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Abstract: Atherosclerotic plaque rupture and
progression have been the focus of intensive in-
vestigations in recent years. Plaque rupture is
closely related to most severe cardiovascular syn-
dromes such as heart attack and stroke. A
computational procedure based on meshless gen-
eralized finite difference (MGFD) method and
serial magnetic resonance imaging (MRI) data
was introduced to quantify patient-specific carotid
atherosclerotic plaque growth functions and sim-
ulate plaque progression. Participating patients
were scanned three times (T1, T2, and T3, at inter-
vals of about 18 months) to obtain plaque progres-
sion data. Vessel wall thickness (WT) changes
were used as the measure for plaque progression.
Since there was insufficient data with the current
technology to quantify individual plaque compo-
nent growth, the whole plaque was assumed to
be uniform, homogeneous, hyperelastic, isotropic
and nearly incompressible. The linear elastic
model was used. The 2D plaque model was dis-
cretized and solved using a meshless generalized
finite difference (GFD) method. Starting from the
T2 plaque geometry, plaque progression was sim-
ulated by solving the solid model and adjusting
wall thickness using plaque growth functions iter-
atively until T3 is reached. Numerically simulated
plaque progression agreed very well with actual
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plaque geometry at T3 given by MRI data. We be-
lieve this is the first time plaque progression sim-
ulation based on multi-year patient-tracking data
was reported. Serial MRI-based progression sim-
ulation adds time dimension to plaque vulnerabil-
ity assessment and will improve prediction accu-
racy for potential plaque rupture risk.

Keyword: meshless, generalized finite differ-
ence, artery, plaque progression, plaque rupture,
atherosclerosis.

1 Introduction

Cardiovascular disease (CVD) has remained the
number one cause of death in America since 1902.
36% of 45 year olds and 80% of those 75 and
older have CVD to some degree. A large number
of the fatal clinical events are caused by rupture
of a vulnerable atherosclerotic plaque. [Fuster
(1998); Fuster et al. (1990); Naghavi et al.
(2003a, 2003b)]. Many victims of the disease
who are apparently healthy die suddenly without
prior symptoms. While major advancements in
the treatment of CVD continue, progress has been
very limited in early detection and treatment of
at risk individuals. Our long-term goal is to de-
velop non-invasive methods to assess plaque vul-
nerability and predict possible rupture before the
fatal event actually happens.

There has been considerable effort investigat-
ing mechanisms governing atherosclerotic plaque
progression and rupture [Friedman, Bargeron,
Deters, Hutchins and Mark (1987); Friedman
and Giddens (2005); Giddens, Zarins, Glagov, S.
(1993); Ku, Giddens, Zarins and Glagov (1985);
Scotti et al. (2005); Yuan, Mitsumori, Beach,



96 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.95-107, 2008

and Maravilla (2001)]. Most efforts were focused
on fluid dynamics side since it has been well ac-
cepted that atherosclerosis initiation and progres-
sion correlate positively with low and oscillating
flow wall shear stresses. However, this “low and
oscillating shear stress hypothesis” cannot explain
why moderate and advanced plaques continue to
grow under elevated flow shear stress conditions
[Tang et al. (2005)]. Our recent results using se-
rial MRI patient-tracking data and computational
models (200-700 data points/patient) indicated
that 18 out of 21 patients studied showed sig-
nificant negative correlation between plaque pro-
gression measured by wall thickness increase and
plaque wall (structure) stress. However, compu-
tational models using patient-specific plaque pro-
gression data to simulate plaque growth and pre-
dict future plaque rupture risk are lacking in the
current literature.

In this paper, a computational procedure based on
meshless generalized finite difference (MGFD)
method and serial MRI data is introduced to quan-
tify patient-specific carotid atherosclerotic plaque
growth functions and simulate plaque progres-
sion. By adding time dimension into our play,
plaque vulnerability assessment and clinical deci-
sions can be based on multi-time MRI scans and
simulated “virtual” plaque progression. Seeing is
believing. With validation, our procedure can be
implemented in clinical applications and will lead
to considerable improvement in prediction accu-
racy for potential plaque rupture risk and possible
prevention of fatal cardiovascular events.

Because of the complexity of plaque geometry
and structure, a meshless GFD method is in-
troduced in this paper to avoid frequent mesh
updates and adjustments. Computational mod-
eling for engineering applications with mesh-
less methods have made considerable advances
in recent years [Ahrem, Beckert and Wendland
(2006); Atluri (2004, 2005); Atluri, Yagawa, and
Cruse (1995); Bathe (1996, 2002); Ling, Atluri
(2006); Shu, Ding, and Yeo (2005); Wu, Shen,
Tao (2007)]. A series of meshless local Petrov-
Galerkin (MLPG) methods were introduced to
solved 3-dimensional elasto-static and dynamical
problems [Han and Atluti (2004a, 2004b, 2007);

Han, Liu, Rajendran, Atluri (2006)] and non-
linear problems with large deformation and ro-
tations [Han, Rajendran and Atluri (2004)]. A
“mixed” approach was introduced to improve
the MLPG method using finite volume method
[Atluri, Han and Rajendran (2004)] and finite dif-
ference method [Atluri, Liu, and Han, (2006a,
2006b); Hu, Young, Fan (2008)]. A new mesh-
less interpolation scheme for MLPG method was
developed by Ma [Ma (2008)]. Analysis of struc-
ture with material interfaces was performed by
Masuda and Noguchi [Masuda, Noguchi (2006)].
Perko and Sarler studied weight function shape
parameter optimization in meshless methods for
non-uniform grids [Perko and Sarler (2007)].
Remeshing and refining with moving finite ele-
ments were investigated by Wacher and Givoli
[Wacher, Givoli (2006)]. Numerical methods
were also developed to solve problems with free
and moving boundaries [Zohouri, Pirooz, and Es-
maeily (2005); Mai-Duy and Tran-Cong, (2004)].
GFD methods have been used in many engineer-
ing applications and in our previous papers where
irregular geometries and free-moving boundaries
are involved [Kleiber (1998); Liszka and Orkisz
(1980); Tang, Chen, Yang, Kobayashi and Ku
(2002); Tang, Yang, Kobayashi and Ku (2001)].
One advantage of using GFD is that generalized
finite difference schemes can be derived for user-
selected irregular grid points which can be freely
adjusted to accommodate plaque deformation and
growth. The MGFD method introduced in this pa-
per uses grid points from the local support of each
nodal point so that theoretical MLPG framework
can be applied [Atluri (2004)]. Details are given
in the following sections.

2 Models and methods

Due to the complexity of the problem, we start
from 2D models in this paper to get some in-
sight for further full 3D investigations. Patient-
specific plaque progression data was acquired by
serial MRI (scanning patients multiple times with
time span at about 18 months). Correspond-
ing slices were matched using carotid bifurcation
as the registration point. 2D models were con-
structed for selected slices and solved by mesh-
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less GFD method to obtain the stress distributions
in the plaque. Point-wise plaque growth func-
tions were determined based on three time point
stress and vessel wall thickness data. The growth
functions were then used to simulate plaque pro-
gression starting from Time 2 plaque morphol-
ogy. The simulated Time 3 plaque morphology
was compared with actual Time 3 plaque geome-
try to validate our modeling method. Details are
given below.

2.1 In vivo Serial MRI Data Acquisition

Serial MRI data from one patient was provided
by the University of Washington (UW) group us-
ing protocols approved by the University of Wash-
ington Institutional Review Board with informed
consent obtained. Scan time intervals were about
18 months, subject to scheduling variations. MRI
scans were conducted on a GE SIGNA 1.5-T
whole body scanner using an established proto-
col outlined in the papers by Yuan and Kerwin et
al. [Kerwin, Hooker, Spilker, Vicini, Ferguson,
Hatsukami, and Yuan (2003); Yuan and Kerwin
(2004)]. Upon completion of a review, an exten-
sive report was generated and segmented contour
lines for different plaque components for each
slice were sent to Tang’s group for model con-
struction and further computational mechanical
analysis. Details of the model construction pro-
cess can be found from [Yang et al. (2007); Tang
et al. (2008)]. Figure 1 shows 5 (selected from
12) MRI slices with 5 different weightings ob-
tained from a human carotid plaque sample. Fig-
ure 2 gives the re-constructed 3D geometries of
the plaque at three time points showing plaque
progression. Figure 3 gives three-time point seg-
mented contour plots of 5 selected slices. These
slices were used for model construction, quantifi-
cation of growth function, and validation of sim-
ulated plaque progressions.

2.2 The structure model

Since there was insufficient data to quantify indi-
vidual plaque component growth, the plaque was
treated as a uniform material, which was assumed
to be hyperelastic, isotropic, incompressible and
homogeneous. The governing equations and cor-
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Figure 1: Selected multi-weighting MRI slices (5
of 12 slices) of carotid plaque from a participat-
ing patient. Multi-weighting MRI techniques can
better differentiate plaque components and pro-
vide more accurate plaque vulnerability assess-
ments [Yuan and Kerwin (2004)].

responding initial and boundary conditions are
given below [Fung (1994)]:

ρui,tt = σi j, j, i, j = 1,2; sum over j, (1)

εi j = (ui, j +u j,i)/2, i, j = 1,2,3, (2)

σi j ·n j|out_wall = 0, (3)

σi j ·n j|Γ = pin(t)|Γ, (4)

ui|t=0 = ui0, (5)

ui,t |t=0 = u̇i0 (6)

where ρ is material density, u = (u1, u2) is the
displacement vector, σ is stress tensor, ε is strain
tensor, Pin is the specified lumen pressure, Γ is
vessel inner boundary, f •, j stands for derivative
of f with respect to the jth variable.

Using a linear model, the strain-stress relationship
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(a) T1, Front (c) T2, Front (e) T3, Front

(b) T1, Back (d) T2, Back (f) T3, Back

Figure 2: Re-constructed 3D geometry of a
carotid plaque based on in vivo serial MRI data.
Three time point data are shown. T1, T2 and T3 re-
fer to time points from here on, unless otherwise
indicated. T1 −T2: 525 days; T2 −T3: 651 days.
Red – lumen; Cyan- outer wall; Yellow - necrotic
core; Fresh red - hemorrhage in necrotic core);
Purple - loose matrix; Dark blue – calcification;
Green - fibrous cap.

(b) Time 2 
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(c) Time 3 
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Figure 3: Segmented contour plots using CAS-
CADE showing plaque components and plaque
progression. 5 slices were selected with the bifur-
cation serving as the registration point. Data from
three time points are shown. Red – lipid; blue –
calcification (Ca).
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⎠
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where E0 is the Young’s Modulus, μ0 is the Pois-
son ratio, C1, C2, and C3 are coefficients defined
by (8) for convenience. Substituting (2) and (7)-
(8) into (1), we have the displacement equations
in scalar form:

ρ
∂ 2u1

∂ t2 = C1
∂ 2u1

∂x2
1

+C3
∂ 2u1

∂x2
2

+(C2 +C3)
∂ 2u2

∂x1x2
,

(9)

ρ
∂ 2u2

∂ t2 = C3
∂ 2u2

∂x2
1

+C1
∂ 2u2

∂x2
2

+(C2 +C3)
∂ 2u1

∂x1x2
,

(10)

The boundary conditions are:

C1n1
∂u1

∂x1
+C2n1

∂u2

∂x2
+C3n2

(
∂u1

∂x2
+

∂u2

∂x1

)
= t1,

(11)

C2n2
∂u1

∂x1
+C1n2

∂u2

∂x2
+C3n1

(
∂u1

∂x2
+

∂u2

∂x1

)
= t2,

(12)

where (n1, n2) is the normal direction of the
boundary and (t1, t2) = (Pinn1,Pinn2) is the fluid
force applied at the inner boundary (lumen), and
the outer boundary is treated as a free boundary,
with (t1, t2) = 0.

2.3 The meshless GFD method

The advantage of MGFD method is that general-
ized finite difference schemes can be derived us-
ing arbitrarily distributed points (see Fig. 4). With
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MGFD, we will be able to use denser nodal point
distributions where plaque has higher stress/strain
concentration or critical morphological features.
We will also be able to adjust, move, add or drop
nodal points as needed. This leads to the de-
sired flexibility in handling the complex geome-
try and plaque growth where not only the geome-
try changes, the total plaque area (volume if 3D)
also changes. The GFD concept is explained by
the following example. Fig. 4(a) gives a selected
nodal point Pi, its round support and all surround-
ing points Zj, j = 1, . . .,Ni, which are used to de-
rive the GFD scheme.

To derive the second order GFD schemes for the
first and second order derivatives of the unknown
function f (x1,x2), we use the Taylor expansion of
f at Pi. Omitting higher order terms, we have,

f j = fi +h j
∂ f
∂x1

∣∣∣∣
i
+k j

∂ f
∂x2

∣∣∣∣
i
+

h2
j

2
∂ 2 f

∂x2
1

∣∣∣∣
i

+h jk j
∂ 2 f

∂x1x2

∣∣∣∣
i
+

k2
j

2
∂ 2 f

∂x2
2

∣∣∣∣
i

+o(h2
j +k2

j ) (13)

where the subscript i indicates the selected node
Pi at which derivative GFD schemes are being de-
rived, j = 1 . . .Ni are the other nodes in the Ni-
node-star of Pi, f j is the function value at Zj, Zj
are the neighboring points of Pi within the sup-
port, h j = x1 j − x1i,k j = x2 j − x2i. Ignore the
higher order terms in (13), we have:

⎛
⎜⎜⎝
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1
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1
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...
...

...
...

...
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⎞
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⎛
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∂x1
∂ f
∂x2
∂2 f
∂x2

1
∂2 f

∂x1x2
∂2 f
∂x2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

i

=

⎛
⎜⎝

f1 − fi
...

fNi − fi

⎞
⎟⎠ (14)

Rewrite (14) as A�f =�g, and use the least-squares
method to get the formula for �f :

�f = (ATWA)−1ATW�g (15)

Pi
Z1

Z2
Z3 Z4 Z5

Z6 Z8
Z7

Z9

Z10
Z12

Z13Z11
Z14

Z15Z14 Z16 

x1

x2

(a) A Nodal-Star with Round Support 

(b) Nodal Points for Slice 4,
     Time 2. 

(c) Nodal Points for Slice 4,  
     Time 2, with Components. 

Lipid

Ca

Figure 4: Meshless GFD scheme derivation and
nodal point distributions. (a) A schematic plot il-
lustrating the derivation process of meshless GFD
schemes with round support; (b)-(c) Nodal points
distributions on Slice 4, Time 2, with and without
plaque components.

where W is the weight matrix with

W =

⎛
⎜⎝

w1 0
. . .

0 wNi

⎞
⎟⎠ wj =

1

(h2
j +k2

j )

j = 1,2, . . .Ni, (16)

Let

B = (bkl)5×Ni = (ATWA)−1ATW



100 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.95-107, 2008

we have,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ f
∂x1
∂ f
∂x2
∂2 f
∂x2

1
∂2 f

∂x1x2
∂2 f
∂x2

2

⎞
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i

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ni
∑
j=1

b1 j( f j − fi)

ni
∑
j=1

b2 j( f j − fi)

ni
∑
j=1

b3 j( f j − fi)

ni
∑
j=1

b4 j( f j − fi)

ni
∑
j=1

b5 j( f j − fi)

⎞
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(17)

Substituting (17) into (9)-(10), we get the dis-
crete approximation for inner nodes. For bound-
ary nodes, we do a similar work using 1st order
GFDM method. That is:

f j = fi +h j
∂ f
∂x1

∣∣∣∣
i
+k j

∂ f
∂x2

∣∣∣∣
i
+o(h j +k j) (18)

⎛
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h1 k1
...

...
hNi kNi

⎞
⎟⎠ ·
(

∂ f
∂x1
∂ f
∂x2

)
i

=

⎛
⎜⎝

f1− fi
...

fNi − fi

⎞
⎟⎠ (19)

(
∂ f
∂x1
∂ f
∂x2

)∣∣∣∣∣
i

=

⎛
⎜⎜⎝

ni
∑
j=1

b1 j( f j − fi)

ni
∑
j=1

b2 j( f j − fi)

⎞
⎟⎟⎠ (20)

Substituting (20) into (11)-(12), we get the dis-
crete approximation for boundary nodes. Sec-
ond order scheme for boundary nodes were also
tested. However, it did not give good result. One
order lower schemes for boundary nodes are com-
mon in computational schemes.

Time derivatives are discretized using the 2nd or-
der center difference scheme:

∂ 2 f
∂ t2 =

f n+1 −2 f n + f n−1

Δt2 +O(Δt2), (21)

Assembling all the discretized equations and
boundary conditions, we get the final linear sys-
tem:

K�u = �f , (22)

The vector

�u =
(
�u1

�u2

)

is the displacement solution at time step (n+1).
Equation (22) is solved by a sparse solver under
Matlab environment.

2.4 The shrink-pressurize process and MGFD
model validation

When constructing in vivo MRI-based plaque
models, a shrink-pressurize process needs to be
used to (a) shrink the original in vivo MRI ge-
ometry to get the numerical starting geometry
with zero lumen pressure and then (b) pressur-
ize the reduced starting geometry to recover the
original in vivo geometry with specified lumen
pressure. Using Slice 4 (S4) at Time 2 (T2) as
an example, Fig. 5 shows its original in vivo
MRI geometry, the numerical starting geometry
with 16.75% inner boundary shrinkage and 6.5%
outer-boundary shrinkage, and the pressurized
geometry obtained by solving the GFD plaque
model. The outer boundary was reduced less so
that the conservation law of mass (area for 2D
models) is enforced. Young’s modulus was set at
E0=2.3×106 dyn/cm2, based on our experimental
data [Kobayashi, Tsunoda, Fukuzawa, Morikawa,
Tang, Ku (2003); Tang et al. (2008); Tang, Yang,
Zheng, Woodard, Saffitz, Petruccelli, Sicard and
Yuan (2005)] and current literature [Fung (1993);
Humphrey (2002)]. Patient-specific pressure =
136 mmHg (by arm) was used as the lumen pres-
sure.

A commercial finite element software package
ADINA (ADINA R & D, Inc., Watertown, MA)
was used to validate our MGFD model. ADINA
has been validated by hundreds of realistic en-
gineering and real life applications and is well
accepted in the industry and research communi-
ties [Bathe (1996); Bathe (2002)]. We have been
using ADINA in the past 10 years to construct
and solve 2D/3D artery models which were val-
idated by experimental measurements [Tang et al.
(2005,2008)]. A finite element ADINA model
was constructed using S4 geometry and follow-
ing the same procedures using in [Tang et al.
(2005)]. Figure 6 compares maximum principal
stress (Stress-P1) from MGFD and ADINA mod-
els and shows that results from both models had
very good agreement (error < 3%).
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a) Original MRI Geometry (b) Numerical Starting 
      Geometry 

c) In vivo MRI Compared   
   with Starting Geometry 

(d) In vivo MRI Compared    
     with Pressurized Geometry

Figure 5: Comparison of (a) original in vivo MRI
plaque geometry with (b) numerical starting ge-
ometry, inner boundary shrinkage, 16.75%, outer-
boundary shrinkage 6.5%, and (d) the pressurized
geometry obtained by solving the GFD plaque
model, Slice 4 at T2 was used.

(a) Stress-P1 by GFD 

Δ Δ

* *

Max=108.6 
KPa

Max=105.2 
KPa

Min=0.00 KPa 

Min           Universal Scale            Max   

(b) Stress-P1 by ADINA 

Figure 6: Comparison of maximum principal
stress (Stress-P1) by MGFD and ADINA for
model validation.

3 Plaque growth function and progression
simulation

With the MGFD model validated, we can use
it to derive plaque growth function and simulate
plaque progression.

3.1 A piecewise equal-step method to define
wall thickness

Vessel wall thickness was selected as the measure
for plaque progression. In our previous paper, the
“shortest distance” method was used to determine
vessel thickness, i.e., for a selected nodal point on
the inner boundary (lumen), the shortest distance
between that point and the out-boundary was de-
fined at the vessel thickness at that lumen point.
That led to uneven selection of nodal points from
the out boundary as shown by Fig. 7(a). A piece-
wise equal-step method is introduced to fix the
problem. The vessel is divided into several pieces
(segments) according to its geometry (4 in the S4
case). For each piece, equal step is used for in-
ner and outer boundaries respectively to choose
equal number of nodal points. The corresponding
points on the inner and out boundaries are paired
and the distance between the paired points are de-
fined as vessel wall thickness at the given lumen
point (Fig. 7). This method is sufficient for the
cases covered in this paper.

(b) Piecewise Equal-Step 
      Method  

(a) Shortest Distance
      Method  

Figure 7: Piecewise equal-step method for deter-
mination of vessel wall thickness. Slice 4 at T2
is used for demonstration. The vessel wall was
divided into 4 segments. 25 points were equally
distributed on each segment.

3.2 Quantifying plaque growth function
(PGF) using serial MRI data

Plaque growth function (PGF) is a function we
use to determine the vessel wall thickness or nodal
point displacement for every numerical time step
based on current and past plaque geometry and
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mechanical conditions. The following assump-
tions were made when deriving the plaque growth
functions:

a) Plaque growth depends on local plaque mor-
phological and mechanical conditions;

b) For simplicity, a single-point correspondence
approach is used, i.e., plaque growth at a given
nodal point is determined by information from
the past and current time steps at the same
point. In reality, influence from neighboring
points should already be factored in by the
plaque growth at the chosen nodal point;

c) The first order time derivatives of the vessel
wall thickness and stress conditions (which are
functions of time, for every nodal point under
consideration) should be included in PGF;

d) The information at most current time step is
most directly related to plaque growth in the
nearest “future”.

Two different plaque growth function forms were
used in our derivation and simulation process.

Three-time-point function. Data from three time
steps T1, T2 and T3 are used to fit wall thickness or
displacement at T3. The fitting function is:

fT3− f it(i) = ai ∗ fT2(i)+bi ∗ d f
dt

∣∣∣∣
T2

(i)

+ci ∗σT2(i)+di ∗ dσ
dt

∣∣∣∣
T2

(i) (23)

where f is the wall-thickness or displacement
function, i is the nodal point numbering index
(100 points were chosen from the inner bound-
ary), σ is the Stress-P1 function, ai, bi, ci, and
di are coefficients determined by the least squares
method to fit T3 wall thickness or displacement
data, and the time derivatives are calculated by

dg
dt

∣∣∣∣
T2

(i) =

w∗ gT3(i)−gT2(i)
T3 −T2

+(1−w)∗ gT2(i)−gT1(i)
T2 −T1

(24)

where g can be either f or σ , w is a weight func-
tion to be adjusted for better agreement when the
growth function is used in progression simula-
tion. When the growth function (23) is used in
the plaque progression simulation code to adjust
the inner and outer boundary at each numerical
time step, the time derivatives are evaluated with
T3 replaced by the “current” time corresponding
to the numerical step:

dg
dt

∣∣∣∣
tn

(i) =

w∗ gtn(i)−gT2(i)
tn−T2

+(1−w)∗ gT2(i)−gT1(i)
T2 −T1

(25)

where tn indicates the current time in the numeri-
cal simulation.

Two-time-point function Data from two time
steps T1 and T2 are used to fit wall thickness or dis-
placement at T2. The fitting function is the same
as that given by (23) except that the derivatives
are calculated using two time points by:

dg
dt

∣∣∣∣
T2

(i) =
gT2(i)−gT1(i)

T2−T1
. (26)

In the simulation code, (25) will be used to calcu-
late time derivatives, the same way as it is done for
the three-point growth function. So the main dif-
ference between the three-point formula and the
two-point formula is that the coefficients ai, bi, ci,
and di are determined using different time (two
or three) data points. The formulas for the two
growth functions in the simulation code are al-
most the same.

3.3 Plaque progression simulation

Using S4 at T2 and the plaque growth function de-
termined in 3.2, the following procedure is used
to simulate plaque progression:

Step 1. Start from the original in vivo MRI ge-
ometry (S4 at T2), use proper shrinkage to
get the zero-pressure numerical starting ge-
ometry;

Step 2. Discretize the geometry using the mesh-
less GFD method, solve the model to get
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plaque geometry and stress/strain distribu-
tions under specified pressure conditions;

Step 3. Use the growth function to determine the
plaque geometry for next numerical time
step by adjusting the nodal points on inner
and outer boundaries;

Step 4. Adjust internal nodal points as needed;

Step 5. Solve the plaque model using the updated
plaque geometry;

Step 6. Repeat Steps 3-5 till numerical time
reaches T3 (MRI scan time).

Results obtained from the simulation code are
presented in next section.

4 Results

Slice 4 was used as the sample to demonstrate the
simulation process. The procedure described in
3.3 was followed. Fig. 8 gives the starting, tar-
get and three simulated geometries, showing good
agreement between simulated and actual plaque
progression. Define the absolute and relative er-
rors as:

Absolute Error =

∑(|WT _num(i)−WT _T 3(i)|)
100

, (27)

Relative Error =

∑ [(|WT _num(i)−WT _T 3(i)|)/(WT _T 3(i)|]
100

,

(28)

where 100=total number of nodal points selected
from inner boundary, we have:

Absolute Error = 0.0126cm, (29)

Relative Error = 4.52%, (30)

for the case simulated (S4, 3-point formula).

Figure 9 gives the simulated plaque geometries at
Days 220, 440, and 651 (ending time, T3) using

(a) S4 at T2 under  
     136 mmHg 

(b) S4 at T3 under  
     136 mmHg 

(c) Overlapping 
     (a) and (b) 

(d) Simulated S4 at  
     Day 220 (blue). 

(e) Simulated S4 at  
     Day 400 (blue). 

(f) Simulated S4 at 
     Day 651 (T3). 

Figure 8: Simulated plaque growth has good
agreement with MRI data (error = 4.52%). Pro-
gression code starting time: T2; ending time: T3.
S4 was used as the sample slice. The three-point
growth function was used. S4 geometry at T3 de-
termined from MRI data was used as the bench-
mark data for validation. Lumen pressure: 136
mmHg. T2 −T3 time span was 651 days.

the two-point growth function (26). The errors
are:

Absolute Error = 0.0329cm, (31)

Relative Error = 11.4%, (32)

It is clear that the three-point growth function
gave more accurate predictions.

(a) Simulated S4 at  
     Day 220 (blue). 

(b) Simulated S4 at  
     Day 440 (blue). 

(c) Simulated S4 at 
     Day 651 (T3).

Figure 9: Simulated plaque geometries at three
numerical time steps showing the prediction accu-
racy (error = 11.4%) using the two-point growth
function was not as good as that from the three-
point growth function.

Simulations were also conducted for S2, S3 and
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S5. Results from S3 were similar to that of S4. S2
and S5 did not give good results because the orig-
inal MRI geometries differ too drastically from T1

to T2 and from T2 to T3 and no clear trend could
be quantified.

5 Discussion

5.1 The computational approach

It is well-known that atherosclerotic plaque pro-
gression is a multi-faceted process involving not
only mechanical factors, but also plaque type,
component size and location, cell activities, blood
conditions such as cholesterol level, diabetes,
changes caused by medication such as statin, and
other chemical conditions, inflammation and lu-
men surface condition. Investigations and find-
ings from all the channels, modalities and disci-
plines could be integrated together to obtain bet-
ter and more thorough understanding of the com-
plicated atherosclerotic progression process. In
stead of trying to identify the individual factors
which contribute to plaque growth, our computa-
tional simulation approach takes the actual multi-
year plaque progression data to simulate future
growth, based on the assumptions that the trend
that led to the current state would continue into
the future. In other words, the trend would con-
tinue; the governing mechanisms (whether we
know them or not) would remain the same; the
contributing factors would continue to contribute
the same way as they did in the past, with the
changes taken into consideration by the terms in-
cluded in the growth function.

Our results from the 4 slices simulated indicated
that our model worked well when the trend from
T2 to T3 was more or less similar to that from T1

and T2. And the model did not work very well
when T2 geometry seemed to be “out of place”
between T1 and T3. Our model was applicable to
50% of the cases considered.

5.2 Model limitations

Clearly the current model is very limited and
serves as initial demonstrations of the MGFD
method and the potential significant contributions
from the progression simulation model. The

model needs to be extended to 3D. And the
growth functions need to be adjusted to include
the proper terms that can represent the plaque
growth trend. Better understanding of the biolog-
ical and mechanical factors will help us to better
formulate the growth function. Fluid forces and
blood conditions (cholesterol, lipid lowering med-
ication factor) can be included for better accuracy
of predictions.

5.3 Progression simulation and plaque vulner-
ability assessment

The long term goal of the current study is that
patient-specific quantitative plaque growth func-
tions can be determined based on multiple an-
nual MRI scans and used to simulate plaque pro-
gression. “Future” plaque vulnerability can be
assessed based on predicted future plaque mor-
phologies by the progression simulation models.
We are adding the “time dimension” into plaque
assessment technology to improve the predicting
power and accuracy. If our studies are success-
ful, annual MRI scans would be recommended to
patients who are in their early-to-middle stages of
atherosclerosis. Simulated plaque growth would
be generated for their early diagnosis and proper
treatment for prevention of serious or even fatal
clinical cardiovascular events.

6 Conclusion

We believe that this is the first time that hu-
man carotid atherosclerotic plaque progression
was simulated based on patient-specific plaque
morphology and point-wise plaque growth func-
tions derived from multi-year MRI data. Our re-
sults indicated that our proposed progression sim-
ulation process was able to accurately predict fu-
ture plaque morphology if the current progression
trend was continued. The meshless GFD method
worked well for the progression model. The pre-
dicted progression by the three-time-point growth
function was considerably more accurate than that
given by the two-time-point (4.52% vs. 11.4%).
The current 2D model can be extended to 3D
model with more terms added to the growth func-
tions for better predictions. More case studies are
needed to validate our findings. Accurate plaque
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progression simulation adds the time dimension
to plaque vulnerability assessment strategies and
should improve our predicting accuracies.
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