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Sensitivity of the Acoustic Scattering Problem in Prolate Spheroidal
Geometry with Respect to Wavenumber and Shape
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Abstract: The sensitivity of analytical solu-
tions of the direct acoustic scattering problem
in prolate spheroidal geometry on the wavenum-
ber and shape, is extensively investigated in this
work. Using the well known Vekua transfor-
mation and the complete set of radiating “out-
wards” eigensolutions of the Helmholtz equa-
tion, introduced in our previous work ([Charalam-
bopoulos and Dassios (2002)],[Gergidis, Kourou-
nis, Mavratzas, and Charalambopoulos (2007)]),
the scattered field is expanded in terms of it, de-
touring so the standard spheroidal wave functions
along with their inherent numerical deficiencies.
An approach is employed for the determination
of the expansion coefficients, which is optimal in
the sense, that minimizes the L2 norm of the error
related to the satisfaction of the boundary condi-
tion on the surface of the scatterer. The study of
the conditioning of the matrices involved in the
linear systems, the solution of which provides the
expansion coefficients, reveals the need for impli-
cation of numerical implementations using arbi-
trary precision arithmetics. Numerical and con-
vergence properties estimations such as condition
numbers, L2 and L∞ error norms prove the robust-
ness of the adopted methodology. A study of the
dependence of the error with respect to geomet-
rical, physical and numerical parameters is de-
veloped. Three dimensional representation of the
L2 norm clarifies the distribution of errors on the
scatterer’s surface.
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1 Introduction

The investigation of the scattering problem in
spheroidal geometry has attracted the scientific
interest for several decades. This is of course due
to the simplicity and the important property of the
spheroidal system to fit quite accurately to sev-
eral geometrical configurations, lacking symme-
try only in one Cartesian direction and simulating
successfully a large variety of inclusions or inho-
mogeneities participating in scattering processes.
A lot of effort has been devoted especially in the
realm of time harmonic acoustics to study the di-
rect scattering problem by spheroids. The adopted
methodology depends crucially on the frequency
range under consideration.

In the resonance region, the most popular ap-
proaches employ either separation of variables or
T-matrix methods [Waterman (1969)],[He, Xie,
and Ye (1997)],[Varadan and Varadan (1982)],
[Hackman (1984)]. In the vast majority of these
approaches, the well known spheroidal wave
functions dominate, which emerge via the spec-
tral analysis of Helmholtz equation in spheroidal
coordinates. These functions are constructed via a
necessary intermediate numerical scheme, which
becomes cumbersome and extremely complicated
for spheroids with large focal distances and small
semi axes ratio. In addition, the spheroidal
wave functions are defined via infinite expan-
sions in terms of basis functions of separable form
and the convergence becomes poor in the up-
per limit of the resonance region and even worse
in the high frequency realm. Particularly for
high frequencies, the only practical recourse is
to resort to asymptotic methods (e.g. ray trac-
ing). These methods, on the other hand, are not
error-controllable since they solve an approximate
model instead of the original equations (e.g. the
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eikonal equation instead of the Helmholtz equa-
tion itself). The adoption of resonance tech-
niques in the high frequency regime, in cases that
this is realizable, increases severely the compu-
tational resources. For instance, the Mie theory
for acoustic scattering from a sphere of radius
a, predicts that the number of summation terms,
is proportional to k2a + c(ka)1/3 + b2 (k is the
wavenumber and c,b suitable constants) as the
frequency becomes higher [Wang, Wu, He, and
L.Li (2005)]. This is the reason why traditionally,
the Sommerfeld-Watson transformation is used to
change the summation into a residue series.

It is prominent so, that there are several numeri-
cal difficulties inherent to the solution of the scat-
tering problem using analytical methods, strongly
depended on the geometrical features of the scat-
terer and the imposed frequency (or equivalently
the induced wave number). Apart from the in-
trinsic numerical difficulty in the determination
of the spheroidal wave functions, the standard
methodology of expanding the scattered field in
terms of the aforementioned basis leads to ex-
tremely ill-conditioned matrices, involved in the
linear systems derived by the boundary condi-
tion satisfaction. It is widely recognized [Bai-
ley (2004)], [Borwein and Bailey (2004)], that
the 64-bit and 80-bit IEEE floating point arith-
metic formats, currently provided and utilized
in most computer systems, are inadequate for
the inversion of ill-conditioned matrices of this
type [Trefethen and Bau (1997)]. In addition, in
acoustics, there exist problems in which we need
extremely accurate values for the estimation of
the acoustic field. More precisely, we are fre-
quently interested in sound pressure level predic-
tions (SPL). The SPL factor is given by SPL =
20log10(|u(x)|/√2ure f ) where ure f is the usual
reference pressure and |u(x)| the amplitude of the
acoustic field. [Chandler-Wilde (2007)]. So the
accurate prediction of SPL requires small relative
errors in the computations of |u|. In fact, we need
very small absolute errors at points x where |u(x)|
is small. Such regions play a very important role
in acoustics. For example, someone may be inter-
ested in accurate predictions in the shadow zone
if he calculates the shielding performance of a

noise barrier. Thus very reliable numerical meth-
ods are of interest for a variety of acoustic appli-
cations such as Finite Elements, Boundary Ele-
ments [Agnantiaris and Polyzos (2003)], [Callsen,
von Estorff, and Zaleski (2004)] [Qian, Han, and
Atluri (2004)], [Qian, Han, Ufimtsev, and Atluri
(2004)], [Tsai, Lin, Young, and Atluri (2006)],
[Chen, Fu, and Zhang (2007) and Method of Mo-
ments [Chandrasekhar and Rao (2007)] .

In our previous work ([Gergidis, Kourounis,
Mavratzas, and Charalambopoulos (2007)]), we
introduced a new theoretical setting inspired by
a novel concept [Charalambopoulos and Das-
sios (2002)] where the Vekua transformation is
adopted [Vekua (1942)],[Vekua (1967)], [Vekua
(1945)] in order to construct Helmholtz equation
solutions by transforming appropriately the well
known spheroidal harmonic functions. This set-
ting detours the standard spheroidal wave func-
tions avoiding so, all the involved therein in-
trinsic numerical deficiencies and truncation er-
rors. In the present work, we extend the nu-
merical investigation of the acoustic scattering
problem from spheroidal scatterers, introduced
in [Gergidis, Kourounis, Mavratzas, and Char-
alambopoulos (2007)] towards the high frequency
regime.

In Section 2 we present the necessary theoret-
ical outcome, taken from [Gergidis, Kourounis,
Mavratzas, and Charalambopoulos (2007)]. We
also provide additional theoretical arguments and
justifications regarding the completeness of the
constructed solution set. The scattered field em-
anating due to the interference of a plane acoustic
wave with an impenetrable soft spheroidal scat-
terer is represented as an expansion in terms of
the elements of the Vekua basis. This infinite
expansion is truncated and forced to satisfy the
boundary condition on the scatterer’s surface. For
the determination of the expansion coefficients we
follow the L2 error norm minimization methodol-
ogy [Gergidis, Kourounis, Mavratzas, and Char-
alambopoulos (2007)] which has been proven
very robust and reliable in the low frequency
regime even for very elongated spheroidal bod-
ies. The numerical investigation of the system, the
solution of which furnishes the truncated expan-
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sion coefficients and its conditioning is presented
in Section 3. There we also present an extensive
convergence analysis of our approach in terms of
truncation level, geometry and wavenumber. Ad-
ditionally we provide the global dependence of
the L2 norm of the error as a function of the afore-
mentioned three parameters. The cornerstone of
the numerical implementation is arbitrary preci-
sion facilities, [Bailey (2004),Bailey, Yozo, Li,
and Thompson (2002),Wolfram Research (2004)]
an indispensable tool for several scientific ar-
eas, such as Experimental Mathematics, Climate
Modeling [Borwein and Bailey (2004)], Com-
putational Geometry [Shewchuk (1997)] among
many others, which in our case allows the solu-
tion of the encountered linear systems. Finally
the main outcome of the direct scattering problem,
i.e. the far field pattern, is constructed and appro-
priately visualized for indicative wave numbers
ranging from the low frequency region, resonance
region to the dawn of high frequency asymptotics.

It is worthwhile to notice here that relevant scat-
tering problems involving penetrable spheroidal
scatterers hosting (or not) spheroidal inclusions
of arbitrary orientation are under current investi-
gation in the framework of the present approach.
It is also interesting to mention that the adop-
tion of the new basis in combination with the L2

norm minimization of the error on the interfaces
has been proven to be an efficient combined tech-
nique, extending successfully the range of appli-
cability of analytical methods in simple or multi-
ple scattering problems.

2 Theoretical formulation

In [Vekua (1942, 1967)] one can find a very
interesting one-to-one transformation connecting
the solutions of Laplace and Helmholtz equations
with regular behavior near the origin, for arbitrary
space dimensions.

This connection of solution spaces gives birth to
the concept of solving a dynamic interior bound-
ary value problem involving the Helmholtz equa-
tion, by transforming, through the Vekua map-
ping, the solution of the corresponding static
problem referring to the Laplace operator.

In spheroidal geometry, the aforementioned
framework leads to the construction of interior dy-
namic solutions [Charalambopoulos and Dassios
(2002)] constituting a basis of Helmholtz operator
∇2 +k2 and having the following representation

unm(r) =
[ n

2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ(n−2p+
3
2
)

×
J(n−2p+ 1

2 )(kr)

( kr
2 )n−2p+1/2

Pm
n−2p−2l(coshμ)

×Pm
n−2p−2l(cosθ )eimφ n = 0,1,2, . . .; |m| ≤ n.

(1)

The spheroidal coordinates (μ ,θ ,φ ) are con-
nected with the Cartesian ones through the coor-
dinate transformations⎧⎨
⎩

x = α
2 sinhμ sinθcosφ 0 ≤ μ < ∞

y = α
2 sinhμ sinθ sinφ 0 ≤ θ ≤ π

z = α
2 coshμ cosθ 0 ≤ φ < 2π

⎫⎬
⎭ (2)

where α stands for the focal distance. The coef-
ficients Bn,m,p,l have specific values, the symbol Γ
stands for the well known Gamma function while
the Bessel function Jn−2p+1/2 of the "dimension-
less" radial distance, plays crucial role for the reg-
ularity of solutions in the vicinity of the origin.

In [Gergidis, Kourounis, Mavratzas, and Char-
alambopoulos (2007)], the authors extend the pre-
vious results to exterior dynamic problems de-
scribing scattering processes. The exterior solu-
tions obtain the form

ûnm(r) =
[ n

2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ(n−2p+
3
2
)

× 2√
π

h(1)
n−2p(kr)

( kr
2 )n−2p

×Pm
n−2p−2l(coshμ)Pm

n−2p−2l(cosθ )eimφ ,

n = 0,1,2, . . .; |m| ≤ n.

(3)

where the spherical Hankel function h(1)
n−2p has re-

placed the Bessel one and incorporates the out-
going propagating behavior of Helmholtz equa-
tion scattered solutions. In this section we restrict
ourselves to give explicitly the proof for the com-
pleteness of the set (3). All the other theoretical
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ingredients of the method appear in the aforemen-
tioned work.

We remark first that ûnm = unm +iũnm where ũnm is
constructed with the Bessel function of first kind
in Eq.(3) replaced by the corresponding Neumann
function. Let u be an arbitrary outwards radiating
solution of the Helmholtz equation. Its regular
part Regu can be expanded in terms of the com-
plete set unm (in the space of regular Helmholtz
equation solutions) as

Regu = ∑
n,m

γnmunm. (4)

We define

w = ∑
n,m

γnmûnm = Regu+ i ∑
n,m

γnmũnm. (5)

The function u− w satisfies Helmholtz equation
and the Sommerfeld radiation condition, while
disposing zero regular part. Then

u−w =
eikr

r
g(θ ,φ )+O

(
1
r2

)
, r→ ∞, (6)

where g(θ ,φ ) is the scattering amplitude of the
radiating field. Remark that

Reg(u−w) = i
sin(kr)

r
g(θ ,φ )+O

(
1
r2

)
(7)

and then g(θ ,φ ) vanishes. Invoking of Relich’s
lemma leads to the result that u−w vanishes in
the whole exterior domain. Thus u = ∑n,m γnmûnm,
establishing completeness.

The above analysis settles the background to de-
velop the corresponding scattering problem. We
consider a prolate spheroidal acoustically impen-
etrable scatterer occupying a specific region in R3,
defined by the scatterer’s surface S, represented
by the spheroidal surface

μ = μ0 (8)

The exterior region of the scatterer is denoted
by D and is characterized by the range μ > μ0,
0 ≤ θ ≤ π , 0 ≤ φ < 2π of spheroidal coordinates.
The scatterer is illuminated by a time harmonic
incident acoustic plane-wave, with frequency ω .

Suppressing the time dependence e−iωt in all the
physical quantities of the scattering process, the
incident field is represented by the time reduced
plane wave

uinc(r) = eik·r, r ∈ D (9)

where k = kk̂, k is the wavenumber of the pro-
cess and k̂ is the direction of the incident field.
The presence of the scatterer in the medium where
the wave propagates, gives rise to a secondary
acoustic field, the scattered one denoted by usc,
which satisfies exactly as the incident wave, the
Helmholtz equation. This field emanates from the
scatterer and radiates to infinity, satisfying uni-
formly over all directions, the well known Som-
merfeld radiation condition. The total field u(r) =
uinc(r) + usc(r) defined in D = D∪ S, obeys, on
scatterer’s surface, to a specific type of boundary
condition, depending on the special nature of the
scatterer. We focus on the soft scatterer case im-
plying that

u(r) = uinc(r)+usc(r) = 0, r ∈ S. (10)

We expand, the unknown scattered field in terms
of the aforementioned radiating basic solutions to
obtain

usc(r) =
∞

∑
n=0

n

∑
m=−n

Anmûnm(r), r ∈ D, (11)

where the coefficients Anm absorb the unknown
character of usc(r).

The representation (11) can be exploited to pro-
vide the far-field pattern, which determines the
behavior of the scattered field far-away from the
scatterer and constitutes usually the measured
quantity in direct scattering. The far-field region
is the region, where the angular field distribution
is essentially independent of distance from the
scatterer. If the scatterer has a maximum overall
dimension C, that is large compared to the wave-
length, the far-field region is commonly taken
to exist at distances greater than C2/λ from the
scatterer,λ being the wavelength. What is neces-
sary, is to investigate the asymptotic behavior (for
r→ ∞) of the eigensolutions ûnm(r). In the realm
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of large r>>1, we apply an extended, but straight-
forward asymptotic analysis of the special func-
tions involved in the definition formula of ûnm(r).
Then equation (11) obtains the asymptotic form

usc(r) =
eikr

kr
f∞(θ ,φ )+O

(
1
r2

)
, r → ∞ (12)

where the far-field pattern f∞(θ ,φ ) is given by

f∞(θ ,φ ) =
∞

∑
n=0

n

∑
m=−n

2√
π

e−i π
4 Anm

×
[ n

2 ]

∑
p=0

Bn,m,p,0Γ
(

n−2p+
3
2

)
e−i 1

2 (n−2p+ 1
2 )π

×
(

4
kα

)n−2p

× 22p−n[2(n−2p)]!
(n−2p)!(n−2p−m)!

Pm
n−2p(cosθ )e(imφ).

(13)

The satisfaction of the boundary condition (10)
leads to the determination of the expansion coef-
ficients appeared in (11) and hence to the solution
of the direct scattering problem.

3 Numerical Investigation and Implementa-
tion

The numerical implementation of our approach
involved both C++ and Mathematica software de-
veloping, for consistency checks. Both imple-
mentations relied heavily on arbitrary precision,
without which the range of the frequency of the
incident wave, the geometry and the truncation
level of the series that could be handled, would
be severely restricted. The need for arbitrary
precision motivated the use of general comput-
ing environments like Mathematica [Wolfram Re-
search (2004)] which incorporates arbitrary pre-
cision in a very natural way. The need for per-
formance and convenience motivated the develop-
ment of C++ software. Arbitrary precision arith-
metic in C++ was provided by ARPREC library
[Bailey, Yozo, Li, and Thompson (2002)]. The
implementations of special functions in C++ was
based on [Press, Teukolsky, Vetterling, and Flan-
nery (2002); Zhang and Jin (1996)] with the nec-
essary modifications and tunning to the working

precision. This involves recalculation of all the
usual parameters and mathematical constants en-
tering the definition of special functions to the de-
sired precision and appropriate modifications of
the source code of the special functions [Press,
Teukolsky, Vetterling, and Flannery (2002),Zhang
and Jin (1996),Wolfram Research (2004)] in order
to be evaluated to the sought precision. The re-
sults obtained by both C++ and Mathematica im-
plementations agreed to all but the last two-three
decimal digits in any desired precision.

3.1 Assembly and Solvability of the System

The most computationally demanding part of our
approach is the assembly of the linear system the
solution of which provides the expansion coeffi-
cients. This is because the L2 norm minimiza-
tion approach needs expensive 2D quadratures
and apart from that all the entries of the matrix
and right hand side vector involve special function
evaluations which has to converge to the working
precision. Moreover, the aforementioned systems
involve extremely ill-conditioned matrices with
condition numbers ranging from 1010 to 10160 and
more, as it will be demonstrated in the sequel.

The solution of the linear systems was provided
by Singular Value Decomposition (SVD) [Golub
and Loan (1996), Press, Teukolsky, Vetterling,
and Flannery (2002) which allows direct calcula-
tion of the condition number of the matrices in-
volved. As the most computationally intensive
part of our approach was the assembly of the lin-
ear system and not its solution, in contrast to clas-
sical numerical methods, computational overhead
associated with the specific choice of SVD over
the classical LU decomposition was negligible.

In the scattering process under investigation we
consider a spheroidal scatterer with large semi
axis whose reduced length is kept constant and
equal to one, while the small semi axis suitably
varies to give birth to several aspect ratios. The
excitation of the scattering mechanism has been
accomplished with a plane wave corresponding
to the wavenumber propagation vector k = kxx̂ +
kyŷ + kzẑ where kx = ky = kz, wavenumber incre-
ment δki = 0.5

√
3 and k ∈ {0.5

√
3−4

√
3} (all in

reduced units). We have selected to apply an in-
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cident wave field of this form to handle a rather
generic excitation case. This increases the com-
plexity of the numerical calculations involved,
compared with the one coordinate axis oriented
stimulation, but reveals the reliability and robust-
ness of the adopted methodology in the general
propagation case.

We should point out that the dimensionless prod-
uct of the incident wavenumber k and the charac-
teristic dimension of the prolate spheroid, taken
as the large semi axis C, is being expanded be-
yond low frequency kC � 1 or resonance region
kC 	 1. The range for the dimensionless product
is taken from kC = 0.5

√
3 to kC = 4

√
3 in all our

“computer” scattering “experiments”.

3.2 Condition Number

In Fig. 1 we plot the condition number of matrices
arising from adopted methodology, as a function
of the truncation level of the series N at various
wavenumbers for a semi axes ratio equal to 0.6.
It is evident that the condition number, is estab-
lished mainly by the truncation level of the series
while the role of the wavenumber of the incident
field is almost negligible especially for values be-
yond k = 0.5

√
3. The linear dependence of the

logarithm of the condition number κ(A) on the
truncation level N, presented in logarithmic scale
in Fig. 1, reveals that the growth of the condition
number with increasing N is clearly exponential.
On the contrary the dependence of the condition
number on the wavenumber k is hardly noticeable
as the wavenumber increases from k = 1

√
3 up to

k = 4
√

3.

In Fig. 2 we plot the condition number of the ma-
trices for a truncation level of the series N = 16 as
a function of the wavenumber k for several aspect-
ratios of the scatterer, ranging from aR = 0.6 to
aR = 0.9. For the low wavenumber region de-
fined in k ∈ [0.5

√
3 − 1.5

√
3] there is an expo-

nential decay with two different slopes in loga-
rithmic representation for k ∈ [0.5

√
3−1

√
3] and

from k ∈ [1
√

3− 1.5
√

3]. Surprisingly a plateau
value for the condition number is being estab-
lished for all the aspect ratios and the wavenum-
bers beyond k = 1.5

√
3. The conditioning of the

system strongly depends on the truncation of the
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Figure 1: Condition number as a function of N for
several k’s at aR = 0.6.

series and not the geometry under investigation or
the wavenumber of the incident wave.
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Figure 2: Condition number as a function of
wavenumber k for several aR’s at truncation level
N = 16.

Due to the fact that those linear systems are highly
ill-conditioned, the solution obtained by one back
substitution is extremely inaccurate for the level
of the working precision, as we can see in Table 1.
To adjust the solution to our working precision
we used iterative refinement [Golub and Loan
(1996), Press, Teukolsky, Vetterling, and Flan-
nery (2002)]. Error and residual bounds involved



Sensitivity of the Acoustic Scattering Problem 191

in iterative refinement procedure, are adjusted to
the working precision. Below, the desired preci-
sion was set to 170 decimal digits and the update
(‖dx‖2) and residual (‖r‖2) Euclidean norm toler-
ances were adjusted to 10−170 and 10−172 respec-
tively. As a rule of thumb the working precision

Table 1: Update and residual norms during itera-
tive refinement.

Iteration ‖dx‖2 ‖r‖2

1 1.213932e+14 7.060036e-60
2 5.556136e-18 9.824089e-127
3 7.734852e-85 3.159688e-133
4 2.130082e-164 3.159688e-133
5 1.831668e-166 3.159688e-133

should be tunned [Trefethen and Bau (1997)] to
log10 κ(A). It is evident that in the first step of it-
erative refinement the norm of the solution update
is still too large and five steps of iterative refine-
ment need to be performed in order to reduce the
Euclidean norm of the error to our working pre-
cision. The computational cost of iterative refine-
ment procedure is negligible compared to that of
the factorization of the matrix. This suggest that
iterative refinement is a cheap way of obtaining
highly accurate results when those are desirable.

3.3 Convergence Analysis

Our convergence study focuses on the treatment
of boundary condition satisfaction (10). The con-
vergence of the numerical solution to the solution
of the exact scattering problem, is guaranteed by
the establishment of the convergence of the error
of the boundary condition satisfaction due to the
well-posedness of the direct scattering problem.

In what follows we present an extensive study of
the convergence in L2 norm of the so constructed
error function defined as

‖εN‖L2(S) =
(∫

S
|εN(θ ,φ )|2 dS

) 1
2

,

εN(θ ,φ ) = (usc
N (r)+uinc(r))|r∈S =

N

∑
n=0

n

∑
m=−n

Anmûnm(μ0,θ ,φ )+eik·r(μ0,θ ,φ).

(14)

Computation of the integrals related to the
L2 norm was performed using Gauss-Legendre
quadrature [Press, Teukolsky, Vetterling, and
Flannery (2002)]. The number of the required
quadrature points was adjusted such that the L2

norm of the error converges to the fifth significant
digit. The way several parameters of our phys-
ical problem, like the aspect ratio of the prolate
spheroidal scatterer and the frequency of the in-
cident field influence convergence, is exposed in
the plots that follow. The convergence study is
supplemented with 3D plots of the distribution of
the real and imaginary parts of the error on the
scatterer’s surface. Figs. 3, 4, 5 and 6 plot
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Figure 3: ‖ε‖L2(S) as a function of
the truncation level N, aR = 0.6, k =
0.5
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of the incident wave, for each one of the scatterers
(aR = 0.6,0.7,0.8,0.9) under consideration. The
scale on the y axis is logarithmic.

Several interesting properties regarding the con-
vergence of our approach emerge from those
plots. First of all, we observe that in all the
cases, the convergence is clearly exponential. For
each scatterer, the error increases by increasing
wavenumber (consequently frequency), but the
convergence rate remains the same independently
of the frequency. This is a very nice property
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Figure 4: ‖ε‖L2(S) as a function of
the truncation level N, aR = 0.7, k =
0.5
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Figure 5: ‖ε‖L2(S) as a function of
the truncation level N, aR = 0.8, k =
0.5
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which suggests that incident waves of high fre-
quencies can be sufficiently handled by the cur-
rent approach, if the convergence rate for the spe-
cific scatterer is sufficiently high. We observe
however, that the convergence rate is strongly in-
fluenced by the aspect ratio of the spheroidal scat-
terer. The more elongated our spheroid becomes,
the slower the series convergences. In Fig. 7 we
plot again in logarithmic scale on the y axis the
‖εN‖L2(S) but now as a function of the wavenum-
ber k for the aspect ratios under consideration
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Figure 6: ‖ε‖L2(S) as a function of
the truncation level N, aR = 0.9, k =
0.5
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Figure 7: ‖ε‖L2 as a function of wavenumber for
various aspect ratios at truncation level 16.

aR ∈ {0.6,0.7,0.8,0.9} at N = 16. This plot re-
veals two important properties. As before conver-
gence rate clearly deteriorates with smaller aspect
ratios. The error exponentially increases with in-
creasing wavenumber k.

The error dependence on the truncation level of
the series N and on the aspect ratio aR as depicted
in Figs. 3, 4, 5, 6 and Fig. 7 allows a straight for-
ward regression analysis which will hopefully ex-
press in a closed form, the L2 norm of the error as
a function of the three parameters involved, which
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are the truncation level N, the aspect ratio aR and
the wavenumber k. This process is described be-
low and involves the following three steps.

At the first, the dependence of the logarithm of the
L2 norm of the error, which is clearly linear with
respect to the truncation level of the series N, is
expressed as

ln(‖ε‖L2(N,aR,k)) = C(aR,k)N +D(aR,k) (15)

where C(aR,k),D(aR,k) are functions depending
on the aspect ratio of the scatterer aR and the
wavenumber k. The values of C(aR,k),D(aR,k)
for different aspect ratios and for indicative
wavenumbers k are summarized in Table (2) as
they are obtained from regression analysis with
correlation coefficients 0.999. Having calculated

Table 2: C(aR,k) and D(aR,k)

aR k C(aR,k) D(aR,k)
0.60 0.5

√
3 -0.2023 -1.2552

1
√

3 -0.1981 -0.8257
2
√

3 -0.1920 -0.1828
3
√

3 -0.1856 0.3331
4
√

3 -0.1757 0.7056

0.70 0.5
√

3 -0.3299 -1.3274
1
√

3 -0.3234 -0.7779
2
√

3 -0.3096 0.0955
3
√

3 -0.2951 0.7540
4
√

3 -0.2809 1.2801

0.80 0.5
√

3 -0.5296 -1.3128
1
√

3 -0.5191 -0.5413
2
√

3 -0.4961 0.6951
3
√

3 -0.4696 1.5875
4
√

3 -0.4435 2.2968

0.90 0.5
√

3 -0.8822 -1.1351
1
√

3 -0.8658 0.1568
2
√

3 -0.8241 2.0133
3
√

3 -0.7745 3.3340
4
√

3 -0.7218 4.3189

the slope-regression coefficient C(aR,k) and the
intercept-regression constant D(aR,k) we proceed
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Figure 8: C(aR,k) as a function of wavenumber k
for various aspect ratios aR with the linear fit.

with the investigation of the dependence of slope
and intercept as functions of the wavenumber k.

The dependence of C(aR,k), as can be seen in
Fig. 8, is linear with respect to the wavenumber
k and can be expressed as

C(aR,k) = c1(aR)k +c2(aR), (16)

where c1(aR),c2(aR), depend only on the as-
pect ratio aR. Values of the regression analy-
sis for c1(aR) and c2(aR) are presented in Table
(3). Then we try to describe the dependence of

Table 3: c1(aR) and c2(aR)

aR c1(aR) c2(aR)
0.6 0.0042 -0.2060
0.7 0.0081 -0.3373
0.8 0.0143 -0.5435
0.9 0.0266 -0.9104

c1(aR),c2(aR) on the aspect ratio aR by the fol-
lowing formulas

ci(aR) = ci0 +ci1aR +ci2a2
R (i = 1,2), (17)

using the computed values in Table 3. The param-
eters which best describe that dependence, where
found to be c10 = 0.0742,c11 = −0.2429,c12 =
0.2108 with correlation coefficient 0.9987 and
R.M.S per cent 0.0477 and c20 = −2.0016,c21 =
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Figure 9: c1(aR) in conjunction with the fitting
function.
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Figure 10: c2(aR) in conjunction with the fitting
function.

6.5219,c22 = −5.8943 with correlation coeffi-
cient 0.9994 and R.M.S. per cent 0.0248. Plots of
the adjusted curves with the computed values for
c1(aR) and c2(aR) are presented in Figs. 9, 10. It
should be noted at this point, that every non-liner
curve fitting has been made by adjusting the toler-
ance to 10−5 with an iterative process consisting
of 500 iterative steps. We have followed a simi-
lar three step procedure for the decomposition of
D(aR,k) venturing to find the best fitting func-
tions. The intercept D(aR,k) plotted in Fig. 11,
was expressed as a function of wavenumber k by
the following formula

D(aR,k) = d1(aR)
√

k +d2(aR). (18)

The values of the non-linear curve fit are pre-
sented in Table 4. For the individual functions
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Figure 11: D(aR,k) for various aspect ratios aR

with the fitting function.
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Figure 12: d1(aR) (black) and fitting function (red
dashed).
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Figure 13: d2(aR) (black) and fitting function (red
dashed).
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d1(aR) and d2(aR) we use the following fitting for-
mulas

Table 4: Values of d1(aR), d2(aR),Correlation Co-
efficient (C.C.) Root Mean Square per cent of the
Error (R.M.S.)

aR d1(aR) d2(aR) C.C. R.M.S.
(%) error

0.6 1.1645 -2.3456 0.9998 0.0362
0.7 1.5464 -2.7846 0.9999 0.0215
0.8 2.1437 -3.3221 0.9998 0.0389
0.9 3.2320 -4.0927 0.9994 0.0330

di(aR) = di0 +di1aR +di2a2
R i = 1,2 (19)

with the fitted values of the parameters involved
being d10 = 6.6344,d11 = −19.6893,d12 =
17.6595 with correlation coefficient 0.9992 and
R.M.S per cent 0.0176 and d20 = −3.3617,d21 =
6.656,d22−8.2898 = with correlation coefficient
0.9997 and R.M.S. per cent 0.005. Figures 12, 13
are shown graphical representations of d1(aR) and
d2(aR).

Additionally we have calculated the L∞ norm de-
fined by

‖εN‖L∞(S) =
(

esssup
S
|εN |

)

= max
S

|εN|. (20)

In Figs. 14, 15, 16 and 17, we plot both the real
and imaginary parts of the error εN on the surface
of the scatterer for N = 16, wavenumber k = 4

√
3

and aspect ratios aR = 0.6 and aR = 0.9 corre-
spondingly. Those 3D plots provide a detailed de-
scription of the error distribution. We can see that
the error attains it maximum value on the poles
of the spheroidal scatterer where the curvature is
high.

Finally in Table 5, we provide indicative values
for different aspect ratios for the real and imag-
inary part of the L∞ norm, as well as for the L2

norm of the error.

Figure 14: Re(ε) at aR = 0.6 and k = 4
√

3.

Figure 15: Im(ε) at aR = 0.6 and k = 4
√

3.

Figure 16: Re(ε) at aR = 0.9 and k = 4
√

3.
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Figure 17: Im(ε) at aR = 0.9 and k = 4
√

3.

3.4 The Far Field Pattern

The far-field pattern constitutes the basic out-
come of the analysis of the direct scattering prob-
lem. It is determined by Eq.(13), by substitut-
ing the calculated expansion coefficients provided
by the preceding numerical process. In Figs.18-
33 we visualize both the real and imaginary parts
of the far-field pattern for the two extreme geo-
metrical configurations aR = 0.6, aR = 0.9 and
for wavenumbers starting from k = 1.5

√
3 since

directivity becomes prominent from this specific
value of the wavenumber. We have selected both
real and imaginary parts, instead of the magni-
tude, to distinguish the two different contribu-
tions. Color bars give the quantitative description
of the scattered field. The direction of the inci-
dent field is shown packed together with the axes
system. Both the far field pattern and the scatterer
are described on the same coordinate system and
are rendered together to clarify the directionality
of the scattered wave relative to the geometry of
the scatterer.

Figs. 18-25 show the far field pattern obtained by
the interaction of our incident field with the pro-
late spheroid of semi axes ratio aR = 0.6. Usually
for very low frequencies (wavenumber k ≈ 0.1)
the far field pattern exhibits an almost spherical
shape, due to the fact that the incident field is not
able (wavelength sensitivity) to follow the shape
and curvature of the scatterer’s surface. We ob-
served this behavior by solving the forward scat-

Figure 18: Far Field pattern (Re) for aR = 0.6 at
k = 1.5

√
3.

Figure 19: Far Field pattern (Im) for aR = 0.6 at
k = 1.5

√
3.

Figure 20: Far Field pattern (Re) for aR = 0.6 at
k = 2

√
3.
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Figure 21: Far Field pattern (Im) for aR = 0.6 at
k = 2

√
3.

Figure 22: Far Field pattern (Re) for aR = 0.6 at
k = 3

√
3.

Figure 23: Far Field pattern (Im) for aR = 0.6 at
k = 3

√
3.

Figure 24: Far Field pattern (Re) for aR = 0.6 at
k = 4

√
3.

Figure 25: Far Field pattern (Im) for aR = 0.6 at
k = 4

√
3.

tering problem for wavenumbers around k ≈ 0.1
(low frequency region). For this reason we be-
gin, Figs.18, 19, with wavenumber k = 1.5

√
3

where we distinguish a single main lobe. In
Figs. 20, 21 (k = 2

√
3), two individual secondary

lobes emerge and grow in size as wavenumber in-
creases. This procedure leads to exaggerated twin
lobes for k = 4

√
3 indicating the redistribution of

the scattering energy in particular favored direc-
tions. Directivity of the scattered field is observed
for the imaginary part as well at different direc-
tions, suggesting that the total scattered field dis-
poses a rich pattern of preferred scattering direc-
tions.

The case of semi axes ratio aR = 0.9, is pre-
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Figure 26: Far Field pattern (Re) for aR = 0.9 at
k = 1.5

√
3.

Figure 27: Far Field pattern (Im) for aR = 0.9 at
k = 1.5

√
3.

Figure 28: Far Field pattern (Re) for aR = 0.9 at
k = 2

√
3.

Figure 29: Far Field pattern (Im) for aR = 0.9 at
k = 2

√
3.

Figure 30: Far Field pattern (Re) for aR = 0.9 at
k = 3

√
3.

Figure 31: Far Field pattern (Im) for aR = 0.9 at
k = 3

√
3.



Sensitivity of the Acoustic Scattering Problem 199

Figure 32: Far Field pattern (Re) for aR = 0.9 at
k = 4

√
3.

Figure 33: Far Field pattern (Im) for aR = 0.9 at
k = 4

√
3.

sented in Figs.26-33. Starting with wavenumber
k = 1.5

√
3 we see as before, one main lobe both

for the real and imaginary part of the far field pat-
tern. As the frequency increases redistribution
of energy occurs towards several favored direc-
tions which are more than those we observed in
the previous case. This is clearly expected since
for aR = 0.9 the prolate spheroid is hardly distin-
guishable from a sphere (aR = 1.0) which is not
true for (aR = 0.6) and generally more symmetries
in geometrical configurations result in energy re-
distribution to more preferable directions.

Table 5: Error norms L∞ and L2 for truncation
level N=16 as functions of the aspect ratio aR and
the dimensionless product kC of wave number and
characteristic dimension of the scatterer. The lat-
est being the large prolate spheroidal semi axis
C = 1.

aR kC ‖Re{ε}‖L∞ ‖Im{ε}‖L∞ ‖ε‖L2

0.60 0.5
√

3 1.240e-2 2.636e-2 1.146e-2
1.0

√
3 2.730e-2 3.755e-2 1.864e-2

1.5
√

3 5.352e-2 4.109e-2 2.773e-2
2.0

√
3 7.019e-2 6.129e-2 3.966e-2

2.5
√

3 8.042e-2 9.740e-2 5.510e-2
3.0

√
3 1.031e-1 1.267e-1 7.393e-2

3.5
√

3 1.472e-1 1.483e-1 9.637e-2
4.0

√
3 1.865e-1 1.749e-1 1.234e-1

0.70 0.5
√

3 1.256e-3 3.018e-3 1.386e-3
1.0

√
3 4.022e-3 4.615e-3 2.656e-3

1.5
√

3 7.508e-3 6.585e-3 4.718e-3
2.0

√
3 1.076e-2 1.264e-2 7.917e-3

2.5
√

3 1.516e-2 1.995e-2 1.263e-2
3.0

√
3 2.477e-2 2.806e-2 1.923e-2

3.5
√

3 3.599e-2 3.836e-2 2.841e-2
4.0

√
3 4.884e-2 5.549e-2 4.083e-2

0.80 0.5
√

3 4.647e-5 1.118e-4 5.766e-5
1.0

√
3 1.881e-4 2.176e-4 1.470e-4

1.5
√

3 3.810e-4 4.946e-4 3.418e-4
2.0

√
3 7.020e-4 1.033e-3 7.257e-4

2.5
√

3 1.394e-3 1.895e-3 1.433e-3
3.0

√
3 2.522e-3 3.340e-3 2.686e-3

3.5
√

3 4.364e-3 5.815e-3 4.819e-3
4.0

√
3 7.291e-3 9.734e-3 8.285e-3

0.90 0.5
√

3 1.847e-7 3.900e-7 2.440e-7
1.0

√
3 8.354e-7 1.519e-6 1.147e-6

1.5
√

3 2.599e-6 5.411e-6 4.280e-6
2.0

√
3 8.332e-6 1.617e-5 1.409e-5

2.5
√

3 2.317e-5 4.680e-5 4.184e-5
3.0

√
3 6.031e-5 1.188e-4 1.149e-4

3.5
√

3 1.520e-4 3.018e-4 2.936e-4
4.0

√
3 3.589e-4 6.941e-4 7.069e-4

4 Conclusions

The purpose of this work is to study the sensitiv-
ity of the solution of the direct acoustic scattering
problem in prolate spheroidal geometry with re-
spect to the wavenumber and shape of the scat-
terer. We verified that one of the main issues
when dealing with linear systems arising in those
cases, is that we have to deal with extremely ill-
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conditioned matrices. The corresponding linear
systems cannot be solved with conventional 80-
bit IEEE floating point arithmetic formats and
integration of arbitrary precision software facili-
ties is the only choice available. Iterative refine-
ment can assist, in case arbitrary precision is in-
tegrated, in keeping the number of decimal dig-
its required, as low as possible, improving in this
way the performance. The suggested analytical
method in conjunction with L2 norm minimiza-
tion of the error, related to the satisfaction of the
boundary condition on the surface of the scatterer,
proved to be a very robust technique which could
accurately handle a wide range of elongated pro-
late spheroidal bodies and quite high frequencies
(or equivalently the induced wavenumber) of the
incident wave. Our convergence study revealed
however, that for extremely elongated spheroidal
bodies the convergence rate decreases. On the
contrary, the frequency (wavenumber) of the in-
cident field, does not affect the convergence rate
but only increases the errors exponentially as it
grows. This suggests that a solution to our prob-
lem for any frequency can be obtained, as long
as the aspect ratio of the spheroid is such that it
allows a relatively high convergence rate. The
geometry of the scatterer, proved to be the most
crucial parameter affecting the convergence. The
specific dependence of the error on the geometri-
cal, physical and numerical features of the prob-
lem has been revealed with detailed regression
analysis.
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