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Estimation of Deformed Shapes of Beam Structures using 3D Coordinate
Information from Terrestrial Laser Scanning

H.M. Lee1 and H.S. Park1,2

Abstract: This paper presents a computational
model to estimate deformed shapes of beam struc-
tures using 3D coordinate information from ter-
restrial laser scanning (TLS). The model is com-
posed of five components: 1) formulation of poly-
nomial shape function, 2) application of boundary
condition, 3) inducement of compatibility condi-
tion, 4) application of the least square method and
5) evaluation of error vector and determination of
reasonable polynomial shape function. In the pro-
posed model, the optimal degree of polynomial
function is selected based on the complexity of
beam structures, instead of using a specific de-
gree of polynomial function. The chosen poly-
nomial function for estimation is forced to satisfy
the boundary and compatibility conditions and al-
lows accurate estimation of a beam structure’s de-
formed shapes and displacement. The proposed
model is experimentally applied to estimation of
deformed shape of a simply supported steel beam
subjected to a concentrated load. The perfor-
mance of the proposed model is investigated by
comparing the deflections of the beam estimated
from the model and the deflections directly mea-
sured from linear variable differential transducers
(LVDTs).

Keyword: Structural Health Monitoring, Mea-
surement, Deflection, Deformation, Terrestrial
Laser Scanning.

1 Introduction

Recently a number of studies have been re-
ported on structural health monitoring techniques
in building and bridge structural engineering ar-
eas. Structural health monitoring identifies and
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assesses physical responses of a structure pertain-
ing to its structural behaviors such as strain, dis-
placement and acceleration. Such structural re-
sponses are measured from appropriate sensors
and are used for assessing the structure’s safety
and serviceability. In particular, for a beam struc-
ture, its displacement or deflection is an important
index for assessing the structure’s safety and ser-
viceability (Park et al., 2006; Park et al., 2007;
Huang and Shih, 2007).

LVDTs were commonly used to measure dis-
placements of beam structures because of its high
precision level within 0.1 mm. However, since
they are often difficult to install in real structures,
they were mostly used for structural experiments
of validation purposes in laboratories.

Displacement monitoring techniques based on
GPS technology and vision-based monitoring us-
ing photogrammetry technology are being used
actively. GPS-based approaches have been ap-
plied mostly on bridges and buildings (Nakamura,
2000; Xu et al., 2002; Meng et al., 2007; Park et
al., 2008), and their displacement precision lev-
els were reported as approximately 15 mm hori-
zontally and 35 mm vertically (Nickitopoulou et
al., 2006). However, GPS based monitoring has
limitations in measuring structural displacements.
Positions determined from GPS satellite signals
are influenced by electrical cables that can cause
distortion of satellite signals. Also, structural ele-
ments can impede such signals. Furthermore, dis-
placement monitoring that requires high level pre-
cision within a few millimeters can be difficult to
implement using a GPS-based approach.

Vision-based approach makes use of photogram-
metry techniques that measure physical displace-
ments using pixel digital signals of charges that
are generated in proportion to the strength of op-
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tical images projected to a camera through a lens.
This approach usually has a precision level of ap-
proximately 1 mm in measuring not only static but
also dynamic movements (Olaszek, 1999; Fraser
and Riedel, 2000; Wahbeh et al., 2003). How-
ever, photogrammetry techniques for structural
displacement measurements require reference tar-
gets to verify the absolute distance (Wahbeh et
al., 2003) as well as multiple cameras (Fraser
and Riedel, 2000). In addition, device calibra-
tion is required to ensure precision of displace-
ment measurements by preventing image distor-
tion from optical or electrical systems (Olaszek,
1999). Lastly, light emitting diode (LED) targets
are required to enable nighttime identification.

Also, a new technique using robotic total station
(RTS) is recently introduced. The technique can
remotely measure the displacement of structures
with accuracies of a few mm level and frequency
up to 4 Hz (Psimoulis et al., 2007).

As such, each of the techniques for physical dis-
placement monitoring, such as LVDT, GPS based
technique, and vision-based monitoring, has its
merits and shortcomings. They rely, however,
commonly on displacement measurement of a
specific portion of a structure and thus possess in-
herent difficulties in assessing the overall health
monitoring of a structure.

Recently a laser scanning system, called Terres-
trial Laser Scanning (TLS) or Light Detection
And Ranging (LiDAR), has been introduced to
overcome the limitations of existing measurement
techniques (Park et al., 2007). TLS makes use of
laser to obtain 3D coordinate information of an
object remotely (Trimble, 2007; Optech, 2007)
and its operation is not influenced significantly by
the surroundings. It has the merit of obtaining 3D
location data on the overall structure or building
instead of a specific location (Ackemann, 1999).
Initial applications of TLS in GIS field were per-
formed to obtain geologic and topographic infor-
mation (Kimes et al., 2006; Zhou et al., 2004;
Priestnall et al., 2000). Recently TLS has been
actively applied to simulation of diverse spatial
phenomena (Arayici, 2007).

Park et al. (2007) used 3D coordinate informa-
tion of TLS to estimate deformed shapes of a

simple beam by deriving special geometric rela-
tionships and applying the least square method.
Quadratic polynomial equations were used to sat-
isfy the conditions of deflection at the load point
and continuity of slope. Compared to displace-
ments obtained from LVDT, the TLS showed the
precision level of approximately 2 mm. However,
deformed shapes of a simple beam under a single
concentrated load should be expressed as a poly-
nomial of third degree or higher, in theory. There-
fore, the quadratic polynomial estimation of the
deformed shapes has limitations.

In this paper, to minimize errors in the estimated
deformed shapes, a computational model is pre-
sented for automatic selection of the optimal de-
gree of polynomials. The degree of a polyno-
mial function is chosen based on the complexity
of beam structures and its response instead of us-
ing a specific degree of polynomial function. The
chosen polynomial function for estimation of a
deformed shape is forced to satisfy the boundary
and compatibility conditions of a beam structure.
The performance of the proposed model is exper-
imentally investigated.

In the following sections, a principle of 3D co-
ordinate data extraction from TLS and the co-
ordinate transformation method for displacement
measurement are briefly described. Next, the
components of computational model are pre-
sented in detail. Subsequently, the model is ap-
plied to estimation of deformed shapes and maxi-
mum deflections of a beam structure subjected to
a concentrated load. Finally, the paper ends with a
summary of experimental results and conclusions.

2 Acquisition of 3D Coordinate Data from
TLS and Coordinate Transformation for
Displacement Measurements

2.1 Principle of 3D Coordinate Data Extrac-
tion from TLS

The principle of 3D coordinate data extraction
from TLS system is as shown in Figure 1. The
principle of 3D coordinate data extraction from
TLS is based on measuring the time it takes for the
laser pulse to travel from its source to an object or
structure and return, and computing the distance
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based on the travel speed of the pulse. The rel-
ative coordinates of the object with respect to the
laser scanner of the object with respect to the laser
scanner, x′i, y′i, z′i are obtained using the distance
between the laser scanner and the object and the
angle of the laser pulse at the time of laser pulse
generation.
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y

Figure 1: Principle of 3D coordinate data extrac-
tion from TLS

Here, i refers to the 3D coordinate data num-
ber obtained from the laser scanner, where i =
1,2,3, . . .,m.

Figure 2 shows an image based on 3D coordinates
of a steel beam obtained from TLS system in ac-
cordance with the principle of Figure 1. The accu-
racy of 3D coordinate data of an object obtained
from a TLS system depends on the type of laser
scanner and the distance to the object.

Figure 2: 3D image of the steel beam obtained
from TLS

In general, TLS system can obtain 3D coordi-
nates with precision level of about 10 mm (Trim-
ble, 2007; Optech, 2007). The TLS system used

in this study showed directional error of about 7
mm and vertical error of about 12 mm at the mea-
suring distance of 100 m (Trimble, 2007). How-
ever, in practice, reflection characteristics such as
color, texture and angle of incidence of a laser
can be caused of the errors (Stiros et al., 2007).
In this study, experimental outliers of 3D coordi-
nates from the TLS were partly shown up to about
20 mm. Such precision levels limit applicability
of the technique for structural health monitoring,
which requires, in general, precision level of a
few millimeters. For this reason, Park et al (2007)
presented a model for estimating a structure’s de-
formed shapes using TLS 3D coordinate data.

2.2 Coordinate Transformation for Displace-
ment Measurement

When 3D coordinate data are obtained on defor-
mation of a structure from a TLS system as in Fig-
ure 1, the object’s 3D coordinate data represent
relative coordinates, x′i,y′i, z′i based on the coordi-
nate system (x′,y′, z′) of the laser scanner. There-
fore, 3D coordinate data obtained from TLS sys-
tem cannot be used directly for measurement of a
structure. The relative displacements of a struc-
ture obtained from TLS system need to be trans-
formed to the structural coordinate system for dis-
placement measurement. The structural coordi-
nate system (x,y, z) must be defined in consid-
eration of the deformation characteristics of the
structure to enable the coordinate transformation.

In Figure 1, the relationship between the TLS co-
ordinate system (x′,y′, z′) based on the terrestrial
laser scanner and the structural coordinate system
(x,y, z) based on the structure’s deformation char-
acteristics, can be obtained using base vectors in
consideration of the structure’s shape, where the
base vectors are obtained by applying the least
square method and the geometric characteristics
on the 3D coordinate data of the structure ob-
tained from the laser scanner. In the case of a steel
beam in Figure 2, 3D coordinates of the flange
and the web areas are used where 3D coordinate
information is relatively plentiful.

In Figure 2, the upper flange surface and the web
surface are obtained based on the least square
method, followed by the intersecting line of the
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two surfaces. The intersecting point of the in-
tersecting line and the vertical surface, which is
perpendicular to the intersection line, containing
the far left end point of the steel beam is the ori-
gin, O, while the intersecting point between the
intersecting line and the vertical surface, which is
perpendicular to the intersecting line, containing
the far right end point of the steel beam on the
opposite side, is the end point, E. The base vec-
tor (v) is computed using the origin O and the end
point E. The TLS coordinate system (x′,y′, z′) can
be transformed to the structural coordinate sys-
tem (x,y, z), which allows direct computation of
a structure’s deformation, through translation and
rotation using the base vector.

3 Computational Model for Estimation of
Deformed Shape

In section 2 it is introduced the coordinate trans-
formation method, which transforms TLS coor-
dinate data of a structure, x′i,y′i, z′i, to the struc-
tural coordinate data, xi,yi, zi which allows com-
putation of deformed shapes. In this section
computational model is presented to define poly-
nomial shape functions suitable for various de-
formed shapes of beam structures from TLS 3D
coordinate data, xi,yi, zi of a structure. The pro-
posed model consists of the following five compo-
nents: 1) formulation of polynomial shape func-
tion, 2) application of boundary condition, 3) in-
ducement of compatibility condition, 4) applica-
tion of the least square method and 5) evaluation
of error vector and determination of reasonable
polynomial shape function. The five components
are described below.

3.1 Formulation of Polynomial Shape Func-
tion

Schematic diagram of a beam structure subjected
to arbitrary loads as in Figure 3, follows differen-
tial equation of the deflection curve of Eq.1 based
on Euler’s beam theory.

d2z(x)
dx2 =

M(x)
EI

(1)

l
a b

x

z
x

Figure 3: Schematic diagram of a beam structure
subjected to arbitrary loads

Here, z is the vertical deflection, M is the bend-
ing moment, E is the modulus of elasticity and I
is the second moment of inertia. From the Eq.1,
deformed shape of a beam structure can be ex-
pressed as a polynomial shape function with re-
spect to the longitudinal direction of beam de-
pending on the load type, such as a concentrated
load or distributed load, and the boundary con-
ditions of supports. In general, it can be assumed
that a beam structure’s y-axis deflection, as shown
in Figures 1 and 2, does not change unless its limit
state are reached due to buckling. In such a case,
as the first step in estimation of a deformed shape,
the vertical deflection z(x) at an arbitrary point x
is defined as an nth polynomial function such as
Eq.2.

z(x) = c1xn +c2xn−1 + · · ·+cn−1x2 +cnx1 +cn+1

(2)

Here c1,c2, . . .,cn+1 are coefficients of the ap-
proximated function to be determined from the
3D TLS coordinate data by applying the least
square method.

3.2 Application of Boundary Conditions

Boundary conditions of supports can be applied
for estimation of its deformed shapes from TLS
3D coordinate data. To make use of boundary
conditions at two end points of a beam, two equa-
tions are needed to describe such end points. In
case the beam deflection cannot be expressed in
a single polynomial function because of load dis-
continuity, such as a concentrated load, two equa-
tions are also necessary to describe two intervals
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of the beam. Boundary conditions of supports in-
clude fixed support, hinge support, roller support
and spring support with variable stiffness. Bound-
ary conditions identified for rotation and deflec-
tion at a support can be used as constraints when
applying the least square method. In Figure 3, de-
formed shapes of the beam in intervals a and b
divided at an arbitrary point, C, can be expressed
by considering the boundary conditions of rota-
tion and deflection as in Eq.3 and Eq.4.

za(x) = ca
1xn +ca

2xn−1 + · · ·+ca
n−1x2 +RAx1 +DA,

0 ≤ x ≤ a (3)

zb(x) = cb
1(x− l)n +cb

2(x− l)n−1 + · · ·
+cb

n−1(x− l)2 +RB(x− l)1 +DB, b ≤ x ≤ l
(4)

In case only the initial value of beam deflection
can be considered, Eq.3 and Eq.4 can be simpli-
fied as Eq.5 and Eq.6. Here, the arbitrary point C
can be a position of load discontinuity or a central
position of the beam.

za(x) = ca
1xn +ca

2xn−1 + · · ·+ca
n−1x2 +ca

nx1 +DA,

0 ≤ x ≤ a (5)

zb(x) = cb
1(x− l)n +cb

2(x− l)n−1 + · · ·
+cb

n−1(x− l)2 +cb
n(x− l)1 +DB, b ≤ x ≤ l

(6)

Here, ca
1,ca

2, . . .,c
a
n and cb

1,cb
2, · · · ,cb

n denote coeffi-
cients of the approximated function to be defined
from applying the least square method on the 3D
TLS coordinate data of a structure for each inter-
val. Also, RA and RB are the initial values of rota-
tion angle at points A and B in Figure 3 while DA

and DB denote initial values of support deflections
at A and B, respectively. If boundary conditions at
points are clearly defined, then the coefficients of
RA, RB, DA, and DB corresponding to such bound-
ary conditions can be determined.

3.3 Inducement of Compatibility Condition

Theoretically, the compatibility condition on
beam continuity can be applied to a point of sepa-
ration, such as C in Figure 3, or to a point of load

discontinuity. Here, unknown constants are deter-
mined to allow derivation of the beam’s deflection
curve equation.

However, application of the least square method
to an arbitrary polynomial function of subsections
3.1 and 3.2, obtained from TLS 3D coordinate
data, does not yield a definitive solution but only
approximation equations are derived. Therefore,
the compatibility condition is not satisfied. Fur-
thermore, it is difficult to apply strict compatibil-
ity conditions to two or more estimated approx-
imation equations. As an alternative, the method
of deriving the compatibility approximately by in-
corporating mutual deformation characteristics of
each beam interval is considered. When estimat-
ing an approximation expression for interval a de-
flection in Figure 3, the 3D coordinate data of in-
terval b near point C (interval C ∼Cb) are used ad-
ditionally. On the other hand, the 3D coordinate
data of interval a near point C (interval Ca ∼ C)
are used for estimation of the approximation ex-
pression for interval b. In this way, mutual charac-
teristics of intervals are incorporated to derive the
compatibility condition in an approximate form.
Consequently, Eq.3 to Eq.6 can be expressed as
Eq.7 to Eq.10 with compatibility condition incor-
porated.

za(x) = ca′
1 xn +ca′

2 xn−1+· · ·+ca′
n−1x2 +RAx1 +DA,

0 ≤ x ≤ Cb (7)

zb(x) = cb′
1 (x− l)n +cb′

2 (x− l)n−1 + · · ·
+cb′

n−1(x− l)2 +RB(x− l)1 +DB, Ca ≤ x ≤ l
(8)

za(x) = ca′
1 xn +ca′

2 xn−1 +· · ·+ca′
n−1x2 +ca′

n x1 +DA,

0 ≤ x ≤ Cb (9)

zb(x) = cb′
1 (x− l)n +cb′

2 (x− l)n−1 + · · ·
+cb′

n−1(x− l)2 +cb′
n (x− l)1 +DB, Ca ≤ x ≤ l

(10)

Here, ca′
1 ,ca′

2 , · · · ,ca′
n and cb′

1 ,cb′
2 , · · · ,cb′

n denote the
coefficients of approximated functions to be de-
termined from the 3D TLS coordinate data of an
interval by applying the least square method.
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3.4 Application of the Least Square Method

The least square method is an approximation
method to minimize the size of error vector ob-
tained from correlation of measured data such as
from experiments. Eq.7 to Eq.10 determined in
the subsections 3.1 to 3.3 can be introduced to de-
termine the coefficients of a function that mini-
mize the sum of squares of differences between
the functional values and the measured values.
When considering only the boundary conditions
of deflection, Eq.9 and Eq.10 can be expressed in
matrices as in Eq.11 and Eq.12.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

za
1

za
2
...
...

za
m′

a

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

xn
1 xn−1

1 · · · x1
1 1

xn
2 xn−1

2 · · · x1
2 1

...
... · · · ...

...
...

... · · · ...
...

xn
m′

a
xn−1

m′
a

· · · x1
m′

a
1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ca′
1

ca′
2
...

ca′
n

DA

⎫⎪⎪⎪⎪⎪⎬
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+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ea
1

ea
1
...
...

ea
m′

a

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, 0 ≤ x ≤ Cb (11)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zb
1

zb
2
...
...

zb
m′

b

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(x1 − l)n (x1 − l)n−1 · · · (x1 − l)1 1
(x2 − l)n (x2 − l)n−1 · · · (x2 − l)1 1

...
... · · · ...

...
...

... · · · ...
...

(xm′
b
− l)n (xm′

b
− l)n−1 · · · (xm′

b
− l)1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cb′
1

cb′
2
...

cb′
n

DB

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

eb
1

eb
1
...
...

eb
m′

b

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, Ca ≤ x ≤ l (12)

Here, m′
a,m′

b denote the sum of the number of co-
ordinate data of intervals a and b plus the num-

ber of coordinate data of interval C ∼ Cb, inter-
val Ca ∼ C, respectively. Also, ea

1,ea
2, · · · ,ea

m′
a
,

eb
1,eb

2, · · · ,eb
m′

b
denote errors between the assumed

polynomial function and coordinate data obtained
from TLS. Eq.11 and Eq.12 are expressed in ma-
trix vector form as follows.

za = Xaξξξ a +ea, 0 ≤ x ≤ Cb (13)

zb = Xbξξξ b +eb, Ca ≤ x ≤ l (14)

Therefore, the error vectors are expressed as fol-
lows.

ea = za −Xaξξξ a, 0 ≤ x ≤ Cb (15)

eb = zb −Xbξξξ b, Ca ≤ x ≤ l (16)

The unknown ξξξ vector can be computed as fol-
lows from minimization of the sum of squares of
e vector elements.

ξξξ ∗
a =

(
XT

a Xa
)−1

XT
a za, 0 ≤ x ≤Cb (17)

ξξξ ∗
b =

(
XT

b Xb
)−1

XT
b zb, Ca ≤ x ≤ l (18)

3.5 Evaluation of Error Vectors and Determi-
nation of Reasonable Polynomial Shape
Function

As described in the subsections 3.1 to 3.3, it is
introduced an arbitrary nth polynomial function
in consideration of support’s boundary conditions
and compatibility condition. To this polynomial
function, enter the 3D TLS coordinate data and
apply the least square method as in Eq.17 and
Eq.18. Then, the error vectors e∗a and e∗b are com-
puted as in Eq.19 and Eq.20 on the deformed
shapes determined from the least square method
and the 3D TLS coordinate data.

e∗a = za −Xaξξξ ∗
a, 0 ≤ x ≤ C (19)

e∗b = zb −Xbξξξ ∗
b, C ≤ x ≤ l (20)

Next, using the number of coordinate data of each
interval, the precision levels, σ∗

a and σ∗
b for error

evaluation are determined as in Eq.21 and Eq.22.
From Eq.21 and Eq.22, the precision levels for
various polynomial functions (2nd–5th, table 1)
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are evaluated, and then the coefficient vectors, ξξξ a

and ξξξ b having the minimum error are determined.

σ∗
a =

‖e∗a‖√
ma

(21)

σ∗
b =

∥∥e∗b
∥∥

√
mb

(22)

Thus, the deformed shape equations Eq.23 and
Eq.24 can be obtained from the coefficient vectors
ξξξ a and ξξξ b and the longitudinal position vectors xa

and xb.

za(x) = ξξξ aTxa, 0 ≤ x ≤ C (23)

zb(x) = ξξξ bTxb, C ≤ x ≤ l (24)

3.6 Computational Procedure

This subsection describes the algorithm for apply-
ing the proposed model in steps. The application
algorithm consists of eight steps as follows.

Step 1. Input 3D coordinate data: xi,yi, zi.

Step 2. Set initial conditions.

1) Boundary conditions of supports:
RA,RB,DA,DB.

2) Degree of polynomial function: nmin,
nmax.

3) Separation point: C.

4) Boundaries for compatibility condi-
tions: Ca, Cb.

Step 3. Formulate polynomial function matrix:
Eq.13 and Eq.14.

Step 4. Apply the least square method: Eq.17
and Eq.18.

Step 5. Determine precision levels: Eq.21 and
Eq.22.

Step 6. Repeat Step 3 ∼ Step 5.

Step 7. Determine coefficients of polynomial
functions: ξξξ a, ξξξ b.

Step 8. Estimate deformed shapes and displace-
ment: Eq.23 and Eq.24.

4 Application of Computational Model

4.1 Experimental Setup

To evaluate the performance of the proposed
model, a bending test of a simply supported steel
beam subjected to a point load at the mid-span
is conducted as in Figure 4 and Figure 5. The
beam is a Korean H-section with a depth of 100
mm, flange width of 100 mm, web thickness of 6
mm, and flange thickness of 6 mm. The grade of
steel for the beam is a Korean SS400 with speci-
fied yield strength of Fy = 253.3MPa. The beam is
designed to generate pure bending along the beam
length direction. At the mid-span, l/2 of the steel
beam, loads of 4.95 (P1), 9.66 kN (P2), 14.88 kN
(P3) are applied sequentially, and TLS and LVDTs
are used for each load to obtain the 3D coordi-
nates of the beam and its deflection at locations of
l/8, l/4, 3l/8, l/2, 5l/8, 3l/4 and 7l/8 as in Figure
5.

 
Figure 4: Experimental setup

Figure 5: Schematic diagram of the experiment
setup

4.2 Application of Computational Model

The 3D coordinate data of the beam were obtained
from TLS at approximately 3 m from the experi-
ment set as in Figure 6. Figure 7 shows images
of the steel beam before and after application of
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Table 1: Vertical deflections of the beam from LVDTs and TLS computational model

Loading step
Measuring Deflections (mm)
techniques l/8 l /4 3l /8 l /2 (a) l /2 (b) 5l /8 3l /4 7l /8 σ∗

a σ∗
b

P1= 4.95 kN

LVDT -3.08 -5.73 -7.59 -8.35 -8.35 -7.58 -5.84 -3.17 - -
TLS_2nd -3.13 -5.55 -7.23 -8.14 -8.30 -7.11 -5.61 -3.37 0.92 0.95
TLS_3rd -2.91 -5.54 -7.41 -8.05 -8.14 -7.41 -5.57 -2.98 0.91 0.92
TLS_4th -2.86 -5.61 -7.39 -8.02 -8.13 -7.41 -5.59 -2.96 0.91 0.92
TLS_5th -2.87 -5.62 -7.37 -8.06 -8.15 -7.39 -5.60 -2.97 0.91 0.92

P2 = 9.66 kN

LVDT -6.05 -11.22 -14.79 -16.29 -16.29 -14.75 -11.40 -6.26 - -
TLS_2nd -6.21 -11.01 -14.36 -16.24 -16.32 -14.24 -11.10 -6.49 0.96 1.01
TLS_3rd -5.83 -10.99 -14.67 -16.07 -16.14 -14.61 -11.06 -6.01 0.93 0.96
TLS_4th -5.82 -10.99 -14.67 -16.06 -16.14 -14.61 -11.06 -6.01 0.93 0.96
TLS_5th -5.83 -11.01 -14.64 -16.12 -16.12 -14.62 -11.05 -6.00 0.93 0.96

P3 = 14.88 kN

LVDT -9.20 -17.03 -22.57 -24.79 -24.79 -22.52 -17.33 -9.51 - -
TLS_2nd -9.62 -16.93 -21.92 -24.54 -24.65 -21.87 -17.11 -9.96 1.03 1.03
TLS_3rd -9.19 -16.92 -22.28 -24.34 -24.40 -22.34 -17.05 -9.34 1.00 0.95
TLS_4th -9.22 -16.87 -22.29 -24.36 -24.39 -22.33 -17.08 -9.32 1.00 0.95
TLS_5th -9.23 -16.88 -22.27 -24.41 -24.36 -22.35 -17.07 -9.31 1.00 0.95

Table 2: Vertical deflection errors of TLS computational model based on the LVDT

Loading step
Degree of Deflection errors (mm)

polynomials l /8 l /4 3l /8 l /2 (a) l /2 (b) 5l /8 3l /4 7l /8 σa σb

P1= 4.95 kN

TLS_2nd 0.05 -0.17 -0.35 -0.21 -0.05 -0.47 -0.24 0.20 0.23 0.28
TLS_3rd -0.17 -0.19 -0.18 -0.30 -0.21 -0.17 -0.27 -0.19 0.22 0.22
TLS_4th -0.23 -0.12 -0.19 -0.34 -0.22 -0.18 -0.25 -0.21 0.23 0.22
TLS_5th -0.22 -0.11 -0.22 -0.30 -0.20 -0.19 -0.24 -0.20 0.22 0.21

P2 = 9.66 kN

TLS_2nd 0.16 -0.21 -0.43 -0.06 0.03 -0.51 -0.30 0.24 0.25 0.32
TLS_3rd -0.23 -0.23 -0.11 -0.23 -0.15 -0.13 -0.34 -0.25 0.20 0.24
TLS_4th -0.23 -0.22 -0.12 -0.23 -0.15 -0.13 -0.34 -0.25 0.21 0.24
TLS_5th -0.22 -0.21 -0.15 -0.18 -0.17 -0.12 -0.35 -0.25 0.19 0.24

P3 = 14.88 kN

TLS_2nd 0.42 -0.10 -0.65 -0.25 -0.14 -0.65 -0.22 0.45 0.41 0.42
TLS_3rd -0.01 -0.11 -0.28 -0.45 -0.39 -0.18 -0.28 -0.17 0.27 0.27
TLS_4th 0.03 -0.16 -0.27 -0.43 -0.40 -0.18 -0.25 -0.19 0.27 0.27
TLS_5th 0.04 -0.15 -0.30 -0.38 -0.43 -0.17 -0.26 -0.20 0.26 0.28

 
Figure 6: 3D image of the steel beam obtained
from TLS

the loadings. Approximately 40,000 and 20,000
3D coordinate data points were obtained from the
web and the upper flange of the steel beam, re-
spectively. The 3D coordinate data from the web
and the upper flange of Figure 7(a) were used
for coordinate transformation from TLS coordi-
nate system to the structural coordinate system.
Also, the 3D coordinate data of the upper flange,
which represent the deformation characteristics of
the steel beam effectively, were used for the defor-
mation computation model.
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(a) Before loading (b) Loading step 1

 
(c) Loading step 2 (d) Loading step 3

Figure 7: 3D images of the steel beam before and
after loading

Thus, the 3D coordinate data of the upper flange
(Figures 7(b), (c) and (d)) based on the three dif-
ferent loads of 4.95 kN (P1), 9.66 kN (P2), 14.88
kN (P3) obtained from TLS are applied coordinate
transformation to obtain the 3D coordinate input
data for displacement measurement. For the ini-
tial condition setting, 0 is entered for the bound-
ary conditions DA and DB for vertical deflection
in Eq.9 and Eq.10. The degrees of the polyno-
mial function were considered minimum degree
of 2 to maximum degree of 5 based on Euler’s
beam theory. The mid-span of the beam is set as
separation point which divides the equations due
to the load discontinuity. Boundaries for deriving
the compatibility condition are set as 1,800 mm
and 2,200 mm from location A in Figure 5 con-
sidered 1/10 of each interval. Then, polynomial
matrices are formed in consideration of config-
ured boundary conditions and compatibility con-
ditions. Based on the initial configured degree of
the polynomials, Step 3 to Step 5 in the subsec-
tion 3.6 are repeated to obtain coefficient vectors
of the polynomials and the precision level of each
coefficient vector is evaluated. Finally, the coef-
ficient vectors of the polynomials are determined
based on the precision evaluation and the beam
deformed shapes are estimated.

5 Results and Discussion

5.1 Determination of Polynomial Function

From Steps 1∼8 in the subsection 3.6, deformed
shapes of the steel beam were determined for each
load of 4.95 kN (P1), 9.66 kN (P2), 14.88 kN (P3).
Figure 8 shows histograms of errors between the
3D coordinate data and the estimated deformed
shapes. The error distribution in Figure 8 shows a
standard normal distribution. Polynomials of de-
gree 2 to 5 except in cases of quadratic polyno-
mials in Figures 8 (a), (e) and (i), show similar
histograms for each load. This implies that the es-
timated deformed shapes converge to specific so-
lutions with respect to the 3D coordinate data.

Estimated vertical deflections per polynomials of
degree 2 to 5 and the deflections directly mea-
sured from LVDTs for each load are as in Table
1. In this table, σ∗

a , σ∗
b denote the standard devi-

ations computed from Eq.21 and Eq.22 for each
polynomial expression. In Table 1, in case of us-
ing a quadratic polynomial for the load of 4.95
kN (P1), the standard deviation of interval a was
computed as 0.92 mm and that for interval b was
0.95 mm. When applying a cubic polynomial for
the load of 4.95 kN (P1), the standard deviation of
interval a was computed as 0.91 mm and that for
interval b was 0.92 mm, showing improvement of
precision level relative to the case of a quadratic
polynomial. The results of applying polynomi-
als of degree 4 and degree 5 were similar to the
results of a cubic polynomial with a standard er-
ror of 0.002 mm. Figure 9(a) shows the standard
deviation of 3D coordinate data based on the de-
formed shapes estimated from 3D coordinate data
for degree 2 to 5 per each load. Here, the stan-
dard deviation converges uniformly from polyno-
mials of degree 3 and higher. Table 2 shows errors
of vertical deflections estimated from the model
compared to deflections directly measured from
LVDTs. In Table 2, σa and σb denote the stan-
dard deviations of estimated vertical deflections
from TLS model based on the LVDTs. Similarly,
the standard deviation converges uniformly from
polynomials of degree 3 and higher (Figure 9(b)).

From the tables and figures in the previous sec-
tion, polynomials of degree 3 are predicted to be
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(a) 1P (n=2)                                 (b) 1P (n=3)                               (c) 1P (n=4)                               (d) 1P (n=5) 

(e) 2P (n=2)                                 (f) 2P (n=3)                               (g) 2P (n=4)                               (h) 2P (n=5) 

   

(i) 3P (n=2)                                 (j) 3P (n=3)                               (k) 3P (n=4)                               (l) 3P (n=5) 

Figure 8: 3D image of the steel beam obtained from TLS

the minimum degree polynomials suitable for es-
timating deformed shapes of a target experiment
set. According to Euler’s beam theory, the verti-
cal deflection of a simple beam under a concen-
trated load can be expressed as a cubic polyno-
mial. And this fact was verified from our exper-
iment results and the proposed deformation com-
putational model can be used to determine the
polynomial expressions for accurate prediction of
the beam’s deformed shape.

5.2 Accuracy

In the subsection 5.1 cubic polynomials were ver-
ified to be the minimum degree polynomials suit-
able for estimating the deformed shapes of a tar-
get structure. In this subsection, the accuracy
of the deformed shapes estimated from quadratic
polynomials and cubic polynomials from the pro-
posed model is analyzed relative to the vertical
deflections measured directly using LVDTs. Fig-

ure 10(a) and (b) show the beam deflections from
LVDTs and the computational model when apply-
ing quadratic and cubic polynomials for different
load levels, while Figure 11(a) and (b) show the
deflection errors of the same.

When computing deformation from quadratic
polynomials (Figure 11(a) and Table 2), the max-
imum error occurred at position as -0.47 mm (P1),
-0.51 mm (P2), and -0.65 mm (P3). When using
cubic polynomials (Figure 11(b) and Table 2), the
maximum error occurred at position 3l/4 or po-
sition l/2 as -0.27 mm (P1), -0.34 mm (P2), and
-0.42 mm (P3). The amplitude of deflection er-
ror was the greatest between positions 5l/8 and
7l/8 in Figure 11(a) as 1.10 mm (P3) while that in
Figure 11(b) was the difference between position
l/8 and position l/2 as 0.41 mm (P3). In Figure
11(a) the deflection error based on LVDTs shows
a symmetric pattern centered on the beam’s cen-
ter with amplitude of 1 mm or greater. In Figure
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               (a) Standard deviations of 3D coordinate data based on the TLS model 
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Figure 9: Standard deviation for different degrees of deformed shapes estimated from 3D coordinate data
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Figure 10: Vertical deflections for each load level from LVDTs and TLS computational model when apply-
ing quadratic and cubic polynomials
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Figure 11: Vertical deflection errors for each load level of TLS computational model based LVDT when
applying quadratic and cubic polynomials
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11(b) the same varies irregularly with amplitude
of 0.5 mm or less. From these results it can be
deduced that the deformed shapes estimation us-
ing quadratic polynomials does not properly re-
flect the deformation pattern of steel beams under
concentrated loads relative to that estimated from
cubic polynomials. Furthermore, it is noted that
the accuracy of the deformation pattern estimated
using cubic polynomials determined from the pro-
posed model falls within 0.5 mm of the vertical
deflections measured directly using LVDTs.

5.3 Compatibility

In each interval (interval a and interval b in Figure
5) the coordinate data of the opposite interval was
included approximately 10 percent to incorporate
the mutual characteristics and derive the compat-
ibility conditions. To verify results of compati-
bility conditions, the errors of each interval were
compared at the continuity point (l/2) of each in-
terval. Prior to deriving compatibility conditions,
the vertical deflection error at l/2 position in inter-
val a and interval b was the maximum as 0.29 mm
when applying quadratic polynomials for load P1.
The average error of polynomials of degree 2∼5
for loads P1, P2, and P3 was 0.15 mm. After in-
ducement of the compatibility condition, the ver-
tical deflection error at l/2 position in interval a
and interval b was maximum as 0.16 mm when
applying quadratic polynomials for load P1 while
the average error of polynomials of degree 2∼5
for loads P1, P2, and P3 was 0.07 mm. Therefore,
it is noted that the error was reduced to less than
half of what it was prior to deriving the compat-
ibility condition. In this paper approximately 10
percent of the opposite interval’s coordinate data
was included to derive the compatibility condi-
tion. Here, it is observed that the amount of the
opposite interval’s data can be modified appropri-
ately depending on the deflection pattern of two
intervals a and b.

5.4 Comments on Practical Applications

This research intends to advance the application
of TLS for health monitoring of structural safety
and serviceability. The safety and serviceability
of a structure or a structural member can be as-

sessed by monitoring both the deformed shape
and the maximum values of displacements. The
displacement measurement model using TLS can
be applied to periodic monitoring of the structural
responses of existing buildings and bridges.

For practical applications, deflection accuracy in
the order of millimeters is required in health mon-
itoring of structures. Use of the displacement
measurement model in a laboratory environment
allows very precise measurements of displace-
ments of a steel beam with the idealized experi-
mental setup. However, for practical application
of the model to actual structures in field, further
investigation on various factors affecting the pre-
cision of displacement measurement such as the
measuring scheme, the distance of the scanner
from the surveyed object, the surface conditions
of targets with different reflection characteristics
(Stiros et al, 2007) are required.

6 Conclusions

This paper presented a model for estimating de-
formed shapes and displacements of a structure
for structural health monitoring using TLS. The
proposed model consists of the following five
components: 1) formulation of polynomial shape
function, 2) application of boundary conditions,
3) inducement of compatibility conditions, 4) ap-
plication of the least square method and 5) evalu-
ation of error vector and determination of reason-
able polynomial shape function. The model pro-
vides a methodology for actively estimating de-
formed shapes of a beam structure from 3D coor-
dinate data obtained from TLS.

The proposed model was applied on a simply sup-
ported steel beam subjected to a concentrated load
to estimate the structure’s deformed shapes. The
performance of the model was assessed for a num-
ber of parameters based on LVDT measurements.
From such results, the following conclusions are
made.

(1) In the proposed model, the optimal degree
of polynomial function is selected based on
the complexity of beam structures, instead of
using a specific degree of polynomial func-
tion. The chosen polynomial function for
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estimation is forced to satisfy the boundary
and compatibility conditions and allows ac-
curate estimation of a beam structure’s de-
formed shapes and displacement.

(2) When estimating deformed shapes of a struc-
ture, support boundary conditions such as
fixed support, roller support, hinge support
and spring support can be considered. Bound-
ary conditions obtained from other measure-
ment devices, such as LVDT and inclinometer
which allow partial sensing, can also be con-
sidered as necessary for this purpose.

(3) A method for satisfying continuity compat-
ibility condition was presented to resolve
the interval discontinuity problem of the de-
formed shapes being estimated.

(4) The model allows estimation of a beam struc-
ture’s deformed shapes within the precision
level of 0.5 mm. Such estimated deformed
shapes provide indices of a structure’s ser-
viceability and the corresponding displace-
ment load provides a measure for the struc-
ture’s safety assessment.
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