f}01

1 = f 11, { f}10
1 = { f}11

1 = 0

{ f}00
2 = f 01, { f}10

2 = f 11, { f}01
2 = { f}11

2 = 0

(B5)

where f
(
ξ 1, ξ 2

)
is any function; P̃r are the nodal

points of the element and derivatives from Eq. A8
are evaluated by means of a simple scheme as

∂
∂ξ 1

(
1

Ã1
u̇A

i

)
=
(

1

Ã1
u̇A

i

)10

+ξ 2
(

1

Ã1
u̇A

i

)11

∂
∂ξ 2

(
1

Ã2
u̇A

i

)
=
(

1

Ã2
u̇A

i

)01

+ξ 1
(

1

Ã2
u̇A

i

)11

(B6)

This methodology plays a central role in deriva-
tion of the stiffness matrix with the help of the
3D analytical integration because allows us to cal-
culate mode strain vectors εεε s1s2 through the node
displacement values and has been proposed by
Kulikov and Plotnikova (2005, 2006, 2007).
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Figure B1: Biunit square in
(
ξ 1, ξ 2

)
-space

mapped into the geometrically exact four-node
shell element in

(
x1, x2, x3

)
-space

Appendix C Some Remarks Concerning 3D
Arrays

The right multiplication of a vector U of order 28
by a 3D array As1s2 of order 10× 28× 28 gen-
erates the matrix As1s2U of order 10× 28 whose
elements are described by Eq. 56, that is,

(As1s2U)lp = ∑
q

As1s2
lpq Uq = ∑

q
As1s2

lqp Uq (C1)

since a symmetry condition (56b) holds. As we
remember, the index l runs from 1 to 10, whereas
the indices p, q run from 1 to 28.

We can also define the left multiplication of any
vector H of order 10 by a 3D array As1s2 of order
10×28×28 following the rule:

(HAs1s2)pq =∑
l

As1s2
lpq Hl =∑

l

As1s2
lqp Hl = (HAs1s2)qp

(C2)

This implies that HAs1s2 is the symmetric matrix
of order 28×28.

There is a noteworthy transformation connecting
right and left vector multiplications

(As1s2U)T H = (HAs1s2) U (C3)

The proof of this statement is trivial. Really, com-
paring the components of vectors in left and right
parts of Eq. C3[
(As1s2 U)T H

]
p
= ∑

l

(As1s2U)T
pl Hl

= ∑
l

(
∑
q

As1s2
lpq Uq

)
Hl

[(HAs1s2)U]p = ∑
q

(HAs1s2)pqUq

= ∑
q

(
∑

l

As1s2
lpq Hl

)
Uq

one can see that both vectors are the same.

Finally, considering a matrix KH from Eq. 71 to-
gether with notations (57c) and a definition of the
left multiplication of vectors of order 10 by 3D
arrays Rr1r2 from Eq. 62, we conclude that this
matrix is symmetric.
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