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A Combined Approach of the MLPG Method and Nonlinear Programming
for Lower-Bound Limit Analysis

S. S. Chen1, Y. H. Liu1,2 Z. Z. Cen1

Abstract: In most engineering applications, so-
lutions derived from the lower-bound theorem of
plastic limit analysis are particularly valuable be-
cause they provide a safe estimate of the load
that will cause plastic collapse. A solution proce-
dure based on the meshless local Petrov-Galerkin
(MLPG) method is proposed for lower-bound
limit analysis. This is the first work for lower-
bound limit analysis by this meshless local weak
form method. In the construction of trial func-
tions, the natural neighbour interpolation (NNI)
is employed to simplify the treatment of the es-
sential boundary conditions. The discretized limit
analysis problem is solved numerically with the
reduced-basis technique. The self-equilibrium
stress field is constructed by a linear combination
of several self-equilibrium stress basis vectors,
which can be computed by performing an equilib-
rium iteration procedure during elasto-plastic in-
cremental analysis. The non-linear programming
sub-problems are solved directly by the Complex
method and the limit load multiplier converges
monotonically to the lower-bound of real solu-
tion. Several numerical examples are given to
verify the accuracy and reliability of the proposed
method for lower-bound limit analysis.

Keyword: limit analysis, MLPG method, nat-
ural neighbour interpolation, self-equilibrium
stress, non-linear programming

1 Introduction

The definition of the load-carrying capacity of a
structure has always been considered as an es-
sential data from an engineering point of view.
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Traditional linear elastic analysis can be over-
conservative and underutilizes the load-carrying
capacity of structures. Using elasto-plastic analy-
sis for structural design and safety evaluation can
overcome this disadvantage and make computa-
tional results more rational. Hence, elasto-plastic
analysis is increasingly widely applied to engi-
neering problems.

Elasto-plastic incremental analysis is generally
applied to calculate the load-carrying capacity of
structures. However, this approach necessitates
greater calculation effort. Moreover, error prop-
agation may occur. The major drawback is the
fact that the limit load cannot be computed di-
rectly and always yields unnecessarily abundant
information such as stress and strain field histo-
ries. In summary, although elasto-plastic incre-
mental analysis is widely used with the develop-
ment of computer, it is still difficult and expen-
sive to calculate the limit load of a structure. Al-
ternatively, limit analysis is the most well-known
and popular approach which is based on the the-
orems of plastic limit analysis and aims to pro-
vide an estimate on the limit load of a perfectly
plastic structure under a monotonically increas-
ing load regime. As a simplified method, limit
analysis has higher computational efficiency and
is more practical than elasto-plastic incremen-
tal analysis. However, the use of limit analysis
still has great difficulty in numerical computa-
tion because it is mostly centered on the mathe-
matical programming [Cohn et al. (1979); Maier
and Munro (1982)]. This mathematical program-
ming problem has excessive independent vari-
ables and constraint conditions after discretiza-
tion, in general is a large-scale non-linear or lin-
ear programming, and hence is usually very dif-
ficult to be solved. At present, many scholars
are making great effort to develop efficient and
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reliable computational methods of limit analysis,
most of which aim at overcoming this difficulty
[Zhang et al. (2002, 2004); Makrodimopoulos
and Martin (2006); Corradi et al. (2006); Pisano
and Fuschi (2007)]. However, up to now, to the
authors’ knowledge, most of the numerical meth-
ods for solving limit analysis problems are based
on mesh-based numerical methods such as the fi-
nite element method (FEM) and boundary ele-
ment method (BEM).

Meshless methods have recently become attrac-
tive alternatives for problems in computational
mechanics due to their high adaptability and low
cost to prepare input data for numerical analyses.
They can also overcome some other disadvan-
tages associated with mesh-based methods, such
as locking, element distortion, remeshing during
large deformations, and others. Many meshless
methods based on different techniques have been
proposed so far, such as the element-free Galerkin
(EFG) method by Belytschko et al. (1994), the
meshless local Petrov-Galerkin (MLPG) method
by Atluri and Zhu (1998), the reproducing ker-
nel particle method (RKPM) by Liu et al. (1995),
the smooth particle hydrodynamics (SPH) by Gin-
gold and Moraghan (1977) and so on. Among
these methods, the MLPG method is derived from
a local weak form over a set of overlapping sub-
domains rather than from a global weak form. In-
tegration of the weak form is performed in local
sub-domains with simple geometrical shapes and
therefore no elements or background cells are re-
quired either for interpolation purposes or for in-
tegration purposes. The MLPG method also pro-
vides flexibility in choosing and combining var-
ious trial and test functions, as well as the sizes
and shapes of local sub-domains. Furthermore,
the MLPG method does not require an assembly
process in the course of forming global stiffness
matrix. All these properties render the MLPG
method a promising meshless method in compu-
tational mechanics and remarkable successes have
been reported in solving elasto-statics [Atluri and
Zhu (2000), Xiao (2004), Han and Atluri (2004)],
free and forced vibration [Gu and Liu (2001)],
fluid mechanics [Lin and Atluri (2001)], frac-
ture mechanics [Ching and Batra (2001)], nonlin-

ear water waves [Ma (2005)], nonlinear problems
with large deformations and rotations [Han, Ra-
jendran and Atluri (2005)], vibrations of cracked
Euler-Bernoulli beams [Andreaus, Batra and Por-
firi (2005)], high-speed impact, penetration and
perforation problems [Han et al. (2006)], mag-
netic diffusion [Johnson and Owen (2007)], etc.

Despite its advantages, the MLPG method has
certain limitations. For instance, the computa-
tional cost required for evaluating the moving
least squares (MLS) approximation is very high
and the essential boundary conditions can not be
easily and accurately enforced as the obtained
shape functions from the MLS approximation do
not have the delta function property. To overcome
these disadvantages, the natural neighbour inter-
polation (NNI) [Sukumar et al. (1998, 2001)]
is a good alternative for constructing trial func-
tions. The NNI is a passing node interpola-
tion and the shape functions so formulated pos-
sess delta function property. This interpolation
method also exhibits other distinct and attrac-
tive features, such as optimum spatial adjacency,
desirable smoothness and well-defined approxi-
mation without uncertain user-defined parameter.
Furthermore, the computation of the shape func-
tions with this method is very simple and needs
much less numerical effort than in the MLS ap-
proximation [Most (2007)]. Consequently, the
NNI provides the possibility to simplify the nu-
merical procedure of the MLPG method and lead
to an efficient and stable meshless implementa-
tion. By now, the NNI has been successfully em-
ployed in the MLPG method for the solution of
two-dimensional elastic stress analysis [Cai and
Zhu (2004); Wang et al. (2005)].

The present paper aims to apply the MLPG
method with the above-mentioned NNI to develop
a novel solution procedure for lower-bound limit
analysis. The considered structure is made up of
elasto-perfectly plastic material governed by von
Mises’ plasticity condition and Drucker’s postu-
late. The static theorem of limit analysis is used
here because it leads to a lower-bound (a con-
servative estimate) of the limit load. The self-
equilibrium stress field is constructed by a lin-
ear combination of several self-equilibrium stress
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basis vectors with parameters to be determined.
These self-equilibrium stress basis vectors are
generated by performing an equilibrium iteration
procedure during elasto-plastic incremental anal-
ysis. Through modifying the self-equilibrium
stress subspace continuously, the whole solution
process of limit analysis is reduced to the solution
of several sub-problems of non-linear program-
ming, which are solved effectively by the Com-
plex method. In implementation of the present
MLPG method, the NNI and the three-node trian-
gular FEM shape functions are differently chosen
as trial and test functions. Implementation details
and numerical examples are presented to demon-
strate the effectiveness of the developed method.

2 The Static Theorem of Limit Analysis

According to the static theorem of plastic limit
analysis [Martin (1975)], a load set does not ex-
ceed the carrying capacity (i.e., the load factor β
is not greater than the safety factorβ s, β ≤ β s) if,
and only if, there exists a stress field which simul-
taneously satisfies equilibrium with the loads and
complies with the yield conditions of the material.
Its mathematical programming is as follows:

β s = maxβ (1a)

s.t. ϕ[β σE
i j(x)+ρi j(x)]≤ 0 ∀x ∈ Ω, (1b)

ρi j, j = 0 ∀x ∈ Ω, (1c)

ρi jn j = 0 ∀x ∈ Γt , (1d)

where σE
i j(x) denotes the fictitious elastic stress

field under the basic load, ρi j(x) represents the
self-equilibrium stress field to be optimized and
ϕ is the yield function. Constraint (1b) means
that the yield condition should be satisfied for
all x ∈ Ω, and constraints (1c) and (1d) repre-
sent the relations that self-equilibrium stress field
ρi j(x) must satisfy within the domain Ω and on its
boundary Γt , respectively.

3 The MLPG Formulation

In this paper, the MLPG method is used to solve
the mathematical programming formulation (1) of
lower bound limit analysis. The MLPG method
was firstly proposed by Atluri and Zhu (1998)

in order to alleviate the global background cells
for the numerical integration. In this method,
any non-element interpolation scheme such as the
moving least squares (MLS) approximation can
be utilized as trial functions and, if desired, also
as test functions. In order to reduce the compu-
tational cost and simplify the imposition of the
essential boundary conditions, the natural neigh-
bour interpolation (NNI) [Sukumar et al. (1998,
2001)] instead of the MLS approximation is em-
ployed in the present study.

3.1 Natural Neighbour Interpolation

The NNI is based on the well-known Voronoi di-
agram and its dual Delaunay tessellation of the
domain. The Voronoi diagram and the Delaunay
triangulation are useful mathematical tools in the
determination of the natural neighbours for each
node belonging to the global nodal set. Consider
a set of nodes N =

{
x1, x2, x3, · · · , xM

}
in two-dimensional Euclidean spaceR2. The
Voronoi diagram is a subdivision of the nodal do-
main into sub-regions TI each associated with a
node xI such that any point x in TI is closer to node
xI than to any other node in the domain [Green
and Sibson (1978)],

TI =
{

x ∈ R2 : d(x,xI) < d(x,xJ)∀J �= I
}

(2)

where d(x,xI) is the distance between x and xI .
The Voronoi diagram is obviously unique for a
set of nodes, thus the interpolation shape func-
tions based on it are not sensitive to the geometric
perturbations of the position of nodes. The Delau-
nay triangulation is constructed by connecting the
nodes whose Voronoi cells have common bound-
aries. The intersection of two Delaunay triangles
is either empty, or a common vertex, or a common
edge. In a similar way, the second-order Voronoi
cell can be defined as the locus of the points that
have the node xI as the closet node and the node
xJ as the second closet node:

TIJ = {x ∈ R2 : d(x,xI) < d(x,xJ) < d(x,xK)
∀J �= I �= K} (3)

It is emphasized that TIJ is non-empty if and only
if xI and xJ are natural neighbours. The natural
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neighbour shape functions of x with respect to the
node xI are defined in two dimensions as the ratio
of the area of TxI and Tx

φI(x) = AI(x)/A(x) (4)

where

A(x) =
n

∑
J=1

AJ(x) (5)

and n is the number of natural neighbours of the
point x. Referring to Figure 1, the shape function
φ1(x) may be represented as

φ1(x) = Aab f e/Aabcd (6)

b

c
fa

e x

d

Figure 1: 1st-order and 2nd-order Voronoi cells
about x

From this definition, and in the context of two-
dimensional approximations, the unknown dis-
placement field u(x) is approximated in the form

uh(x) =
n

∑
I=1

φI(x)uI (7)

where uI is the vector of nodal displacements of
the n natural neighbours of the point x.

It is straightforward to prove that the NNI shape
functions form the properties of positivity, inter-
polation, and partition of unity [Sukumar et al.
(1998)]:

0≤ φI(x)≤ 1, φI(xJ) = δIJ ,
n

∑
I=1

φI(x) = 1 (8)

The NNI shape functions also satisfy the local co-
ordinate property, namely

x =
n

∑
I=1

φI(x)xI (9)

which, in conjunction with Eq. (8) imply that the
NNI spans the space of linear polynomials (lin-
ear completeness). Furthermore, the NNI shape
functions have C∞ continuity everywhere, except
at the nodes where they are C0.

3.2 The MLPG Formulation for Elastic Anal-
ysis

As indicated in inequality (1b), a necessary and
important step in lower-bound limit analysis is the
computation of fictitious elastic stress field under
the basic load. In this paper, the MLPG method is
utilized to obtain numerical solutions of fictitious
elastic stress field. For completeness purpose, the
MLPG method based on the NNI for elastic stress
analysis [Cai and Zhu (2004); Wang et al. (2005)]
will be outlined here.

The two-dimensional linear elasticity problem
can be mathematically posed as

σi j, j +bi = 0 in Ω (10)

ui = ui on the essential boundary Γu (11)

ti = σi jn j = t i on the natural boundary Γt (12)

where σi j is the stress tensor, bi is the body force
vector, n j is the unit outward normal vector to the
boundary Γ, and ui and t i denote the prescribed
displacements and tractions, respectively.

A local weak form of Eq. (10), over a local sub-
domain Ωs bounded by Γs can be obtained using
the weighted residual method
∫

Ωs

vi(σi j, j +bi)dΩ = 0, (13)

where vi is the test function. Using the divergence
theorem in Eq. (13), the following form can be
obtained:
∫

Ωs

σi jvi, jdΩ−
∫

ΓsI

tividΓ−
∫

Γsu

tividΓ

=
∫

Γst

t ividΓ+
∫

Ωs

bividΓ (14)
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where Γst is the intersection of Γt and the bound-
ary Γs, and Γsu is the intersection of Γu and the
boundary Γs. If there is no intersection between
Γs and the global boundary Γ, ΓsI = Γs, the inte-
grals along Γsu and Γst do not exist.

The support sub-domain Ωs of node xI is a do-
main in which vi(x) �= 0. Generally, the shape
of the sub-domain Ωs can be arbitrary. In the
present paper, as trial functions are constructed
by the NNI, which is based on the Delaunay tes-
sellations, it is natural to construct polygonal sub-
domain Ωs using the Delaunay tessellations. Each
node in the global domain and on the boundary,
e.g. node xI , is associated with a polygonal sub-
domain Ωs, which is constructed by collecting all
the surrounding Delaunay triangles TiI with node
xI being their common vertices.

To simplify the above equation, we can deliber-
ately select the test functions vi such that they
vanish over Γs, except when Γs intersects with
the global boundary Γ. This can be easily ac-
complished by choosing test functions vi to be the
three-node triangular FEM shape functions NI in
each Delaunay triangle TiI belonging to the sub-
domain Ωs centered at node xI. Thus, the local
weak form (14) can be rewritten as

∫
Ωs

σi jvi, jdΩ−
∫

Γsu

tividΓ

=
∫

Γst

t ividΓ+
∫

Ωs

bividΓ (15)

su

node I

(a)

su
node I

(b)

Figure 2: Essential boundary condition Γsu over
sub-domain Ωs

It should be noted that the integrals over Γsu in
Eq. (15) can be divided into two cases as shown
in Figure 2. For Figure 2a, the test functions NI

are equal to zero over the local prescribed bound-
ary Γsu, and the integrals over Γsu are also equal

to zero; For Figure 2b, although the reaction force
ti and the test functions NI are not zero, the corre-
sponding stiffness item will vanish because of the
restriction of prescribed displacements over Γsu.
Accordingly, Eq. (15) can be simplified as
∫

Ωs

σi jvi, jdΩ =
∫

Γst

t ividΓ+
∫

Ωs

bividΓ (16)

Substitution of interpolation (7) into the weak
form (16) yields the following discretized equa-
tions for each node (except that on the essential
boundary Γu)

N

∑
J=1

KIJuJ = fI , (17)

where, N is the total number of nodes

KIJ =
M

∑
i=1

∫
TiI

VT
I DeBJdΩ (18)

fI =
∫

Γst

NItdΓ+
M

∑
i=1

∫
TiI

NIbdΩ (19)

where, De is the elasticity matrix, M is the to-
tal number of Delaunay triangles TiI in the sub-
domain Ωs centered at node xI , and

VI =

⎡
⎣NI,x 0

0 NI,y

NI,y NI,x

⎤
⎦ , BJ =

⎡
⎣φJ,x 0

0 φJ,y

φJ,y φJ,x

⎤
⎦ (20)

It should be also noted that the essential boundary
conditions can be easy to implement in the same
way as in the FEM due to shape functions pos-
sessing delta function property and the terms in
the row of the global stiffness matrix for the nodes
on the essential boundary need not be computed.
This reduces the computational cost.

3.3 The MLPG Formulation for Elasto-plastic
Incremental Analysis

Since the equilibrium iteration procedure during
elasto-plastic incremental analysis is employed to
construct self-equilibrium stress basis vectors, as
described in details in Section 5, the MLPG for-
mulation based on the NNI for elasto-plastic in-
cremental analysis will be presented in this sec-
tion.
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The numerical analysis of an elasto-plastic prob-
lem is predominantly based on the incremental it-
eration approach, in which an incremental load-
ing scheme is adopted with equilibrium iteration
performed for each increment. Assume that the
variables of stress, strain, displacement, force and
boundary conditions are all known at the begin-
ning of a time interval [t, t + Δt] and that the
force and boundary conditions are known at time
(t + Δt). Time t here refers to a point at loading
history (not the physical time space). We are in-
terested in determining the values of stress, strain
and displacement at time (t +Δt). Accordingly, a
local weak form of the equilibrium equation over
the time interval [t, t + Δt] in each sub-domain
Ωs can be obtained using the weighted residual
method∫

Ωs

vi( tσi j, j +Δσi j, j + tbi +Δbi)dΩ = 0 (21)

After some manipulation similar to that in Section
3.2, Eq. (21) has the form

M

∑
i=1

∫
TiI

VT
I ΔσσσdΩ =

∫
Γst

NI
t+Δt tdΓ

+
M

∑
i=1

∫
TiI

NI
t+Δt bdΩ−

M

∑
i=1

∫
TiI

VT
I

tσσσdΩ (22)

According to the constitutive law of an elasto-
perfectly plastic material adopted here, the incre-
mental stress can be approximated as

Δσσσ = τDΔεεε (t ≤ τ ≤ t +Δt) (23)

Substituting Eq. (23) into Eq. (22), the following
form can be obtained

M

∑
i=1

∫
TiI

VT
I

τ DΔεεεdΩ =
∫

Γst

NI
t+Δt tdΓ

+
M

∑
i=1

∫
TiI

NI
t+Δt bdΩ−

M

∑
i=1

∫
TiI

VT
I

tσσσdΩ (24)

Substitution of interpolation (7) into the above
equation leads to the following discretized equa-
tions for each node (except that on the essential
boundary Γu)

N

∑
J=1

τKep
IJ ΔuJ = ΔfI (25)

where

τKep
IJ =

M

∑
i=1

∫
TiI

VT
I

τ DBJdΩ (26)

ΔfI =
∫

Γst

NI
t+Δt tdΓ+

M

∑
i=1

∫
TiI

NI
t+ΔtbdΩ

−
M

∑
i=1

∫
TiI

VT
I

tσσσdΩ (27)

Owing to the non-linear nature of plastic
deformation, the computation at each load
step uses an iterative solution method, either
the Newton-Raphson or the modified Newton-
Raphson method. In order to reduce the com-
putational cost, the modified Newton-Raphson
method with initial elastic stiffness matrix is sug-
gested here and its iteration scheme can be ex-
pressed as

N

∑
J=1

KIJΔu(n+1)
J = Δf(n)

I , (n = 0,1,2, · · ·) (28)

where

KIJ =
M

∑
i=1

∫
TiI

VT
I DeBJdΩ (29)

Δf(n)
I =

∫
Γst

NI
t+Δt tdΓ+

M

∑
i=1

∫
TiI

NI
t+Δt bdΩ

−
M

∑
i=1

∫
TiI

VT
I

t+Δtσσσ (n)dΩ (30)

4 Solution Algorithm Using the Reduced-
basis Technique

Assume that the problem domain Ω is repre-
sented by properly scattered nodes. As mentioned
in Section 3.2, the load-dependent elastic stress
field σσσE

i = σE
i j(xi) in formulation (1) of lower-

bound limit analysis can be calculated by the
MLPG method based on the NNI. Here xi means
the Gaussian points where the yield condition is
checked. Let ρρρ i denote the self-equilibrium stress
at Gaussian point xi. The constraint condition
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(1b) of the optimization formulation for lower-
bound limit analysis can be reformulated as

ϕ(σσσ i) = ϕ(βσσσE
i +ρρρ i)≤ 0, i = 1 ∼ NG (31)

where NG is the total number of Gaussian points
of discretized structure.

After the discretization of space domain, the di-
mension of the mathematical programming is still
very high so that the solution of this problem is
very difficult or even impossible. An alternative
and even quite effective method to solve the op-
timization problem is the so-called reduced-basis
technique [Stein and Zhang (1992); Gross-Weege
(1997); Zhang et al. (2002, 2004); Liu et al.
(2005)], which will be used in the present paper
to overcome the obstacle of high-dimension in nu-
merical limit analysis.

An arbitrary linear combination of self-
equilibrium stress vectors is apparently still
a self-equilibrium stress vector, and in the
discretized sense the unknown self-equilibrium
stress vector associated with the best load factor
β s in the formulation (31) can be expressed by
the linear combination of all the independent
self-equilibrium stress vectors. The purpose
of the reduced-basis technique is to look for
several self-equilibrium stress basis vectors
whose linear combination can lead to the appro-
priate self-equilibrium stress field ρρρ through the
optimization, namely

ρρρ i = C1ρρρ1
i +C2ρρρ2

i + · · ·+CRρρρR
i , i = 1 ∼ NG

(32)

Here, R is the number of basis vectors,
ρρρ1

i ,ρρρ2
i , · · · ,ρρρR

i are the selected self-equilibrium
stress basis vectors and C1,C2, · · · ,CR are the pa-
rameters to be determined.

By doing so, the resulting mathematical program-
ming of a discretized structure is as follows:

β s = maxβ (33a)

s.t. ϕ(βσσσE
i +C1ρρρ1

i +C2ρρρ2
i + · · ·+CRρρρR

i ) ≤ 0,

i = 1 ∼ NG (33b)

Because ρρρ1
i ,ρρρ2

i , · · · ,ρρρR
i are the selected self-

equilibrium stress basis vectors, the constraint
conditions (1c) and (1d) have been in this way
satisfied automatically. Using the reduced-basis
technique, the non-linear programming problem
can be solved iteratively in a sequence of reduced
self-equilibrium stress subspaces with very low
dimensions. The solution algorithm is as follows.

The iteration index, indicating each sub-problem
in a corresponding reduced self-equilibrium stress
space, is denoted by k (k = 1,2, · · ·). At the be-
ginning of the kth sub-problem, we have a known
state represented by a load factor β (k−1) and a
self-equilibrium stress distribution ρρρ(k−1) with

ϕ(β (k−1)σσσE
i +ρρρ (k−1)

i ) ≤ 0, i = 1 ∼ NG (34)

The initial values of β (0) and ρρρ (0) are set to be β E

and 0, respectively, where β E is the elastic limit.
Inequality (34) indicates that (β (k−1),ρρρ (k−1)) is a
feasible point of the mathematical programming
(33). Therefore, β (k−1) is a lower bound to the
limit load factor of the discretized structure, but
not necessarily a lower bound to the original prob-
lem.

Starting from the known state β (k−1) and ρρρ (k−1),
we will obtain a few basis vectors by using an
effective method proposed in Section 5. Note
that ρρρ (k−1)(k > 1) of the (k − 1)th sub-problem
is a self-equilibrium stress field and can also be
supplemented as a basis vector for the kth sub-
problem. Assume that we have obtained R basis
vectors (i.e.ρρρ 1(k),ρρρ2(k), · · · ,ρρρR(k)) in all in the kth
sub-problem. Using the Complex method (which
is introduced in Section 6) to solve the non-linear
programming of this sub-problem, we can obtain
the kth approximate solution β (k), the correspond-
ing self-equilibrium stress field ρρρ (k) and the total
stress field σσσ (k) = β (k)σσσ E +ρρρ (k).

The above iteration process is repeated with the
selection of new basis vectors until the conver-
gence criterion

β (k)−β (k−1)

β (k) ≤ error tolerance, k ≥ 2 (35)

is fulfilled. Our numerical experiences show that,
in general, when k ≥ 4, β (k) is already a very good
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approximate solution to the actual limit load fac-
tor. In general, the value of R can be chosen be-
tween 3 and 6.

It is worthy of mentioning that the load factor
β determined in this way does not guarantee a
strict lower-bound since the elastic stress is not
assessed precisely, the equilibrium conditions for
the self-equilibrium stress are satisfied only in a
weak form and the yield condition is controlled
only at the Gaussian points. But, if the discretiza-
tion is sufficiently fine, one can hope that the com-
putational result β provides a reliable estimation
of the actual limit load factor β s.

5 Construction of Self-equilibrium Stress Ba-
sis Vectors

One key issue left is how to construct suitable
self-equilibrium stress basis vectors in formula-
tion (33b). In the following, we present an ef-
fective technique for the generation of suitable re-
duced basis vectors.

As described in Section 4, the whole solution pro-
cess of lower-bound limit analysis is reduced to
solving several sub-problems of non-linear pro-
gramming with very low dimensions. For the kth
sub-problem we have a known state, represented
by a load factor β (k−1) and a self-equilibrium
stress state ρρρ (k−1). Thus, the entire stress vector
σσσ (k−1) at the beginning of the kth sub-problem is
given by

σσσ (k−1) = σ̂σσ 0 = β (k−1)σσσE +ρρρ (k−1) (36)

If we add a load increment, defined by Δβ (k)
> 0,

to the known load factor β (k−1), the structure will
yield further. We perform an equilibrium itera-
tion procedure as mentioned in Section 3.3. In the
sequel the index q denotes the step of the equilib-
rium iteration.

During the iteration, except that those nodes lo-
cated on the essential boundary Γu should satisfy
the displacement boundary conditions, each node
in the global domain and on the natural boundary

Γt satisfies the discretized equilibrium condition

M

∑
i=1

∫
TiI

VT
I DeΔεεε(1)dΩ =

(β (k−1)+Δβ (k)
)fI −

M

∑
i=1

∫
TiI

VT
I σ̂σσ (0)dΩ (37)

for the first iteration step and

M

∑
i=1

∫
TiI

VT
I DeΔεεε(q)dΩ =

(β (k−1)+Δβ (k)
)fI −

M

∑
i=1

∫
TiI

VT
I σ̂σσ (q−1)dΩ (38)

in the qth iteration step, where fI is the external
load vector corresponding to β = 1 and node xI .
The difference between Eq. (37) and Eq. (38)
yields

M

∑
i=1

∫
TiI

VT
I (σ̂σσ (0) +DeΔεεε (1)−σ̂σσ (q−1)−DeΔεεε(q))dΩ

=
M

∑
i=1

∫
TiI

VT
I ρρρqdΩ = 0 (39)

The above Eq. (39) holds for each node that is
not located on the essential boundary Γu and it is
immediately evident that ρρρq is a self-equilibrium
stress vector.

Note that all the differences ρρρq during the equi-
librium iteration are self-equilibrium stress vec-
tors. In general, we construct during each equi-
librium iteration procedure 3∼6 self-equilibrium
stress basis vectors.

6 Solution of Non-linear Programming

Here von Mises’ yield condition is adopted. Tak-
ing advantage of the above relationships in Sec-
tion 4, the unified version of the kth (k = 1,2, · · ·)
sub-problem can be written as

β s = maxβ (40a)

s.t.

ϕ(βσσσE
i +C1ρρρ1(k)

i +C2ρρρ2(k)
i + · · ·+CRρρρR(k)

i ) ≤ 0,

i = 1 ∼ NG (40b)
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The value of fictitious elastic stress and every self-
equilibrium stress basis vector at each Gaussian
point can be computed by the MLPG method be-
fore this nonlinear programming (40) is solved.
There are NG constraint inequalities in the above
sub-problem. The optimal variables include the
objective function β and R parameters to be de-
termined.

We can easily note that the above mathematical
programming has these features:

(1) the number of optimal variables is low (R +
1 ≤ 7);

(2) the number of constraint conditions is quite
large (= NG);

(3) Because of the adoption of von Mises’ yield
condition, all the constraint conditions are
quadratic inequalities.

Taking account of the above characteristics, the
solution process of this non-linear programming
can be divided into two steps:

Step 1: for the given numerical values of
C′

1,C′
2, · · · ,C′

R, get the corresponding load fac-
tor β ′′.
Because all the constraint conditions are quadratic
inequalities, they can be treated as quadratic func-
tions with independent variableβ :

Qi(β ) = ϕ(βσσσE
i +C′

1ρρρ1
i +C′

2ρρρ2
i + · · ·+C′

RρρρR
i )

= aiβ 2 +biβ +ci ≤ 0, i = 1 ∼ NG

(41)

where ai is made up of stress deviators (known)
of fictitious elastic stress at the ith Gaussian point,
and bi, ci are made up of stress deviators (known)
of both fictitious elastic stress field and every self-
equilibrium stress basis vector at the ith Gaussian
point. It can be easily proved that ai must be a
positive number (i.e.ai > 0) because in limit anal-
ysis the corresponding fictitious elastic stress is
not equal to zero. Hence, the value of β ′

i which
satisfies the ith inequality (41) must be between
the two roots of the corresponding equation

Qi(β ′
i) = 0, i = 1 ∼ NG (42)

When Δi = b2
i −4aici ≥ 0 (not hold the index sum-

mation), the equation can be solved. Let these two
roots be marked by β ′

1(i) and β ′
2(i). Without los-

ing generality, we assume that these two roots sat-
isfy β ′

1(i) ≤ β ′
2(i). Because β must satisfy all the

inequalities (42), the following expression must
be satisfied for any i and j:

max
i

β ′
1(i) ≤ min

j
β ′

2( j) ∀i, j = 1 ∼ NG (43)

If the above conditions (42) and (43) can be satis-
fied, the possible value range of β ′ should be:

max{β ′
1(1), · · · ,β ′

1(k), · · · ,β ′
1(NG)} ≤ β ′

≤ min{β ′
2(1), · · · ,β ′

2(k), · · · ,β ′
2(NG)} (44)

Hence, the maximum likelihood of β ′ is

β ′′ = max{β ′}
= min

{
β ′

2(1), · · · , β ′
2(k), · · · , β ′

2(NG)
}
(45)

Therefore, for the arbitrarily given numerical val-
ues of C′

1,C′
2, · · · ,C′

R (feasible to the problem,
i.e. satisfy (42) and (43)), we can get a corre-
sponding numerical value of β ′′. This kind of
relationship can be expressed in the following
quadratic function form:

β ′′ = ψ(C′
1,C

′
2, · · · ,C′

R) (46)

Step 2: seek for optimal values of
C′∗

1,C
′∗
2, · · · ,C′∗

R so that the corresponding
load factor β ′′∗ → β s.

For transforming this problem into the standard
formulation of the Complex method, the objective
function (46) can be substituted by

β ′′ = ψ(C′
1,C

′
2, · · · ,C′

R) =−F(C′
1,C

′
2, · · · ,C′

R)
(47)

Then the nonlinear programming (40) can be rep-
resented by the following new formulation:

β ′′∗ = maxβ ′′ = −minF, (48a)

s.t. F = F(C′
1,C

′
2,C

′
3, · · · ,C′

R)
= −ψ(C′

1,C
′
2,C

′
3, · · · ,C′

R) (48b)
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Δk = b2
k −4akck ≥ 0, k = 1 ∼ NG (48c)

max
i

β ′
1(i) ≤ min

j
β ′

2( j) ∀i, j = 1 ∼ NG (48d)

This is a standard non-linear programming for-
mulation which can be solved by the Complex
method [Xi and Zhao (1983)]. The solution pro-
cess of the Complex method is as follows:

1. Form the initial Complex configurations,
namely, find out (2R + 1) initial points in an
R-dimensional space. The coordinates of ev-
ery point are denoted by a group of numbers
C′

1,C′
2, · · · ,C′

R, which must a priori satisfy the
constraint conditions (48c) and (48d).

2. After the formation of initial Complex config-
urations, the following iteration will proceed:

(a) Find the best point x(b) (it means that the ob-
jective function has minimal value at this point)
and the worst point x(w). Then compute the coor-
dinates (marked by x∧) of central point of all the
points except x(w):

x∧ =
1

2R
(

2R+1

∑
i=1

x(i)−x(w)) (49)

It can be easily proved that the central point x∧

satisfies the constraint conditions (48c) and (48d).

(b) Seek for the reflecting pointx(w)with respect to
x∧ and mark this point by xΔ:

xΔ = (1+λ )x∧−λ x(w) (50)

where λ > 0 is the reflecting factor (generally we
let λ = 1.3). If the point xΔ does not satisfy the
constraint conditions (48c) and (48d), then move
the point xΔ to the central point x∧ by half dis-
tance, namely,

xΔ(new) = 0.5(xΔ(old)+x∧) (51)

If the new xΔ still does not satisfy the constraint
conditions, then use the formula (51) repeatedly
until this point satisfies the constraint conditions.

(c) Compute the value of F(xΔ). If

F(xΔ) < max
i=1∼2R+1,i�=w

(F(xi)) (52)

then let the point xΔ substitute the point xw and
go to (d); otherwise, let the point xΔ move half

distance towards the central point x∧ (use the for-
mula (51) again) until formula (52) is satisfied.

(d) For a prescribed error tolerance ε1, if
∥∥xb −xw

∥∥ < ε1 (53)

then take xb as the appropriate solution of this
sub-problem; otherwise, go back to (a).

The numerical computations of present solution
procedure show that the initial Complex configu-
rations have little influence on the computational
results.

7 Numerical Examples

In this section, some numerical examples are pre-
sented to verify the performance of the proposed
solution procedure for lower bound limit analy-
sis. Here all the bodies are considered in plane
state and made up of von Mises’ elasto-perfectly
plastic material. In the following computations,
three Gaussian points are used in each Delaunay
triangular region for domain integrals. Four basis
vectors are constructed here to simulate the self-
equilibrium stress field in each sub-problem of the
non-linear programming.

7.1 Beam of Rectangular Cross-section

A beam of rectangular cross-section is subjected
to the combined action of tangential load P and
bending moment M, as shown in Figure 3. A
plane stress condition is assumed here. The ge-
ometric parameters are taken as length L = 8m,
height H = 1m and width B = 1m. The mate-
rial parameters are as follows: Young’s modulus
E = 2.1× 105MPa, Poisson’s ratio v = 0.3 and
yield stress σs = 200MPa. The theoretical limit
load curve of this problem can be given by

M
Mmax

+
P

Pmax
= 1

where Mmax = σsH2B/4 and Pmax = σsH2B/4L.

Both a regular nodal distribution and an irregular
nodal distribution shown in Figure 4 are adopted
here. The computational results by the present
MLPG method based on the NNI are compared
with the analytical solutions, as shown in Fig-
ure 5. The plot shows an excellent agreement
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L=8
M

PH=1

Figure 3: Elasto-plastic beam subjected to tangen-
tial load and bending moment (m)

Figure 4: Nodal distributions for rectangular
beam: (a) regularly distributed 605 nodes; (b) ir-
regularly distributed 605 nodes
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Figure 5: The limit load domains of the beam sub-
jected to tangential load and bending moment

between the analytical and numerical results for
both regular and irregular nodal distributions. It
is found that the irregular node distribution does
not affect much the numerical accuracy. The ro-
bustness of irregular nodal distribution is a very
important advantage in the development of mesh-
less methods.

7.2 Square Plate With a Central Circular Hole

A classic problem in numerical limit analysis, as
shown in Figure 6, is chosen in order to demon-
strate the accuracy and computational effective-

ness of the proposed solution procedure. The ratio
between the diameter of the hole and the length of
the plate is 0.2. The plate is subjected to biaxial
uniform loads P1 and P2. A plane stress condition
is assumed here with yield stress σs = 200MPa,
Young’s modulus E = 2.1× 105MPa, Poisson’s
ratio v = 0.3.

2P

2P

1P1P

L

5/L

Figure 6: A square plate with a central circular
hole

The problem has also been investigated by Be-
lytschko (1972), Corradi and Zavelani (1974),
Nguyen and Palgen (1979), Genna (1988), Stein
and Zhang (1992), Gross-Weege (1997), Chen et
al. (1999) and Zhang et al. (2004).

Due to the symmetry, only the upper right quad-
rant of the plate is modelled and symmetrical con-
ditions are imposed on the left and bottom edges.
In our numerical calculations, a nodal arrange-
ment with 361 nodes is employed, as shown in
Figure 7. Figure 8 shows that the computational
results of present solution procedure are in good
agreement with the lower-bound results by Gross-
Weege (1997) and slightly lower than the upper-
bound results by Chen et al. (1999). The numer-
ically detailed comparisons with available earlier
works are summarized in Table 1 for three spe-
cial load combinations of P1 and P2. It should
be noticed that the results are based on differ-
ent approaches concerning both the discretization
of the problem and the numerical solution tech-
nique. Table 1 shows that our results in gen-
eral are close to the available numerical results.
Hence, it demonstrates that the present MLPG
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Table 1: Comparison of different numerical solutions for limit analysis (P1/σs)

Authors & Methods
Loading cases
P2=P1 P2=P1/2 P2=0

Belytschko (1972) , lower bound 0.780
Nguyen and Palgen(1979), lower bound 0.704 0.564

Corradi and Zavelani (1974), upper bound 0.767 0.691
Genna (1988), lower bound 0.793

Gross-Weege (1997), lower bound 0.882 0.891 0.782
Zhang et al. (2004), lower bound 0.893 0.907 0.789

Present solution, lower bound 0.875 0.901 0.786

method with the NNI works well for lower-bound
limit analysis.

Figure 7: Nodes for the square plate with a central
circular hole

To show the computational efficiency of the pro-
posed algorithm, the relation between the iterative
convergence sequence of P1/σs and the iterative
step for the case of P1/P2 = 2 is given in Figure 9.
In this case, a good result is obtained only after 5
iterative steps (i.e. sub-problems). It can be easily
observed that the efficiency and numerical stabil-
ity of the proposed algorithm are fairly high and
the amount of computational efforts is very small.

7.3 Thick-walled Cylinder

For benchmarking purposes, another well known
test example with analytical solution is consid-
ered here. This example concerns the problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
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0.6

0.7

0.8

0.9

1.0

P
2 /

s

P1/ s

      Present      lower bound
 Gross-Weege lower bound
    Chen et al.   upper bound

Figure 8: The limit load domains of the plate com-
pared with other methods
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P
1/

s

Iterative step

  The process of iteration

Figure 9: The convergence sequence P1/σs with
iterative step

of a thick-walled cylinder subjected to a uniform
internal pressure P (see Figure 10). Because of
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the symmetry, only the upper right quadrant of the
cylinder is modeled. This problem is solved here
for the plane strain case and the analytical solu-
tion of limit load is as follows

P =
2σs√

3
ln

b
a

where σs is yield stress, and a and bare respec-
tively the inner and outer radius.

Figure 10: A thick-walled cylinder subjected to a
uniform internal pressure

The material parameters are as follows: Young’s
modulus E = 2.1× 105MPa, Poisson’s ratio v =
0.3 and yield stress σs = 200MPa. For this
problem, we calculate limit loads of thick-walled
cylinders with different ratios of b/a and differ-
ent node arrangements are utilized for different
ratios of b/a. A typical nodal distribution with
784 nodes, as shown in Figure 11, is employed for
the case of b/a = 2.0. The computational results
compared with analytical solutions are presented
in Table 2 and Figure 12. It can be clearly seen
that the results are in excellent agreement with the
exact solutions.

7.4 A Shear Wall with Four Openings

The last numerical example regards a shear wall
with four openings subjected to uniform load P,

Figure 11: Nodal distribution for the cylinder
when b/a = 2.0
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 Numerical solution

Figure 12: Comparison of numerical limit loads
with analytical solutions

as shown in Figure 13. The problem is solved
here for the plane stress case with Young’s mod-
ulus E = 2.1× 105MPa, Poisson’s ratio v = 0.3
and yield stress σs = 200MPa. The computa-
tional result of limit load obtained by a regular
nodal distribution with 559 nodes (see Figure 14a)
is Pmax = 22.139MPa. The corresponding von
Mises’ equivalent stress distribution of this shear
wall at the limit state is plotted in Figure 15.

To further verify that good results can be also ob-
tained by using the irregular nodal distribution,
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Table 2: Some numerical results compared with analytical solutions (P/σs)

b/a Present solution Analytical solution Error (%)
1.5 0.467 0.468 0.214
2.0 0.796 0.800 0.500
2.5 1.050 1.058 0.756
3.0 1.257 1.269 0.946

3.0 3.0 4.8

3.
0

3.
0

3.
0

3.
0

1.
8

1.
8

1.
8

1.
8

P

Figure 13: A shear wall with four openings (m)

559 irregular nodes (see Figure 14b) are used to
discretize the problem domain. This time we get
the limit load Pmax = 21.594MPa, which shows
good agreement with that obtained by the regu-
lar nodal distribution. This testifies again that the
present MLPG with the NNI is rather stable for a
non-structured nodal distribution.

8 Conclusions

Limit analysis is a very important branch of plas-
ticity that predicts the load-carrying capacity of
a structure without resorting to evolutive elasto-
plastic computations. So far, finite element and
boundary element methods have played a signifi-
cant role in numerical limit analysis. Recently, the
meshless local Petrov-Galerkin (MLPG) method
[Atluri and Zhu (1998)] has been a very active

Figure 14: Nodal discretization for a shear wall
with four openings: (a) regularly distributed 559
nodes; (b) irregularly distributed 559 nodes

research topic in international computational me-
chanics because it is a very general technique
whose underlying concept serves as a basis for
many new methods with amazing flexibility and
efficiency. Therefore it is of interest and impor-
tance to develop the MLPG method for plastic
limit analysis. In this paper, a new computational
approach based on the MLPG with the NNI is pro-
posed and applied to lower-bound limit analysis.
The present study and analysis enable the follow-
ing conclusions to be drawn:

(1) The present MLPG method with the NNI is an
attractive alternative numerical tool to many
existing computational methods. The main
advantage is its simplicity. The computation
of the natural neighbour interpolation (NNI)
shape function is more efficient than that of
the moving leaet-squares (MLS) approxima-
tion. By virtue of the Delaunay tessellation,
the construction of local sub-domains is very
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Figure 15: The von Mises’ equivalent stress dis-
tribution of a shear wall with four openings at the
limit state (MPa)

simple both for internal nodes and boundary
nodes. It can also be observed that no assem-
bly process is required to construct the global
stiffness matrix, and no special treatment is
needed to impose the essential boundary con-
ditions due to the fact that the NNI possesses
the delta function property. It is demonstrated
numerically that the quality of the results ob-
tained by the present MLPG method is very
good. It is also very stable for irregularly dis-
tributed nodes. Besides, the current formula-
tion is more flexible because it allows an easy
adaptation of the nodal density. Hence, many
existing adaptive algorithms can be applied.

(2) The reduced-basis technique is a very effi-
cient method to solve the related optimization
problem. The prominent advantage is that it
can reduce the number of optimal variables
and constraints significantly. The numeri-
cal scheme for constructing self-equilibrium
stress field is very effective to ensure a good
convergence of the iteration process so that
the dimension obstacle of numerical limit
analysis can be overcome.

(3) The Complex method represents a cost-
effective, numerically stable and reliable tool
for the nonlinear mathematical programming
problem of limit analysis. The numerical re-
sults of the solution procedure adopted here
appear to be satisfactory and rather insensi-
tive to the choice of the initial Complex con-
figurations and load increments used to create
self-equilibrium stress basis vectors.

(4) Although the applications are focused here on
plane structures, the present static formula-
tion of limit analysis is general and can be
implemented with more complicated struc-
tures and loadings. In particular, the present
method should be extended to plate and shell
structures and 3-D problems to fully show its
advantages. Besides, developing the present
numerical procedure to shakedown analysis
under variable loads is also of great interest.
Further studies in these aspects need to be
conducted.
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