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An Analysis for the Elasto-Plastic Fracture Problem by the Meshless Local
Petrov-Galerkin Method

S.Y. Long1,2,3, K.Y. Liu1,2,4 and G.Y. Li1

Abstract: A meshless local Petrov-Galerkin
method (MLPG) for the analysis of the elasto-
plastic fracture problem is presented in this pa-
per. The meshless method uses the moving least
squares (MLS) to approximate the field func-
tions. The shape function has not Kronecker Delta
properties for the trial-function interpolation, and
a direct interpolation method is adopted to im-
pose essential boundary conditions. The MLPG
method does not involve any domain and singu-
lar integrals if body force is ignored. It only
involves a regular boundary integral. Two nu-
merical examples show that results obtained by
the present method have a good agreement with
that by FEM software-ANSYS. However, in the
present method, the computational time is greatly
reduced in forming the tangent stiffness matrix
because there is no domain integral, and the pre-
and post-processing time are also greatly reduced
because no element connectivity and no remesh-
ing are required. The proposed method is valid
and feasible for the solution of the elasto-plastic
fracture problem.

Keyword: Meshless local Petrov-Galerkin
method; Moving least squares; Heaviside func-
tion; direct interpolation method; Elasto-plastic
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1 Introduction

Atluri and Zhu originally proposed a meshless
Petrov-Galerkin method(MLPG) [Atluri and Zhu
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(1998)], which is one of meshless methods. The
MLPG method has many advantages over tra-
ditional numerical methods such as FEM and
BEM. It has attracted much attention in the past
decade due to its flexibility, and absolutely no
elements or cells are needed in the formulation,
either for interpolation purposes or for integra-
tion purposes. It requires only nodal informa-
tion and no element connectivity is needed, which
leads to a simple and convenient preprocessing.
It is a truly meshless method. Remarkable suc-
cesses of the MLPG method have been reported
in solving convection–diffusion problems [Lin
and Atluri (2000)]; fracture mechanics problems
[Ching and Batra (2001)]; stress and crack anal-
yses in 3-D axisymmetric FGM bodies [Sladek
et al.(2005)]; dynamic fracture problems [Gao
et al.(2006)]; fracture analyses in continuously
nonhomogeneous piezoelectric solids [Sladek et
al.(2007a)]; plate bending problems [Long and
Atluri (2002); Gu and Liu (2001)]; analyses of
shell deformations [Sladek et al.(2006a); Jarak
et al.(2007)];heat conduction problems [Sladek
et al.(2004); Wu et al.(2007)]; thermoelas-
tic analyses [Ching and Chen (2006);Sladek
et al.(2006b)]; thermo-piezoelectricity problems
[Sladek et al.(2007b)]; magnetic diffution prob-
lems [Johnson and Owen (2007)]; wave prob-
lems [Ma (2005); Ma (2007)]; impact problems
[Han et al.(2006); Liu et al.(2006)]; large de-
formation problems [Han et al.(2005)]; dynam-
ics problems [Han and Atluri(2004); Andreaus et
al.(2005)]; multiscale simulation problems [Bar-
denhagen and Kober (2004)]. Atluri and Shen
presented six MLPG methods [Atluri and Shen
(2002)] based on different test functions. One
of methods named MLPG5 uses the Heaviside
function as the test function. The applications of
MLPG5 can be found in the works [Hu and Long
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et al(2006); Long and Liu et al(2006); Liu and
Long et al(2006)].

In this paper, the moving least squares(MLS)
approximation scheme is used for constructing
trial functions [Lancaster and Salkauskas (1981)],
and a direct interpolation method [Liu and Yan
(2000)] is used to impose the essential bound-
ary condition since the MLS approximation does
not satisfy the Kronecker delta function prop-
erty. This simple and effective treatment is made
possible because the MLPG method establishes
discrete equations node by node. In this paper
MLPG5 method is used to solve the elasto-plastic
fracture problem.

2 Elasto-plastic stress-strain relation for
plane problems [Crisfield (1991); Owen
and Hinton (1980); Wang and Shao (1997)]

The basic laws governing elasto-plastic material
behavior in a two dimensional solid must be pre-
sented before the numerical aspects of a problem
can be considered. Only the essential expressions
will be provided in this section and reader will be
directed to other sources for a more complete the-
oretical treatment.

The object of the plasticity theory is to provide a
theoretical description of the relationship between
stress and strain for a material which exhibits an
elasto-plastic response. In essence, plastic behav-
ior is characterized by an irreversible straining
which is time dependent and which can only be
sustained once a certain level of stress has been
reached. In this section we outline the elasto-
plastic stress-strain relation for the plane prob-
lems.

For plane problems, we have only four non-zero
stress components, namely in the vector form

σσσT =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
σx σy τxy

]
, σz = 0

for plane stress[
σx σy σz τxy

]
, εz = 0

for plane strain

(1)

For the plane stress problem, for example, the
incremental stress and strain components can be

written as, respectively, in the matrix form

dσσσT =
[
dσx dσy dτxy

]
(2)

dεεεT =
[
dεx dεy dγxy

]
(3)

The complete elasto-plastic incremental stress-
strain relation can be written as

dσσσ = Depdεεε (4)

Where

Dep = De −Dp (5)

in which Dp is termed the matrix of plastic mate-
rial behavior.

The explicit form of the elastic matrix De for the
plane stress problem can be written as

De =
E

1−ν

⎡⎣1 ν 0
ν 1 0
0 0 1−ν/2

⎤⎦ (6)

in which E and ν are respectively the elastic mod-
ulus and Poisson’s ratio of the material.

The yield criterion for the isotropic hardening ma-
terial can be expressed as

F = f −k = 0 (7)

where for the plane stress problem

f =
1
2

(
S2

x +S2
y +S2

z +2τ2
xy

)
, k =

1
3

σ2 (8)

and

Sx = σx − 1
3

(σx +σy) =
1
3

(2σx −σy) (9a)

Sy = σy − 1
3

(σx +σy) =
1
3

(2σy −σx) (9b)

Sz = −1
3

(σx +σy) (9c)

Stress states for f = k represent plastic states,
while elastic behavior is characterized by f < k.
At a plastic state, f = k, the incremental change
in the yield function due to an incremental stress
change is

d f =
∂ f
∂σσσ

dσσσ (10)

Then if
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d f > 0 plastic loading (plastic behavior for a
strain hardening material) and the stress
point remains on the expanding yield sur-
face.

d f < 0 elastic unloading occurs (elastic behav-
ior) and the stress point returns inside the
yield surface.

d f = 0 neutral loading (plastic behavior for a
perfectly plastic material) and the stress
point remains on the yield surface.

The above is just loading or unloading criterion
by which we can select the elasto-plastic consti-
tutive equation or the elasto constitutive equation
in computation.

For the isotropic hardening and perfectly plastic
material, we have

∂ f
∂σσσ

=
[
Sx Sy 2τxy

]T
(11)

Thus we obtain the matrix of plastic material be-
havior Dp

Dp =

E
B(1−ν2)

⎡⎣ (Sx +νSy)
2 (Sx +νSy) (Sy +νSx)

(Sy +νSx)
2

Sym

(1−ν) (Sx +νSy)τxy

(1−ν) (Sy +νSx)τxy

(1−ν)2τ2
xy

⎤⎦ (12)

in which

B = S2
x +S2

y +2νSxSy +2(1−ν)τ2
xy

+
2(1−ν)H ′σ2

9ν
(13)

Where σ is termed the effective stress or equiva-
lent stress,which can be expressed as for the plane
stress problem

σ = (σ2
1 +σ2

2 −σ1σ2)
1
2 (14)

where σ1, σ2 are the principle sresses. H ′ in
equation(12) is called a plastic modulus or hard-
ening function, which can be determined experi-
mentally from a simple uniaxial yield test.

By substituting equations (6) and (12) into equa-
tion (5), the matrix form of elasto-plastic material
behavior can be expressed as

Dep =
E
B⎡⎢⎣S2

y +2P −SxSy +2νP −Sx+νSy

1+ν τxy

S2
x +2P −Sy+νSx

1+ν τxy

Sym R
2(1+ν) + 2(1−ν)H′σ2

9ν

⎤⎥⎦
(15)

where

P =
2H ′σ 2

9E
+

τ2
xy

1+ν
(16)

R = S2
x +2νSxSy +S2

y (17)

B = R+2(1−ν2)P (18)

For the plane strain problem after yielding of a
material the Poisson’s ratio is taken as 0.5. Here
on substituting this value into equation (15) and
replacing E and ν by E

1−ν2 and ν
1−ν respectively

the elasto-plastic matrix Dep can be directly ob-
tained.

3 The MLPG formulation of the incremental
analysis for elasto-plastic problems

An incremental solution scheme in which an ap-
plied load is divided into a series of incremen-
tal ones, must be employed in the elasto-plastic
analysis of a structure, since the elasto-plastic be-
haviors of the structure are related to the loading
and deformation history. Within each incremen-
tal load the elasto-plastic equations solved are lin-
earized, then the solution for a nonlinear problem
is decomposed into a series of solutions for linear
problems.

Assume that displacements tui, strain tεi j and
stress tσi j at time t are found under the prescribed
load or displacement, then at time t +Δt, both ap-
plied loads including body forces and tractions,
and prescribed displacements should have incre-
ments and be known, i.e.

t+Δt bi = tbi +Δbi in Ω (19)
t+Δt T i = tT i +ΔT i on Γt (20)
t+Δt ui = tui +Δui on Γu (21)
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where bi, Ti and ui denote components of body
forces, tractions and displacements, respectively.
Now we will find displacements, strains and
stresses at time t +Δt

t+Δt ui = tui +Δui
t+Δtεi j = tεi j +Δεi j

t+Δtσi j = tσi j +Δσi j

⎫⎬⎭ (22)

which must satisfy the following equations and
boundary conditions:
equilibrium equation

tσi j, j +Δtσi j, j + tbi +Δbi = 0 in Ω (23)

geometrical equation

tεi j +Δt εi j =
1
2

(tui j + tu ji
) 1

2

(
Δtui j +Δtu ji

)
(24)

stress-strain relation or constitutive equation

Δσi j = τ Dep
i jklΔεkl t ≤ τ ≤ t +Δt (25)

boundary conditions

tTi +ΔTi = tT i +ΔT i on Γt (26)
tui +Δui = tui +Δui on Γu (27)

where

tTi = tσi jn j, ΔTi = Δσi jn j (28)

where n j is a unit outward normal to the boundary
Γ.

It should be noted that except the stress-strain re-
lation other equations and boundary conditions
are linear for the elasto-plastic analysis under the
small deformation.

In a similar way to creating the MLPG formu-
lation for the linear elastic problem [Hu and
Long(2006)], we use two different sets of equa-
tions for the essential boundary nodes and not es-
sential boundary nodes, respectively.

For node not located on the essential boundary,
we start from a weak form over a local sub-
domain Ωs and use the MLS approximation to
develop the present MLPG formulation for the
elasto-plastic problem in which the local sub-
domain Ωs is set to β d1

i , β is a scaling factor

for determining the sub-domain and d1
i is the dis-

tance to the nearest neighboring point from node
i. Here we set β ≤ 1.0 to make the sub-domain
Ωs not intersect with the essential boundary Γu,
so a generalized local weak form of Eq.(23) over
a sub-domain Ωs can be written as follows∫

Ωs

νi
(tσi j, j +Δσi j, j + tbi +Δbi

)
dΩ = 0 (29)

where vi is the test functions. Using the relation-
ship

Δσi j, jvi = (Δσi jvi), j −Δσi jvi, j (30)

and

tσi j, jvi = (tσi jvi), j − tσi jvi, j (31)

and the divergence theorem as well as Eq.(28) in
Eq.(29) leads to∫

∂Ωs

(tTi +ΔTi)vidΓ+∫
Ωs

(−tσi jvi, j −Δσi jvi, j +t bivi +Δbivi)dΩ

= 0 (32)

where ∂Ωs is the boundary of the sub-domain Ωs.
In general, ∂Ωs = Γs∪Ls with Γs being the part of
the local boundary located on the global boundary
Γ and Ls being the other part of the local boundary
over which no boundary condition is specified, i.e.
Γs = ∂Ωs ∩Γ and Γs = ∂Ωs −Ls.

It should be mentioned that Eq.(32) holds regard-
less of the size and the shape of Ωs provided that
Ωs is smooth enough for the divergence theorem
to apply. So, the shape of sub-domain Ωs can be
taken to be a circle in the two dimensional prob-
lem without loosing generality.

Applying the natural boundary condition, tTi =
tσi jn j = tTi and ΔTi = Δσi jn j = ΔTi on Γst where
Γst = ∂Ωs ∩Γt , we get∫

Ls

(tTi +ΔTi)vidΓ+
∫

Γst

(tTi +ΔTi)vidΓ

−
∫

Ωs

(tσi j +Δσi j)vi, jdΩ+
∫

Ωs

(tbi+Δbi)vidΩ = 0

(33)
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In order to simplify Eq.(33), test functions vi are
chosen such that they simplify the domain integral
on Ωs. This can be accomplished by using the
Heaviside step function

H(x) =

{
c x ∈ Ωs

0 x /∈ Ωs
(34)

where c is an arbitrary constant(c = 1 is used
in this study). Using the choice, the partial
derivatives of the test function vi, j are identically
zero, hence the corresponding domain integrals
involved in Eq.(33) are identically zero. Using
this test function and rearranging Eq.(33), we ob-
tain the following local symmetric weak form∫

Ls

ΔTidΓ =

−
∫

Γst

(tT i +ΔT i
)

dΓ−
∫

Ωs

(tbi +Δbi
)

dΩ

−
∫

Ls

tTidΓ (35)

For simplicity, Eq.(35) can be written in the ma-
trix form as∫

Ls

ΔTdΓ = −
∫

Γst

(tT+ΔT
)

dΓ

−
∫

Ωs

(tb+Δb)dΩ−
∫

Ls

tTdΓ (36)

where

tT =
{

tT1
tT2

}
, ΔT =

{
ΔT1

ΔT2

}
,

tb =
{

tb1
tb2

}
, Δb =

{
Δb1

Δb2

} (37)

In order to obtain the discretized system equa-
tion, the global problem domain Ω is represented
by properly distributed field nodes and using the
MLS shape function to approximate the trial func-
tion for the incremental displacement at a point x

Δuh(x) =
{

Δuh

Δvh

}

=
[

ϕ1 0 · · · ϕn 0
0 ϕ1 · · · 0 ϕn

]
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δû1

Δv̂1
...

Δûn

Δv̂n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= ΦΦΦΔû

(38)

where n is the number of nodes in the support do-
main of a sampling point at x, and ΦΦΦ is the matrix
of the MLS shape functions, Δû is the fictitious
nodal value of Δu.

Substituting the MLS approximation (38) into
Eq.(36) leads to the following nodal discretized
equation of the MLPG for the I th field node.∫

Ls

nτ DepBΔûdΓ = −
∫

Γst

t+ΔtTdΓ

−
∫

Ωs

t+ΔtbdΩ−
∫

Ls

ntσσσdΓ (39)

where n is a matrix of the unit outward normal to
the local boundary Ls. It is given by

n =
[

n1 0 n2

0 n2 n1

]
(40)

Using the strain-displacement equation for small
deformation, we can have

B =

⎡⎢⎣
∂ϕ1
∂x1

0 · · · ∂ϕn
∂x1

0

0 ∂ϕ1
∂x2

· · · 0 ∂ϕn
∂x2

∂ϕ1
∂x2

∂ϕ1
∂x1

· · · ∂ϕn
∂x2

∂ϕn
∂x1

⎤⎥⎦ (41)

Summing over all nodes that not located on the
essential boundary leads the following discretized
system equation

τKep
I j Δû j = ΔQI

(I = 1,2, ...,N−k, j = 1,2, ...,N) (42)

where N is the total number of field nodes, and
k is the number of nodes located on the essential
boundary, where

τKep
i j =

∫
Ls

nτ DepB jdΓ (43)

t+Δt Qe = −
∫

Γst

t+Δt TdΓ−
∫

Ωs

t+Δt bdΩ (44)

tQi =
∫

Ls

ntσσσdΓ (45)

in which t+ΔtQe and tQi denote the external load
vector and internal load vector respectively, and
ΔQI is called as a non-equilibrium force vec-
tor. When t+Δt Qe and tQi satisfy the equilib-
rium equation, then ΔQI represents the incremen-
tal load vector. It should be noted j is the number
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of nodes within the support domain of a field point
x and is not determined.

For node j located on the essential boundary, a
direct interpolation method for the imposition of
essential boundary conditions is introduced. This
method was proposed by Liu and Yan(2000) to
simplify the MLPG formulation. The direct inter-
polation method enforces the essential boundary
conditions using the equation of the MLS approx-
imation

Δuh
j =

{
Δuh

Δvh

}
j

=
[

ϕ1 0 · · · ϕn 0
0 ϕ1 · · · 0 ϕn

]
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δû1

Δv̂1
...

Δûn

Δv̂n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=
{

Δu
Δv

}
j

(46)

where Δu j and Δv j are the specified displacement
at node j on the essential boundary. Eq.(46) is
still a linear algebraic equation for node j on
the essential boundary in the elasto-plastic anal-
ysis under small deformation, and is directly as-
sembled into the global system equation. This
treatment of the essential boundary condition is
straight forward and very effective. It simplify
significantly the procedure of imposing essential
boundary conditions and the essential boundary
conditions are satisfied exactly. Moreover, com-
putation for all the nodes on the essential bound-
ary has been simplified. This simple treatment is
made possible become the MLPG method estab-
lishes discrete equations node by node.

Integrating Eq.(46) into Eq.(42), the global dis-
cretized system equation is finally obtained as

τKepΔû = ΔQ (47)

where forms of τKep and ΔQ are similar to that of
the stiffness matrix K and the load vector f for the
linear elastic problem, reader may refer to Chap-
ter 5 of Reference [Liu and Gu (2005)].

4 Basic numerical solution processes [Cr-
isfield (1991); Owen and Hinton (1980);
Wang and Shao (1997)]

4.1 The Newton-Raphson iteration and incre-
ment procedure

A combined incremental and iterative solution
procedure using the Newton- Raphson iteration is
commonly employed to solve the system of non-
linear equation (47). Thus equation (47) can be
rewritten as

t+Δt Kep(n)Δû(n) = ΔQ(n) (48)

in which n is the iterative number (n = 1, 2, . . .)
and

t+Δt Kep(n) =
∫

Ls
nt+Δt Dep(n)BdΓ

ΔQ(n) = t+ΔtQe −
∫

Ls
nt+Δtσσσ (n)dΓ

}
(49)

in which

t+ΔtDep = Dep(t+Δtσσσ (n), t+Δtε p(n))
t+Δtσσσ (0) = tσσσ , t+Δtε p(0) = tε p

}
(50)

It should be noted that Eq.(48) is just equal to
Eq.(47) in time τ = t when n = 0.

Using Eq.(48) the procedures for computing fic-
titious incremental nodal displacements, Δû(n), is
as follow:

a) Compute t+ΔtKep(n), ΔQ(n) from Eq.(49);

b) Solve Eq.(48) to obtain fictitious incremen-
tal nodal displacements in the current iterative
step

Δû(n) =
(

t+ΔtKep(n)
)−1

ΔQ(n) (51)

c) Find incremental nodal displacements Δu(n)

and the total displacements t+Δt u(n+1) at any
point x of a problem domain considered using
Eq.(38), i.e.

Δu(n) = ΦΦΦΔû(n)

t+Δtu(n+1) = t+Δtu(n) +Δu(n) (52)
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d) Compute incremental strains and incremental
stresses from the following equations

Δεεε(n) = BΔu(n) (53)

Δσσσ (n) =
∫ Δε p(n)

0
Depdε (54)

in which Δεεε p(n) is the part of plastic incremen-
tal strains of Δεεε (n), and integration of Eq.(54)
and computation of Δεεε p(n) will be discussed in
the following. The total stresses in time t +Δt,
t+Δtσσσ (n+1), can be obtained

t+Δtσσσ (n+1) = t+Δtσσσ (n) +Δσσσ (n) (55)

e) Check convergence using one of the following
convergence criteria:
displacement convergence criterion:∥∥∥Δu(n)

∥∥∥ ≤ erD
∥∥tu

∥∥ (56)

equilibrium convergence criterion:∥∥∥ΔQ(n)
∥∥∥ ≤ erF

∥∥∥ΔQ(0)
∥∥∥ (57)

in which erD and erF are the prescribed toler-
ances.

If the convergence criterion is already satisfied,
the iteration within the current load incremental
step is considered to be convergent. For each load
incremental step the above a)∼e) procedures are
performed until the solution in the total time is
obtained.

4.2 Determination of the elasto-plastic states

We well know from the above discuss that deter-
mination of τDep and ΔQ(n) in Eq.(47) is depen-
dent on tσσσ and tε p obtained in the previous load
increment step or at the end of the iteration pro-
cess. For the next load increment or iteration step
Δσσσ , Δε p and other related quantities can be ob-
tained from incremental displacements in the cur-
rent load increment or iteration step, thus σσσ , ε p

and other related quantities can also be obtained,
i.e. the elasto-plastic state in the current load in-
crement or iteration step is perfectly determined.

After obtaining the incremental displacements of
each load increment or iteration step, the basic al-
gorithm for determination of a new elasto-plastic
state is as follows:

1. Compute incremental strains (or iterative
modified strains) Δεεε using geometric equa-
tions.

2. Compute predictors of incremental stresses
and stresses using elastic constitutive equa-
tions, i.e.

Δσ̃σσ = DeΔεεε (58)

t+Δtσ̃σσ = tσσσ +Δσ̃σσ (59)

in which tσσσ is the stress value at the end of
the previous incremental step.

3. Compute predictors of matrix D for each
Gaussian point in each sub-domain

4. Compute the value of the yield function
F
(

t+Δtσ̃σσ , tε p). In terms of this value three
cases are divided:

i. When F
(

t+Δtσ̃σσ , tε p) ≤ 0, elastic load-
ing or elastic unloading from the yield
surface occurs at this integral point, i.e.

Δσσσ = Δσ̃σσ (60)

ii. When F
(

t+Δtσ̃σσ , tε p) > 0 and
F (tσσσ , tε p) < 0, a transition state
between elasticity and plasticity arrives
at this integral point. A scaling factor
m, which determines arrival time of
stresses at the yield surface, is computed
using the following expression

F
(tσσσ +mΔσ̃σσ , tε p) = 0 (61)

iii. When F
(

t+Δtσ̃σσ , tε p) > 0 and
F (tσσσ , tε p) = 0, plastic loading at
this integral point remains and here
m = 0.

5. Compute the part of plastic incremental
strains of Δεεε

Δεεε p = (1−m)Δεεε (62)

6. Compute the corresponding plastic incre-
mental stresses

Δσ p =
∫ Δε p

0
Dep(σσσ ,ε p)dε (63)
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7. Compute t+Δtσσσ and t+Δt ε p at the current load
increment step or at the end of the iteration
process

t+Δtσσσ = tσσσ +mΔσσσ +Δσσσ p (64)

t+Δtε p = tε p +Δε p (65)

4.3 Integrating of the constitutive equation

A sub-increment with a tangential predictor and
radial-return algorithm and a generalized mid-
point algorithm are commonly employed for in-
tegrating of the constitutive equation (63). Here
the former will be employed.

By the tangential predictor is meant in application
of the Euler procedure to equation (62) the predic-
tor of the incremental stress is obtained, i.e.

Δσ̃σσ = Dep (tσσσ , tε p)Δεεε (66)

Thus the stress predictor is further obtained

t+Δtσ̃σσ = tσσσ +Δσ̃σσ (67)

Therefore we can obtain

Δε p =
2
3

Δλ σ (68)

t+Δt ε p = tε p +Δε p (69)

where Dep (tσσσ , tε p) is an initial tangential stiff-
ness matrix, hence the predictor of the incremen-
tal stress Δσ̃σσ lies along the tangent to the yield
surface. It is clear that the stress predictor t+Δtσ̃σσ
lies outside the yield surface since the yield sur-
face is convex. However, the yield criterion re-
quires t+Δtσ̃σσ lies on or within the yield surface,
the radial-return algorithm must be employed to
return the stresses to the yield surface so that the
yield criterion is satisfied.

We can assume

t+Δtσσσ = r t+Δtσ̃σσ (70)

in which r is a scaling factor. Thus we can find
scaling factor r from yield criterion

F
(t+Δtσσσ , t+Δt ε p) = 0 (71)

as

r =
(

2
3

σσσ 2/ST S
)1/2

It should be mentioned that even though corrected
stresses t+Δtσσσ through the radial-return algorithm
lie on the yield surface, the tangential stiffness
matrix may be inconsistent with the integration
scheme since the incremental strain Δεεε and effec-
tive plastic strain t+Δt ε p are assumed to be con-
stant. The error can be significantly reduced by
sub-increment. Using such a technique the incre-
mental strains Δεεε is divided intom sub-steps each
of qΔεεε, where q = 1/m and the tangent proce-
dure is applied at each sub-step. The elasto-plastic
state at the end of each sub-step is considered
as the initial state for the next sub-step. Finally
we can obtain the consistent tangent stiffness ma-
trix with the integration scheme, hence consistent
t+Δtσσσ and t+Δt ε p.

5 Numerical examples

The MLPG method is applied to analyze the
elasto-plastic fracture problems. In all follow-
ing examples, the Von Mises yield criterion and
isotropic linear hardening are used for the elasto-
plastic materials. The field functions are con-
structed using the moving least square approxi-
mation, in which the quadratic basis function is
adopted and the Gaussian function is chosen as
the weighted function. For the numerical integra-
tion, 9 Gauss points are assigned on boundaries Ls

and Γs for the boundary integral unless otherwise
specified.

5.1 Example 1: a both edge-cracked square
plate

A both edge-cracked square plate with both length
and width L = 200mm, and crack length a =
50mm, subjected to the uniformly distributed ten-
sile stress t = 500MPa at both top and bottom
edges of the plate, as shown in Fig.1, was dis-
cussed. Here we assume elastic modulus E =
200GPa, Poisson’s ratio ν = 0.3,the tangent elas-
tic modulus Et = 50GPa, the initial yield stress
σs0 = 800MPa. Due to symmetry of geometry
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and load, a quadrant of the plate is analyzed and is
assumed to be the plane stress problem. In com-
putation, a meshless discretization consisting of
472 nodes is used, and symmetric displacement
boundary conditions are imposed, as shown in
Fig.2. The load increment is taken as Δt = 0.1×t,
i.e. 10 load incremental steps are divided.

t

L

a a
L

t

Figure 1: A both edge-cracked square plate

Figure 2: A meshless discretization (472nodes)
and boundary conditions
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Figure 3: The plastically deformed region at the
final load incremental step

Fig.3 shows the plastically deformed region at the
final load incremental step. It can be seen from
Fig.3 that the plastically deformed region has a
little bias towards the right edge of the quadrant
of the plate.

The variation of the stress intensity factor KI with
loading and its comparison with the linear elas-
tic solution of the finite element method (LFEM)
are shown in Fig.4. It can be seen from Fig.4 that
KI obtained by the elasto-plastic solution is larger
than that by the linear elastic solution of the finite
element method, which are analyzed using FEM
software-ANSYS, when loading reaches 0.2GPa,
and their difference constantly increases with in-
creasement of loading.

The variation of displacement normal to the crack
direction uy with loading and its comparison with
results of FEM are shown in Fig.5. Both results
have a good agreement.

Fig.6 shows the variation of the effective stress σ
with distances r between front of the crack tip and
the crack tip and its comparison with results of
FEM. It can be seen from Fig.6 that the effective
stress σ gradually decreases with increasement of
the distances. Both results have a little difference
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Figure 4: The variation of the stress intensity fac-
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Figure 5: The variation of displacement normal to
the crack direction uy with loading

with the largest error being less than 7%.

Fig.7 also shows the variation of the effective
stress σ at the crack tip with loading and its com-
parison with results of FEM. It can be seen from
Fig.7 that results obtained by the present method
are a little larger than that by FEM, but both re-
sults have the same variation trend.
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Figure 6: The effective stress σ(θ = 0) in front of
the crack tip and comparison with results of FEM.
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Figure 7: The variation of the effective stress σ at
the crack tip with loading

5.2 Example 2: a three-point bending sample

Consider a three-point bending sample with
length L = 5m, height H = 1m, thickness t =
0.1m, as shown in Fig.8. An edge-crack with
length a = 0.25m lies at the middle of the sam-
ple, and two simply-supports are imposed at a
distance Ls/2 = 2.25m from the crack. A con-
centrated force P = 2kN is applied at the mid-
dle of the sample. Here assume elastic modulus
E = 200GPa, Poisson’s ratio ν = 0.3, the tangent
elastic modulus Et = 100GPa, the initial yield
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stress σs0 = 20MPa. Due to symmetry of geom-
etry, load and supported conditions, one half of
the sample is analyzed and is assumed to be the
plane stress problem. In computation, a meshless
discretization consisting of 887 nodes is used and
symmetric displacement boundary conditions are
imposed, as shown in Fig.9. The load increment
is taken as ΔP = 0.05×P, i.e. 20 load incremental
steps are divided.

L

H

P

a

2sL 2sL

Figure 8: A three-point bending sample
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Figure 9: A meshless discretization(887nodes)
and boundary conditions

Fig.10 displays the plastically deformed region
at the final load incremental step. The variation
of the stress intensity factor KI with loading and
its comparison with results of FEM are plotted
in Fig.11. It can be seen from Fig.11 that when
loading reaches 700N, KI obtained by the elasto-
plastic solution is larger than that by the linear
elastic solution, and their difference constantly in-
creases with increasement of loading. Fig.12 dis-
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Figure 10: The plastically deformed region at the
final load incremental step
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Figure 11: The variation of the stress intensity
factor KI with loading

plays the variation of the opening displacements
δ at the crack mouth with loading and its com-
parison with results of FEM. Both results have a
good agreement.

6 Conclusions

The meshless local Petrov-Galerkin (MLPG)
method that uses the Heaviside function as a
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Figure 12: The variation of the opening displace-
ments δ at the crack mouth with loading

test function is presented and used to ana-
lyze the elasto-plastic fracture problem in this
study. The present results have a good agree-
ment compared with the results obtained by using
FEM software—ANYSY. However, in the present
method, the computational time is greatly reduced
in forming the tangent stiffness matrix if body
force is ignored because there is no domain in-
tegral, and the pre- and post-processing time are
also greatly reduced because no element connec-
tivity and no remeshing are required. Two numer-
ical examples indicate the proposed method pos-
sesses no numerical difficulties in the analysis of
the elasto-plastic fracture problem.
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