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Thermal Bending of Reissner-Mindlin Plates by the MLPG

J. Sladek1, V. Sladek1, P. Solek2 and P.H. Wen3

Abstract: A meshless local Petrov-Galerkin
(MLPG) method is applied to solve thermal bend-
ing problems described by the Reissner-Mindlin
theory. Both stationary and thermal shock loads
are analyzed here. Functionally graded mate-
rial properties with continuous variation in the
plate thickness direction are considered here. The
Laplace-transformation is used to treat the time
dependence of the variables for transient prob-
lems. A weak formulation for the set of governing
equations in the Reissner-Mindlin theory is trans-
formed into local integral equations on local sub-
domains in the mean surface of the plate by using
a unit test function. Nodal points are randomly
spread on the surface of the plate and each node
is surrounded by a circular subdomain to which
local integral equations are applied. The mesh-
less approximation based on the Moving Least-
Squares (MLS) method is employed for the im-
plementation.

Keyword: Local boundary integral equations,
Laplace-transform, Stehfest’s inversion, MLS ap-
proximation, functionally graded material, or-
thotropic properties

1 Introduction

Plate structures are widely used in many engi-
neering structures such as aircraft, civil and ship
engineering. Plates are often subjected to com-
binations of lateral pressure and thermal loading.
However, many linear bending studies are focused
only to a lateral pressure load with assumption
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of uniformly distributed temperature in the whole
plate. The first attempt to analyze thin plates
under a thermal load was made by Marguerre
(1935). A nice introduction and overview of pi-
oneering efforts was given by Boley and Weiner
(1960). Later Das and Navaratna (1962) inves-
tigated simply supported plates with temperature
distribution symmetric to the middle surface. In-
vestigations dealing with static and dynamic be-
haviour of isotropic and anisotropic thermoelas-
tic plates have been discussed by Tauchert (1986,
1987). Analytical solution for thermal bending of
thin, anisotropic, clamped elliptic plates is given
by Laura and Rossit (1999). Kamiya et al. (1981)
introduced the boundary integral equation method
to analyze thermal bending problems. De Leon
and Paris (1987) developed a boundary element
method based on the decomposition of Kirch-
hoff‘s governing equation for plate deflection into
a pair of harmonic equations. Results are pre-
sented for a simply supported isotropic plate with
linear variation of temperature through the plate
thickness. A global method of generalized dif-
ferential quadrature for large deflections of thin
plates under a thermal load is given by Lin et al.
(1994). Tauchert (1991) gave a nice overview of
thermally induced flexure, buckling and vibration
of plates described by the Kirchhoff theory.

Among many thick plate theories available, those
of Reissner (1946), Mindlin (1951) and higher or-
der shear theories [Reddy, 1997] are widely ac-
cepted and have found applications of many en-
gineering problems. Thermoelastic analyses in-
cluding transverse shear effects were performed
by Das and Rath (1972) and Bapu Rao (1979).
Reddy and Hsu (1980) presented analytical so-
lution for simply supported rectangular cross-
ply laminated plates under sinusoidal mechani-
cal load and temperature assumed to vary linearly
through the thickness. Rolfes et al (1998) stud-
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ied both the transverse shear and normal stresses
in laminated plates subjected to mechanical and
thermal loads. The analysis is based on the
first-order shear deformation theory and the plate
is discretized by using a single field displace-
ment finite element model. Nonlinear analysis
of simply supported Reissner-Mindlin plates sub-
jected to lateral pressure and thermal loading and
resting on two-parameter elastic foundations is
given by Shen (2000). Suetake (2006) modi-
fied high-order bending theory of plates by con-
stitution of the lateral loads through considera-
tion of the transverse normal stress. The effects
of shear deformation and rotatory inertia follow-
ing Reissner-Mindlin’s deformation theory are in-
cluded in the elastoplastic transient response of
plates with all possible boundary conditions on
edges and any interior support conditions such
as isolated points (columns), lines (walls) or re-
gions (patches) by Providakis (2007). Wen and
Hon (2007) used smooth radial basis functions for
the geometrically nonlinear analysis of Reissner-
Mindlin plate.

Recently, functionally graded materials (FGMs)
have been extensively used for engineering struc-
tures under a severe thermal load. FGMs are
multi-phase materials with the phase volume
fractions varying gradually in space, in a pre-
determined profile. This results in continu-
ously graded thermomechanical properties at the
(macroscopic) structural scale with superior ma-
terial properties. FGMs posses some advan-
tages over conventional composites because of
their continuously graded structures and prop-
erties [Suresh and Mortensen, 1998; Miyamoto
et al., 1999]. FGMs may exhibit isotropic or
anisotropic material properties, depending on the
processing technique and the practical engineer-
ing requirements. Due to the high mathemati-
cal complexity of the initial-boundary value prob-
lems, analytical approaches for the FGM bodies
are restricted to simple geometry and boundary
conditions. Thus, analyses in FGM demand accu-
rate and efficient numerical methods. Praveen and
Reddy (1998) analyzed the thermomechanical re-
sponse of thick plates with continuous variation of
properties through the plate thickness. The FEM

has been applied to isotropic plates with a sim-
ple power law distribution of ceramic and metal-
lic constituents. Vel and Batra (2002) obtained an
exact solution for three-dimensional deformations
of a simply supported functionally graded rectan-
gular plates subjected to mechanical and thermal
loads on its top and bottom surfaces.

Meshfree techniques for solving PDE in physics
and engineering are a powerful new alternative
to the traditional mesh-based techniques. Focus-
ing only on nodes or points instead of elements
used in the conventional FEM or BEM, mesh-
less approaches have certain advantages. One of
the most rapidly developed meshfree methods is
the Meshless Local Petrov-Galerkin method. The
MLPG method has attracted much attention dur-
ing the past decade [Atluri and Shen, 2002; Atluri,
2004; Han et al., 2003; Mikhailov, 2002; Sell-
ountos et al., 2005] for many problems of contin-
uum mechanics. Recent successes of the MLPG
methods have been reported in solving a 4th order
ordinary differential equation [Atluri and Shen
(2005)]; in analyzing vibrations of a beam with
multiple cracks [Andreaus et al (2005)]; in simu-
lation of water waves [Ma (2005)]; in the devel-
opment of a nonlinear formulation of the MLPG
finite-volume mixed method for the large defor-
mation analysis of static and dynamic problems
[Han et al (2005)]; in simplified treatment of es-
sential boundary conditions by a novel modified
MLS procedure [Gao et al (2006)]; in applica-
tion to solving the Q-tensor equations of nemato-
statics [Pecher et al (2006)]; in analysis of tran-
sient thermomechanical response of functionally
gradient composites [Ching and Chen (2006)]; in
the ability for solving high-speed contact, impact
and penetration problems with large deformations
and rotations [Han et al (2006)]; in the devel-
opment of the mixed scheme to interpolate the
elastic displacements and stresses independently
[Atluri et al (2006a), (2006b)]; in proposal of a
direct solution method for the quasi-unsymmetric
sparse matrix arising in the MLPG [Yuan et al
(2007)]; in modelling nonlinear water waves [Ma
(2007)]; in the development of the MLPG with us-
ing the Dirac delta function as the test function for
2D heat conduction problems in irregular domain
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[Wu et al (2007)]; for studying the diffusion of a
magnetic field within a non-magnetic conducting
medium with nonhomogeneous and anisotropic
electrical resistivity [Johnoson and Owen (2007)];
in the development of the MLPG with using sim-
plified finite difference interpolation [Ma (2008)].

In the present paper, the authors have developed
a meshless method based on the local Petrov-
Galerkin weak-form to solve thermal problems
of orthotropic thick plates with material proper-
ties continuously varying through the plate thick-
ness. The Reissner-Mindlin theory reduces the
original 3-d thick plate problem to a 2-d prob-
lem. In our meshless method, nodal points are
randomly distributed over the mean surface of the
considered plate. Each node is the center of a
circle surrounding this node. Similar approach
has been successfully applied to a thin Kirchhoff
plate [Sladek et al., 2002, 2003] where the gov-
erning equation is decomposed into two partial
differential equations (PDEs) of the second or-
der [De Leon and Paris, 1987]. Long and Atluri
(2002) applied the meshless local Petrov Galerkin
method to solve the bending problem of a thin
plate. The MLPG method has been also applied
to Reissner-Mindlin plates under dynamic load by
Sladek et al. (2007). Soric et al. (2004) have
performed a three-dimensional analysis of thick
plates, where a plate is divided by small cylin-
drical subdomains for which the MLPG is ap-
plied. Homogeneous material properties of plates
are considered in previous papers. Recently, Qian
et al. (2004) extended the MLPG for 3-D defor-
mations in thermoelastic bending of functionally
graded isotropic plates.

In this paper the Laplace-transform technique is
applied to the set of governing differential equa-
tions for elastodynamic Reissner-Mindlin plate
bending theory with Duhamel-Neumann consti-
tutive equations. Unknown Laplace-transformed
quantities on the local boundaries are determined
by the local boundary integral equations. A unit
test function is used in the local weak-form. Ap-
plying the Gauss divergence theorem to the weak-
form, the local boundary-domain integral equa-
tions are derived. The numerical integration of
the domain integrals arising from the inertial term

and the initial values on a simple domain does
not give rise to difficulties if the meshless ap-
proximation based on the Moving Least-Squares
(MLS) method is applied. Temperature distribu-
tion in plate has to be analyzed as 3-D problem.
The MLPG is applied to transient heat conduction
equations. The Laplace transform technique is
used to eliminate time variable too. Several quasi-
static boundary value problems must be solved for
various values of the Laplace-transform param-
eter. The Stehfest’s inversion method [Stehfest,
1970] is applied to obtain the time-dependent so-
lution.

Numerical results for simply supported and
clamped square plates with a uniform or sinu-
soidal temperature distribution on the top surface
of the plate are presented to illustrate the accuracy
and efficiency of the proposed method. A ther-
mal shock with Heaviside time variation on the
top surface of the simply supported plate is also
analyzed. Comparisons of the present numerical
results with FEM results show good agreement.

2 Local integral equations for Reissner-
Mindlin plate theory

Consider an elastic orthotropic plate of constant
thickness h, with the mean surface occupying the
domain Ω in the plane (x1, x2). The plate is sub-
jected to thermal loading with the temperature
field θ (x,x3, t). The Reissner-Mindlin plate bend-
ing theory [Reissner, 1946; Mindlin, 1951] is used
to describe the plate deformation. The transverse
shear strains are represented as constant through-
out the plate thickness and some correction coef-
ficients are required for computation of transverse
shear forces in that theory. Then, the spatial dis-
placement field, due to transverse loading and ex-
pressed in terms of displacement components u1,
u2, and u3, has the following form [Reddy, 1997]

u1(x, t) = x3w1(x, t)
u2(x, t) = x3w2(x, t)
u3(x, t) = w3(x, t),

(1)

where wα(x1, x2, t) and w3(x1, x2, t) represent the
rotations around the in-plane axes and the out-of-
plane deflection, respectively (Fig. 1).
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The linear strains are given by

ε11(x, t) = x3w1,1(x, t)
ε22(x, t) = x3w2,2(x, t)
ε12(x, t) = x3(w1,2(x, t)+w2,1(x, t))/2.

ε13(x, t) = (w1(x, t)+w3,1(x, t))/2.

ε23(x, t) = (w2(x, t)+w3,2(x, t))/2.

(2)

In the case of orthotropic materials, the relation
between the stress σi j and the strain εi j when tem-
perature changes are considered, is governed by
the well known Duhamel-Neumann constitutive
equations for the stress tensor

σi j(x, t) = ci jklεkl(x, t)− γi jθ (x,x3, t) (3)

where ci jkl are the material stiffness coefficients.
The stress-temperature modulus can be expressed
through the stiffness coefficients and the coeffi-
cients of linear thermal expansion αkl

γi j = ci jklαkl. (4)
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Figure 1: Sign convention of bending moments
and forces for FGM plate

For plane problems the constitutive equation (3)
is frequently written in terms of the second-order
tensor of elastic constants [Lekhnitskii (1963)].

The constitutive equation for orthotropic materi-
als and plane stress problem has the following
form⎡
⎢⎢⎢⎢⎣

σ11

σ22

σ12

σ13

σ23

⎤
⎥⎥⎥⎥⎦ = G(x)

⎡
⎢⎢⎢⎢⎣

ε11

ε22

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

γ11

γ22

0
0
0

⎤
⎥⎥⎥⎥⎦θ (x,x3, t) (5)

where

G(x) =

⎡
⎢⎢⎢⎢⎣

E1/e E1ν21/e 0 0 0
E2ν12/e E2/e 0 0 0

0 0 G12 0 0
0 0 0 G13 0
0 0 0 0 G23

⎤
⎥⎥⎥⎥⎦

with e = 1−ν12ν21. Eα are the Young’s moduli
refering to the axes xα , α = 1, 2, G12 , G13 and
G23 are shear moduli, ναβ are Poisson’s ratios.
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Figure 2: Variation of volume fraction over the
plate thickness, for linear and quadratic power-
law index

Next, we assume that the material properties are
graded along the plate thickness, and we represent
the profile for volume fraction variation by

P(x3) = Pb +(Pt −Pb)V

with V =
(

x3

h
+

1
2

)n

, (6)
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where P denotes a generic property like modulus,
Pt and Pb denote the property of the top and bot-
tom faces of the plate, respectively, and n is a pa-
rameter that dictates the material variation profile
(Fig. 2). Poisson ratios are assumed to be uni-
form.

The bending moments Mαβ and the shear forces
Qα are defined as⎡
⎣M11

M22

M12

⎤
⎦ =

∫ h/2

−h/2

⎡
⎣σ11

σ22

σ12

⎤
⎦x3dx3

[
Q1

Q2

]
= κ

∫ h/2

−h/2

[
σ13

σ23

]
dx3,

(7)

where κ = 5/6 in the Reissner plate theory.

Substituting equations (5) and (2) into moment
and force resultants (7) allows the expression of
the bending moments Mαβ and shear forces Qα
for α ,β =1,2, in terms of rotations, lateral dis-
placements of the orthotropic plate and temper-
ature. In the case of considered continuous grada-
tion of material properties through the plate thick-
ness, one obtains

Mαβ = Dαβ
(
wα ,β +wβ ,α

)
+Cαβ wγ ,γ −Hαβ

Qα = Cα (wα +w3,α ) ,
(8)

where

Hαβ =
∫ h/2

−h/2
x3γαβθ (x,x3, t)dx3.

In eq. (8), repeated indices α , β do not imply
summation, and the material parameters Dαβ and
Cαβ are given as

D11 =
D1

2
(1−ν21) , D22 =

D2

2
(1−ν12) ,

D12 = D21 =
G12h3

12
,

C11 = D1ν21, C22 = D2ν12, C12 = C21 = 0,

Dα =
Eα h3

12e
, D1ν21 = D2ν12, Cα = κhGα3,

(9)

where

Eα ≡

⎧⎪⎨
⎪⎩

Eαt = Eαb, n = 0

(Eαb +Eαt)/2, n = 1

(3Eαb +2Eαt)/5, n = 2

G12 ≡

⎧⎪⎨
⎪⎩

G12t = G12b, n = 0

(G12b +G12t)/2, n = 1

(3G12b +2G12t)/5, n = 2

Gα3 ≡

⎧⎪⎨
⎪⎩

Gα3t = Gα3b, n = 0

(Gα3b +Gα3t)/2, n = 1

(2Gα3b +Gα3t)/3, n = 2

with the same meaning of subscripts b and t as in
Eq.(6).

For a general variation of material properties
through the plate thickness:

D11 =
∫ h/2

−h/2
x2

3E1(x3)
1−ν21

e
dx3

D22 =
∫ h/2

−h/2
x2

3E2(x3)
1−ν12

e
dx3

D12 =
∫ h/2

−h/2
x2

3G12(x3)dx3

C11 =
∫ h/2

−h/2
x2

3E1(x3)
ν21

e
dx3

C22 =
∫ h/2

−h/2
x2

3E2(x3)
ν12

e
dx3

Cα = κ
∫ h/2

−h/2
Gα3(x3)dx3

Using the Reissner’s linear theory of thick plates
[Reissner, 1946], the equations of motion may be
written as

Mαβ ,β (x, t)−Qα(x, t) =
ρh3

12
ẅα(x, t),

Qα ,α(x, t) = ρhẅ3(x, t), x ∈ Ω ,

(10)

where ρ is the mass density, and throughout the
paper Greek indices vary from 1 to 2. The dots
over a quantity indicate differentiations with re-
spect to time t.

To eliminate the time variable t in the governing
equations (10), the Laplace-transform is applied

L [ f (x, t)] = f (x, s) =
∞∫

0

f (x, t)e−stdt .
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Then, one obtains

Mαβ ,β (x, s)−Qα(x, s)

=
ρh3

12
s2wα(x, s)−Rα(x, s), (11)

Qα ,α(x, s) = ρhs2w3(x, s)−R3(x, s), (12)

where s is the Laplace-transform parameter, while
Rα and R3 are given by

Rα(x, s) =
ρh3

12
[swα(x)+ ẇα(x)] ,

R3(x, s) = ρhsw3(x)+ρhẇ3(x),

with wα(x), w3(x), ẇα(x) and ẇ3(x) being the
initial values and the initial velocities of the gen-
eralized displacement field.

subdomain =Ω Ωs s
i '

∂Ωs

∂  Ω Γs s s
i i i=L U

∂Ωs =
i ∂ Li

sΩs=

Ωs
''

Li
s

Γi
sM    , Γi

sw

ri

node xi

support of node xi

local boundary '

x
Ωx

Figure 3: Local boundaries for weak formula-
tion, the domain Ωx for MLS approximation of
the trial function, and support area of weight func-
tion around node xi

Instead of writing the global weak-form for the
above governing equations, the MLPG methods
construct the weak-form over local subdomains
such as Ωs, which is a small region taken for each
node inside the global domain [Atluri, 2004]. The
local subdomains overlap each other and cover the
whole global domain Ω (Fig. 3). The local sub-
domains could be of any geometrical shape and
size. In the current paper, the local subdomains
are taken to be of circular shape. The local weak-
form of the governing equations (11) and (12) for

xi ∈ Ωi
s can be written as

∫
Ωi

s

[
Mαβ ,β (x, s)−Qα(x, s)− ρh3

12
s2wα(x, s)

+Rα(x, s)
]
w∗

αγ(x)dΩ = 0, (13)

∫
Ωi

s

[
Qα ,α(x, s)−ρhs2w3(x, s)

+ R3(x, s)
]
w∗

3(x)dΩ = 0, (14)

where w∗
αβ (x) and w∗(x) are weight or test func-

tions.

Applying the Gauss divergence theorem to Eqs.
(13) and (14) one obtains

∫
∂Ωi

s

Mα(x, s)u∗αγ(x)dΓ−
∫
Ωi

s

Mαβ (x, s)u∗αγ ,β(x)dΩ

−
∫
Ωi

s

Qα(x, s)u∗αγ(x)dΩ

−
∫
Ωi

s

ρh3

12
s2wα(x, s)u∗αγ(x)dΩ

+
∫
Ωi

s

Rα(x, s)u∗αγ(x)dΩ = 0, (15)

∫
∂Ωi

s

Qα(x, s)nα(x)u∗(x)dΓ−
∫
Ωi

s

Qα(x, s)u∗,α(x)dΩ

−
∫
Ωi

s

ρhs2w3(x, s)u∗(x)dΩ+
∫
Ωi

s

R3(x, s)u∗(x)dΩ

= 0, (16)

where ∂Ωi
s is the boundary of the local subdomain

and

Mα(x, s) = Mαβ (x, s)nβ(x)

is the Laplace-transform of the normal bending
moment and nα is the unit outward normal vec-
tor to the boundary ∂Ωi

s. The local weak-forms
(15) and (16) are the starting point for deriving
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local boundary integral equations on the basis of
appropriate test functions. Unit step functions are
chosen for the test functions w∗

αβ (x) and w∗(x) in
each subdomain

w∗
αγ (x) =

{
δαγ at x ∈ (Ωs ∪∂Ωs)
0 at x /∈ (Ωs ∪∂Ωs)

,

w∗(x) =

{
1 at x ∈ (Ωs ∪∂Ωs)
0 at x /∈ (Ωs ∪∂Ωs)

.

(17)

Then, the local weak-forms (15) and (16) are
transformed into the following local boundary in-
tegral equations

∫
∂Ωi

s

Mα(x, s)dΓ−
∫
Ωi

s

Qα(x, s)dΩ

−
∫
Ωi

s

ρh3

12
s2wα(x, s)dΩ+

∫
Ωi

s

Rα(x, s)dΩ

= 0, (18)

∫
∂Ωi

s

Qα(x, s)nα(x)dΓ−
∫
Ωi

s

ρhs2w3(x, s)dΩ

+
∫
Ωi

s

R3(x, s)dΩ = 0. (19)

In the above local integral equations, the trial
functions wα(x, s), related to rotations, and
w3(x, s), related to displacements, are chosen as
the moving least-squares (MLS) approximations
over a number of nodes randomly spread within
the domain of influence.

3 Numerical solution

In general, a meshless method uses a local in-
terpolation to represent the trial function with
the values (or the fictitious values) of the un-
known variable at some randomly located nodes.
The moving least-squares (MLS) approximation
[Lancaster and Salkauskas, 1981; Nayroles et al.,
1992; Belytschko, 1996] used in the present anal-
ysis may be considered as one of such schemes.
Let us consider a sub-domain Ωx of the problem
domain Ω in the neighbourhood of a point x for

the definition of the MLS approximation of the
trial function around x (Fig. 3). To approximate
the distribution of the Laplace-transform of the
generalized displacements (rotations and deflec-
tion) in Ωx over a number of randomly located
nodes {xa} , a = 1,2, . . .,n, the MLS approximant
wh

i (x, s) of wi(x, s) is defined by

wh(x, s) = pT (x)ã(x, s), ∀x ∈ Ωx (20)

where wh =
[
wh

1, wh
2, wh

3

]T
, pT (x) =[

p1(x), p2(x), . . ., pm(x)
]

is a com-
plete monomial basis of order m, and
ã(x, s) =

[
a1(x, s), a2(x, s), ..., am(x, s)

]T

is composed of vectors a j(x, s) =[
a j

1(x, s), a j
2(x, s), a j

3(x, s)
]T

which are func-

tions of the spatial co-ordinates x = [x1, x2]
T and

the transform- parameter s.

The coefficient vector ã(x, s) is determined by
minimizing a weighted discrete L2 -norm defined
as

J(x) =
n

∑
a=1

va(x)
[
pT (xa)ã(x, s)− ŵa(s)

]2
, (21)

where va(x) > 0 is the weight function associated
with the node a and the square power is consid-
ered in the sense of scalar product. Recall that
n is the number of nodes in Ωx for which the
weight function va(x) > 0 and ŵa(s) are the ficti-
tious nodal values, but not the nodal values of the
unknown trial function wh(x, s) in general. The
stationarity of Jin eq. (21) with respect to ã(x, s)
leads to

A(x)ã(x, s)−B(x)ŵ(s) = 0, (22)

where

ŵ(s) =
[
ŵ1(s), ŵ2(s), ..., ŵn(s)

]T

A(x) =
n

∑
a=1

va(x)p(xa)pT (xa),

B(x) =
[
v1(x)p(x1), v2(x)p(x2), ...,vn(x)p(xn)

]
.

(23)
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The solution of eq. (22) for ã(x, s) and the subse-
quent substitution into eq. (20) lead to the follow-
ing expression

wh(x, s) = ΦΦΦT (x) · ŵ(s) =
n

∑
a=1

φ a(x)ŵa(s), (24)

where

ΦΦΦT (x) = pT (x)A−1(x)B(x). (25)

In eq. (24), φ a(x) is usually referred to as the
shape function of the MLS approximation corre-
sponding to the nodal point xa . From eqs. (23)
and (25), it can be seen that φ a(x) = 0 when
va(x) = 0 . In practical applications, va(x) is of-
ten chosen in such a way that it is non-zero over
the support of the nodal point xi . The support of
the nodal point xa is usually taken to be a circle
of the radius ri centred at xa (see Fig. 3). The
radius ri is an important parameter of the MLS
approximation because it determines the range of
the interaction (coupling) between the degrees of
freedom defined at considered nodes.

A 4th-order spline-type weight function is applied
in the present work

va(x) ={
1−6

(
da

ra

)2
+8

(
da

ra

)3 −3
(

da

ra

)4
0 ≤ da ≤ ra

0 da ≥ ra

(26)

where da = ‖x−xa‖ and ra is the radius of the
circular support domain. With eq. (26), the C1-
continuity of the weight function is ensured over
the entire domain, therefore the continuity condi-
tion of the bending moments and the shear forces
is satisfied. The size of the support ra should be
large enough to cover a sufficient number of nodes
in the domain of definition to ensure the regularity
of the matrix A. The value of n is determined by
the number of nodes lying in the support domain
with radius ra .

The partial derivatives of the MLS shape func-
tions are obtained as [Atluri, 2004]

φ a
,k =

m

∑
j=1

[
p j

,k(A−1B) ja + p j(A−1B,k +A−1
,k B) ja

]
,

(27)

wherein A−1
,k =

(
A−1

)
,k represents the derivative

of the inverse of A with respect to xk , which is
given by

A−1
,k = −A−1A,kA−1.

The directional derivatives of w(x, s) are approxi-
mated in terms of the same nodal values as

w,k(x, s) =
n

∑
a=1

ŵa(s)φ a
,k(x) . (28)

Substituting the approximation (28) into the defi-
nition of the normal bending (7), one obtains for

M(x, s) =
[
M1(x, s), M2(x, s)

]T

M(x, s) = N1

n

∑
a=1

Ba
1(x)w∗a(s)

+N2

n

∑
a=1

Ba
2(x)w∗a(s)−H(x, s)

= Nα(x)
n

∑
a=1

Ba
α(x)w∗a(s) −H(x, s), (29)

where the vector w∗a(s) is defined as a col-
umn vector w∗a(s) = [ŵa

1(s), ŵa
2(s)]T , the vector

H(x, s) = [H11n1, H22n2]T , the matrices Nα(x)
are related to the normal vector n(x) on ∂Ωs by

N1(x) =
[

n1 0 n2

0 n2 n1

]

and

N2(x) =
[
C11 0
0 C22

][
n1 n1

n2 n2

]

and the matrices Ba
α are represented by the gradi-

ents of the shape functions as

Ba
1(x) =

⎡
⎣2D11φ a

,1 0
0 2D22φ a

,2
D12φ a

,2 D12φ a
,1

⎤
⎦ ,

Ba
2(x) =

[
φ a

,1 0
0 φ a

,2

]
.
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The influence on the material gradation is incor-
porated in Cαβ and Dαβ defined in equations (7)-
(9).

Similarly one can obtain the approximation for
the shear forces

Q(x, s) = C(x)
n

∑
a=1

[φ a(x)w∗a(s)+Fa(x)ŵa
3(s)],

(30)

where Q(x, s) =
[
Q1(x, s), Q2(x, s)

]T
and

C(x) =
[
C1(x) 0

0 C2(x)

]
, Fa(x) =

[
φ a

,1
φ a

,2

]
.

Then, insertion of the MLS-discretized force
fields (29) and (30) into the local boundary inte-
gral equations (18) and (19) yields the discretized
local integral equations (LIEs)

n

∑
a=1

⎡
⎢⎣ ∫

Li
s+Γi

sw

Nα(x)Ba
α (x)dΓ

−
∫
Ωi

s

(
C(x)+E

ρh3(x)
12

s2
)

φ a(x)dΩ

⎤
⎥⎦w∗a(s)

−
n

∑
a=1

ŵa
3(s)

∫
Ωi

s

C(x)Fa(x)dΩ

=
∫

Li
s+Γi

sM

H(x, s)dΓ−
∫

Γi
sM

M̃(x, s)dΓ

−
∫
Ωi

s

R(x, s)dΩ, (31)

n

∑
a=1

⎛
⎜⎝ ∫

∂Ωi
s

Cn(x)φ a(x)dΓ

⎞
⎟⎠w∗a(s)+

n

∑
a=1

ŵa
3(s)

⎛
⎜⎝ ∫

∂Ωi
s

Cn(x)Fa(x)dΓ−
∫
Ωi

s

ρs2h(x)φ a(x)dΩ

⎞
⎟⎠

= −
∫
Ωi

s

R3(x, s)dΩ, (32)

in which

E =
(

1 0
0 1

)
,

Cn(x) = (n1, n2)
(

C1 0
0 C2

)
= (C1n1, C2n2) .

Equations (31) and (32) are considered on the sub-
domains adjacent to the interior nodes xi as well
as to the boundary nodes on Γi

sM .

For the source point xi located on the global
boundary Γ the boundary of the subdomain ∂Ωi

s

is decomposed into Li
s and Γi

sM (part of the global
boundary with prescribed bending moment) ac-
cording to Fig. 3.

It should be noted here that there are neither La-
grange multipliers nor penalty parameters intro-
duced into the local weak forms (13) and (14)
because the essential boundary conditions on Γi

sw
(part of the global boundary with prescribed rota-
tions or displacements) can be imposed directly,
using the interpolation approximation (24)

n

∑
a=1

φ a(xi)ŵa(s) = w̃(xi, s) for xi ∈ Γi
sw, (33)

where w̃(xi, s) is the Laplace-transform of the
generalized displacement vector prescribed on the
boundary Γi

sw. For a clamped plate all three vec-
tor components (rotations and deflection) are van-
ishing on the fixed edge, and eq. (33) is used at
all the boundary nodes in such a case. However,
for a simply supported plate only the third compo-
nent of the displacement vector (deflection) is pre-
scribed, while the rotations are unknown. Then,
the entire equation (31) and the third component
of eq. (33) are applied to the nodes lying on the
global boundary. On those parts of the global
boundary where no displacement boundary condi-
tions are prescribed both local integral equations,
(31) and (32), are applied.

The time-dependent values of rotations, displace-
ments, moments, and shear forces are obtained
from an inverse transform of the correspond-
ing Laplace-transformed quantities. Thereby,
great attention is paid to the numerical inversion
of the Laplace transformation, since the inverse
Laplace-transform is an ill-posed problem and
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small truncation errors can be greatly magnified
in the inversion process with yielding poor numer-
ical results. In the present analysis, the sophisti-
cated Stehfest’s algorithm [Stehfest, 1970] is used
for the numerical inversion.

4 Meshless local integral equations for heat
conduction problems in plates

The heat conduction problem cannot be reduced
to 2-D as it was made for the plate problem de-
scribed by the Reissner-Mindlin theory. There-
fore, the problem has to be analyzed as a 3-D
problem generally. Consider a boundary value
problem for the heat conduction problem in a con-
tinuously nonhomogeneous anisotropic medium,
which is described by the governing equation:

ρ(x)c(x)
∂θ
∂ t

(x, t) = [ki j(x)θ, j(x, t)],i +Q(x, t),

(34)

where θ (x, t) is the temperature field, Q(x, t) is
the density of body heat sources, ki j is the thermal
conductivity tensor, ρ(x) is the mass density and
c(x) the specific heat.

Let the analyzed plate is denoted by Ω with the
top and bottom surfaces S+ and S−, respectively.
Arbitrary temperature or heat flux boundary con-
ditions can be prescribed on all considered sur-
faces. The initial condition is assumed

θ (x, t)|t=0 = θ (x,0)

in the analyzed domain Ω.

The above stated problem has been recently
solved by [Qian and Batra, 2005] by an approx-
imate computational technique. The temperature
field is expanded in the plate thickness direction
by using Legendre polynomials as basis func-
tions. The original 3-D problem is transformed
into a set of 2-D problems there. In the present
paper, a more general 3-D analysis based on the
MLPG method is applied. The MLS approxima-
tion is used here. The approximations described
in previous paragraph for 2-D problems are still
valid with only modification of basis polynomials
as

pT (x) = [1, x1, x2, x3] , linear basis m = 4,

pT (x) = [1, x1, x2, x3, (x1)2, (x2)2, (x3)2,

x1x2, x1x2, x3x2, x1x3, (x1)2x3,

(x2)2x3, (x3)2x], quadratic basis m = 10. (35)

Applying the Laplace transformation to the gov-
erning equation (34), one obtains

[
ki j(x)θ , j(x, s)

]
,i −ρ(x)c(x)sθ(x, s) = −F(x, s),

(36)

where

F(x, s) = Q(x, s)+θ (x,0)

is the redefined body heat source in the Laplace-
transform domain with initial boundary condition
for temperature and s is the Laplace-transform pa-
rameter.

Again the weak form is constructed over local
sub-domains Ωs, which is a small sphere taken
for each node inside the global domain. The lo-
cal weak form of the governing equation (36) for
xa ∈ Ωa

s can be written as

∫
Ωa

s

[(
kl j(x)θ , j(x, s)

)
,l −ρ(x)c(x)sθ(x, s)

+ F(x, s)
]

θ ∗(x)dΩ = 0, (37)

where θ ∗(x) is a weight (test) function.

Applying the Gauss divergence theorem to Eq.
(37) we obtain
∫

∂Ωa
s

q(x, s)θ ∗(x)dΓ−
∫
Ωa

s

kl j(x)θ , j(x, s)θ ∗
,l(x)dΩ

−
∫
Ωa

s

ρ(x)c(x)sθ(x, s)θ ∗(x)dΩ

+
∫
Ωa

s

F(x, s)θ ∗(x)dΩ = 0, (38)

where ∂Ωa
s is the boundary of the local sub-

domain and

q(x, s) = kl j(x)θ , j(x, s)nl(x).

The local weak form (38) is a starting point to de-
rive local boundary integral equations providing
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an appropriate test function selection. If a Heav-
iside step function is chosen as the test function
θ ∗(x) in each sub-domain

θ ∗(x) =

{
1 at x ∈ Ωa

s

0 at x /∈ Ωa
s

the local weak form (38) is transformed into the
following simple local boundary integral equation

∫
∂Ωa

s

q(x, s)dΓ−
∫
Ωa

s

ρ(x)c(x)sθ(x, s)dΩ

= −
∫

Ωa
s

F(x, s)dΩ. (39)

Equation (39) is recognized as the flow balance
condition of the sub-domain. In stationary case
there is no domain integration involved in the left
hand side of this local boundary integral equa-
tion. If an assumption of zero body heat sources
is made, a pure boundary integral formulation will
be obtained.

The MLS is used for approximation of the heat
flux q(x, s)

qh(x, s) = ki jni

n

∑
a=1

φ a
, j(x)θ̂ a(s).

Substituting the MLS-approximations into the lo-
cal integral equation (39) the system of algebraic
equations is obtained

n

∑
a=1

⎛
⎝ ∫

Ls+Γsp

nT KPa(x)dΓ−
∫
Ωs

ρcsφ a(x)dΓ

⎞
⎠ θ̂ a(s)

= −
∫

Γsq

q̃(x, s)dΓ−
∫
Ωs

R(x, s)dΩ, (40)

at interior nodes as well as to the boundary nodes
with prescribed heat flux on Γsq. In Eq. (40), we
have used the notations

K =

⎡
⎣k11 k12 k13

k12 k22 k23

k13 k23 k33

⎤
⎦ , Pa(x) =

⎡
⎣φ a

,1
φ a

,2
φ a

,3

⎤
⎦ ,

nT = (n1 , n2,n3 ).

(41)

The time dependent values of the transformed
quantities can be obtained by an inverse Laplace-
transform. In the present analysis, the Stehfest’s
inversion algorithm [Stehfest, 1970] is used.

5 Numerical examples

In this section, numerical results are presented
for plates under thermal loading. In order to test
the accuracy, the numerical results obtained by
the present method are compared with the results
provided by the FEM-ANSYS code using a very
fine mesh. Clamped and simply supported square
plates are analysed. In all numerical calculations,
the plates with homogeneous and/or FGM prop-
erties are considered.

5.1 Simply supported square plate

We first consider a simply supported square plate
with a side-length a = 0.254m and the plate thick-
nesses h/a = 0.05 . On the top surface of the
plate a uniformly distributed temperature θ =
10 is considered. The bottom surface is kept
at vanishing temperature. In the first case ho-
mogeneous and isotropic material parameters are
considered: Young’s moduli E1 = E2 = 0.6895 ·
1010 N / m2, Poisson’s ratios ν21 = ν12 = 0.3 , and
the thermal expansion coefficients α11 = α22 =
1 ·10−5 deg−1 . The used shear moduli correspond
to Young’s modulus E2, namely, G12 = G13 =
G23 = E2/2(1+ν12).

For the purpose of error estimation and conver-
gence studies the Sobolev norm is calculated. The
relative error of the deflection is defined as

r =

∥∥wnum
3 −wexact

3

∥∥∥∥wexact
3

∥∥ , (42)

where

‖w3‖ =

⎛
⎝∫

Ω

w2
3dΩ

⎞
⎠

1/2

.

The relative error for the bending moments is de-
fined similarly. As the “exact” solution, Boley and
Weiner (1960) results are used, since the plate is
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Figure 4: Node distribution for numerical analy-
ses of a simply supported square plate

sufficiently thin and Kirchhoff theory can be ap-
plied. The analytical expressions for plate deflec-
tion and bending moments are given as

w3(x1,x2) =
αΔθ (1+ν)4a2

π3h
∞

∑
m=1,3,5...

sin mπx1
a

m3

(
1− ch mπx2

a

chαm

)
,

M11(x1,x2) =
4DαΔθ (1−ν2)

πh
∞

∑
m=1,3,5...

sin mπx1
a ch mπx2

a

mchαm
,

M22(x1,x2) =
DαΔθ (1−ν2)

h
− 4DαΔθ (1−ν2)

πh
∞

∑
m=1,3,5...

sin mπx1
a ch mπx2

a

mchαm
, (43)

where D is the flexural rigidity D = Eh3/12(1−
ν2) and Δθ denotes a temperature difference be-
tween top and bottom plate surfaces. A linear
temperature distribution is considered between
both plate surfaces.

To study the convergence of the method, three
regular node distributions with 121, 256, and 441
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0 (
r)

  Deflection

  Bending Moment

Figure 5: Relative errors and convergence rates
for the central deflection and the bending moment
of a simply supported plate

nodes, respectively, are used for the MLS approx-
imation. For a regular node distribution (see Fig.
4), the density of the nodes can be characterized
by the distance of two neighbouring nodes s. The
relative errors and the convergence rates for the
central deflection and bending moment are given
in Fig. 5. The convergence rates for both quan-
tities are almost the same. The relative error for
the central deflection is a little bit lower than for
the bending moment. For the finest node distri-
bution with total 441 nodes the relative error for
the central deflection is 0.56% and for the bending
moment 0.85%, which confirms that the present
numerical method is highly accurate. The circu-
lar subdomain is chosen as rloc = 0.4s and the ra-
dius of the support domain for node a is ra = 4rloc

. Smaller values of the support domain lead to
lower approximation accuracy, and larger values
of the support domain prolong the computational
time for the evaluation of the shape functions. The
value of the radius of the support domain has been
optimized on numerical experiments. Nie et al
(2006) developed an efficient approach to find the
optimal radius of support of radial weight func-
tions used in MLS approximation.

The variation of the deflection with the x1 -
coordinate at x2= a/2 of the plate is presented in
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Fig. 6. The deflection is normalized to the plate
thickness. One can observe a very good agree-
ment of the present and analytical results. The
FEM-ANSYS results have been obtained by 400
quadrilateral eight-node elements.
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Figure 6: Variation of the deflection with the x1 -
coordinate for a simply supported isotropic square
plate

The variation of the bending moment M11 is
shown in Fig. 7. The bending moment at the cen-
ter of the plate Miso

11 (a/2) = 0.4634 Nm is used as
a normalized parameter. Again a very good agree-
ment of results is observed.

Next, orthotropic mechanical properties of the
plate are considered with Young’s moduli E2 =
0.6895 · 1010 N/m2, E1 = 2E2, Poisson’s ratios
ν21 = 0.15, ν12 = 0.3. The variation of the deflec-
tion with the x1-coordinate at x2 = a/2 of the plate
is presented in Fig. 8 with assuming isotropic
thermal expansion coefficients. Opposite to me-
chanical load case [Sladek et al. 2007] the de-
flection is not reduced in the orthotropic plate as
compared with the isotropic plate. It is due to in-
creasing equivalent load for orthotropic plate at
the same temperature distributions in both cases.

The variations of the bending moment M11 for
orthotropic plate are presented in Fig. 9. We
consider orthotropic properties for Young‘s mod-
uli and for thermal expansion coefficients ei-
ther isotropic or orthotropic. The bending mo-

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

x1/a

M
11

(x
1)/

M
11

is
o (a

/2
)

analytical
MLPG
FEM

Figure 7: Variation of the bending moment with
the x1 -coordinate for a simply supported isotropic
square plate
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Figure 8: Influence of orthotropic material prop-
erties on the plate deflection

ments are normalized by the central value for an
isotropic plate. One can observe that orthotropic
material properties of thermal expansion coeffi-
cient have a strong influence on the bending mo-
ment values.

Next, functionally graded material properties
through the plate thickness are considered. The
following isotropic material parameters on top
side of the plate are used in numerical analysis:
Young’s moduli E1t = E2t = 0.6895 · 1010 N/m2
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Figure 9: Variation of the bending moment with
the x1-coordinate for a simply supported or-
thotropic square plate

, Poisson’s ratios ν12 = ν21 = 0.3 . Linear and
quadratic variations of volume fraction V defined
in equation (6) are considered here, and Young’s
moduli on the bottom side are: E1b = E2b =
E1t/2. The variation of deflections with the x1

-coordinate is given in Fig. 10. Since Young’s
modulus on the bottom side is considered to be
smaller than on the top one, deflection for FGM
plate is larger than for homogenenous plate with
material properties corresponding to the top side,
E2t = 0.6895 · 1010 N/m2 . In both linear and
quadratic variations of Young’s moduli the same
surface values are considered. One can observe in
Fig. 10 that the profile of the variation of material
properties has negligible influence on the deflec-
tion. But the deflection is influenced by the sur-
face values of material parameters on the bottom
and top sides of the plate.

The variation of the bending moment M11 is pre-
sented in Fig. 11. Here, the bending moments are
normalized by the central bending moment value
corresponding to a homogeneous isotropic plate
Miso

11 (a/2) = 0.4634 Nm. The profile of the varia-
tion of material properties through the plate thick-
ness as well as their surface values has practically
no influence on the bending moment. The bend-
ing moments in homogeneous and FGM plates are
almost the same. Minimal differences between
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Figure 10: Variation of the deflection with the x1 -
coordinate for a simply supported isotropic square
plate with FGM properties

them are caused by numerical inaccuracies.
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Figure 11: Variation of the bending moment with
the x1 -coordinate for a simply supported isotropic
square plate with FGM properties

In the next example a thermal shock θ = H(t−0)
with Heaviside time variation is applied on the top
surface of the plate. If the ends of the plate are
thermally insulated, a uniform temperature distri-
bution on plate surfaces is given. The bottom sur-
face is thermally insulated too. In such a case the
temperature distribution is given by [Carslaw and
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Jaeger, 1959]

θ (x3, t) = 1− 4
π

∞

∑
n=0

(−1)n

2n+1
exp

[
−(2n+1)2π2κt

4h2

]

cos
(2n+1)πx3

2h
, (44)

where diffusivity coefficient κ = k/ρc, with ther-
mal conductivity k = 100W/mdeg, mass den-
sity ρ = 7500kg/m3 and specific heat c =
400Ws/kgdeg. Isotropic material parameters and
the thermal expansion coefficients are considered.
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Figure 12: Time variation of the central deflection
in the plate with vanishing heat flux

Homogeneous and FGM properties with n=2 are
considered here. Numerical results for the central
plate deflection are presented in Fig. 12. Deflec-
tions are normalized by the central deflection cor-
responding to stationary thermal distribution with
θ = 1deg on the top plate surface and vanishing
temperature on the bottom surface. For homoge-
neous material properties the corresponding sta-
tionary deflection is wstat

3 = 0.4829 ·10−5 m. One
can observe that in the whole time interval deflec-
tion for a homogeneous plate is lower than in a
stationary case. The stiffness of the FGM plate is
lower than for a homogeneous one.

For homogeneous plate the deflection approaches
zero for late time instants. This is opposite to
FGM plate. The bending moment at the center
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Figure 13: Time variation of the bending moment

of the plate Mstat
11 = 0.4699 Nm is used as a nor-

malized parameter in Fig. 13. The peak values of
the bending moments for both homogeneous and
FGM plates are almost the same. Since the de-
flection is not vanishing for late time instants for
the FGM plate, the bending moment is finite too.

5.2 Clamped square plate

Let us consider a clamped square plate with the
same geometrical and material parameters as in
the above analyzed simply supported plate. Also
the same nodal distribution is used in the numer-
ical analysis. A uniform distribution of tempera-
ture on the top side of the plate cannot be consid-
ered here, since it is leading to vanishing deflec-
tions [Boley and Weiner, 1960]. Therefore, we
have considered following distribution of temper-
ature on top surface of the plate:

θ (x1,x2) = sin
πx1

a
sin

πx2

a
. (45)

The bottom side of the plate is kept at vanish-
ing temperature. A linear variation of temperature
through the plate thickness is assumed. Both vari-
ants of isotropic and orthotropic material proper-
ties are considered here.

The variation of deflections with the x1 -
coordinate is given in Fig. 14. Counterpart to a
simply supported plate the values of deflections
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are independent on the ratio of Young‘s moduli
in orthotropic material for a clamped plate. In-
creasing Young‘s modulus enlarges the thermal
forces and flexural rigidity of the plate. Both ef-
fects are mutually eliminated in the deformation
of plate. One can observe a good agreement of
present and FEM results for both isotropic and or-
thotropic plates.

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

0 0.1 0.2 0.3 0.4 0.5

x1/a

w
3(

x 1
)/h

isotropic: FEM
                 MLPG
E1 = 2*E2: FEM
                   MLPG

Figure 14: Variation of the deflection with the x1

-coordinate for a clamped homogeneous square
plate

The variation of the bending moment M11 is pre-
sented in Fig. 15. Here, the bending moments
are normalized by the central bending moment
value corresponding to a homogeneous isotropic
plate. Larger bending moments at the fixed part
of the orthotropic plate are caused by larger ther-
mal forces. Orthotropic properties of thermal ex-
pansion coefficients have here a similar effect on
the bending moment as the orthotropic mechani-
cal material properties.

Next, functionally graded material properties
through the plate thickness are considered. The
variation of material properties for the FGM plate
is here the same as for a simply supported plate
analyzed in the previous example. The variation
of deflections with the x1 -coordinate is given in
Fig. 16. Since Young’s modulus on the bottom
side is considered to be smaller than on the top
one, deflection for the FGM plate is larger than
for homogenenous plate with material properties
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Figure 15: Variation of the bending moment with
the x1 -coordinate for a clamped homogeneous
square plate

corresponding to the top side. The influence of
gradation of material properties on the deflection
of a clamped plate is similar to that in the simply
supported plate.
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Figure 16: Variation of the deflection with the x1

-coordinate for a clamped isotropic square plate
with FGM properties

The variation of the bending moment M11 is pre-
sented in Fig. 17. Again the variation of ma-
terial properties through the plate thickness has
practically no influence on the bending moment.
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Figure 17: Variation of the bending moment with
the x1 -coordinate for a clamped isotropic square
plate with FGM properties

The bending moments in homogeneous and FGM
plates are almost the same.

6 Conclusions

A meshless local Petrov-Galerkin method is ap-
plied to plate bending problems described by the
Reissner-Mindlin theory. Both stationary and
thermal shock loads are considered. The varia-
tion of material properties through the plate thick-
ness can be arbitrary. The influence of the shear
deformation in the Reissner-Mindlin theory on
the plate deflection is analysed. The Laplace-
transform technique is applied to eliminate the
time variable in the coupled governing differ-
ential equations of the Reissner-Mindlin theory.
The use of the Laplace-transform in forced vibra-
tion analysis converts the dynamic problem to a
quasi static problem. The analyzed domain is di-
vided into small overlapping circular subdomains.
A unit step function is used as the test func-
tion in the local weak-form. The derived local
boundary-domain integral equations are nonsin-
gular. The moving least-squares (MLS) scheme
is adopted for approximating the physical quan-
tities. The proposed method is a truly meshless
method, which requires neither domain elements
nor background cells in either the interpolation or
the integration.

It is demonstrated numerically that the quality
of the results obtained by the proposed MLPG
method is very good. The degree of the agree-
ment of our numerical results with those obtained
by the FEM-ANSYS computer code ranges from
good to excellent. Random location of nodes
should be considered for a general boundary value
problems. In illustrative examples only simple
problems are analysed. Then, a regular node dis-
tribution has been used. However, an efficient
node generator is required to be developed for fur-
ther progress of the method.
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