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A Boundary Element Formulation for Boundary Only Analysis of Thin
Shallow Shells

E. L. Albuquerque1 and M. H. Aliabadi2

Abstract: This paper presents a boundary ele-
ment formulation for the analysis of thin shallow
shells. Classical plate bending and plane elasticity
formulations are coupled and effects of curvature
are treated as body forces. The body forces are
written as a sum of approximation functions mul-
tiplied by coefficients. Domain integrals that arise
in the formulation are transformed into boundary
integrals by the radial integration method. Two
different approximation functions are employed,
that is 1 + r and r2 logr. The method is applied
to several problems and the accuracy of each ap-
proximation function is assessed by comparison
with results from literature.

Keyword: Boundary element method, radial in-
tegration method, shallow shells

1 Introduction

Shallow shells have been analysed by different
numerical methods, for example, finite element
method [Brebbia and Debnath (1970)], boundary
element method [Lu and Huang (1992), Dirgan-
tara and Aliabadi (1999)], and meshless method
[Li, Soric, Jarak, and Atluri (2005) and Rabck-
zuk and Areias (2006)]. Considerable progress
has been made in the past few years in applica-
tion of the boundary element method (BEM) to
the analysis of shell structures. One of the first
works was due to Newton and Tottenham (1968)
who presented an application of the BEM to shal-
low shells by decomposition of the fourth order
governing equation into a second order equation.
Since this work, many different approaches have
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been developed [see review by Beskos (1991)]. In
some formulations there is no domain integration,
as Lu and Huang (1992) who developed a direct
BEM for shallow shells involving shear deforma-
tion. However, the direct BEM involves compli-
cated fundamental solutions. An alternative to
the direct BEM is the coupling of plate bending
and plane elasticity formulations, as proposed by
Zhang and Atluri (1986) who derived a formula-
tion for static and dynamic analysis of classical
shallow shells. The domain integrals were com-
puted by domain discretization into cells. This
formulation was extend for nonlinear problems
by Zhang and Atluri (1986,1988). Later, Dirgan-
tara and Aliabadi (1999) presented a formula-
tion to the analysis of shear deformable shallow
shells. However, the discretization of the domain
into cells reduces one of the main advantages of
the BEM that is the boundary only discretiza-
tion. Later, Wen, Aliabadi, and Young (2000)
used the formulation proposed by Dirgantara and
Aliabadi (1999) and transformed the domain inte-
grals into boundary integrals using the dual reci-
procity method. Baiz and Aliabadi (2006) pre-
sented a boundary element formulation for the
analysis of linear buckling of shear deformable
shallow shells.

The dual reciprocity method (DRM) and the ra-
dial integration method (RIM) are two techniques
used in the BEM to transform domain integrals
into boundary integrals. Details of the DRM can
be found for example in Partridge, Brebbia, and
Wrobel (1992) and of the RIM in Gao (2002) and
in Albuquerque, Sollero, and Paiva (2007). These
methods are suitable for boundary element for-
mulations where a complete fundamental solution
is either unavailable or very complex, because in
these cases one or more terms can remain as do-
main integrals in order to use a simpler fundamen-
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tal solution. Thus, a large number of problems can
be solved with the knowledge of few fundamental
solutions and additional terms, as inertia or non-
linear effects, can be treated as body forces and
taken to the boundary. In both methods, the re-
maining terms are approximated through a finite
series expansion involving proposed approximat-
ing functions and coefficients to be determined.
This expansion is substituted in the generated do-
main integrals that are, subsequently, transformed
into boundary integrals. The main difference be-
tween DRM and RIM is that in the second there
is no need to compute particular solutions. In ad-
dition, using DRM to shell problems would re-
quire the evaluation of transversal displacement
by derivatives of the radial bases approximation
function [see Wen and Aliabadi (2000)]. To the
best of authors knowledge, it hasn’t been found
in literature any work where the RIM has been
applied to shell formulations. The boundary el-
ement formulation for shells using RIM has not
been reported previously.

In this paper, a boundary element formulation for
thin shallow shells with no domain discretization
is presented. The domain integrals due to the cur-
vature of the shells are transformed into bound-
ary integrals using the RIM. Two approximation
functions are used. Differences between DRM
and RIM are discussed. Displacements computed
using both approximation functions are in good
agreement with results available in literature.

2 Boundary integral equations

Consider a shallow shell of an isotropic elastic
material with the mid-surface being described by
z = z(x1,x2) as shown in Figure 1. The base-plane
of the shell is defined by a domain Ω in the plane
x1,x2 whose boundary is given by Γ.

Using equilibrium equations of isotropic shallow
shells, the reciprocity relation, and the Green the-
orem, Zhang and Atluri (1986) derived integral
equations that can be divided in terms of plane
elasticity and plate bending formulations. These
formulations are coupled by the domain integrals
that arise in equations. Plane elasticity integral

Figure 1: Shallow shell.

equations (membrane equations) are given by:

ci ju j +
∫

Γ
t∗ik(Q,P)uk(P)dΓ(P)

=
∫

Γ
u∗ik(Q,P)tk(P)dΓ(P)

+
∫

Ω
Cκk jwu∗ik, j(Q,P)dΩ

+
∫

Ω
u∗ik(Q,P)qk(P)dΩ(P), (1)

where i, j,k = 1,2; uk is the displacement in di-
rections x1 and x2, ti = Ni jn j, Ni j are membrane
forces applied in the shell; w stands for the dis-
placement in the normal direction of the shell sur-
face; qk are domain loads applied in directions of
axis x1 and x2; P is the field point; Q is the source
point. The constant ci j is introduced in order to
take into account the possibility that the point Q
can be placed in the domain, on the boundary, or
outside the domain. The symbol * stands for fun-
damental solutions (see Aliabadi, 2002). Constant
κk j depends on the curvature radii Rk j of the shal-
low shell and are given by:

κ11 =
1

R11
+

ν
R22

κ22 =
ν

R11
+

1
R22

(2)

κ12 =
1−ν
R12

The plate bending integral equation is given by:

Kw(Q)

+
∫

Γ

[
V ∗

n (Q,P)w(P)−m∗
n(Q,P)

∂w(P)
∂n

]
dΓ(P)



Boundary Element Method for Thin Shallow Shells 65

+
Nc

∑
i=1

R∗
ci
(Q,P)wci(P) =

Nc

∑
i=1

R∗
ci
(P)wci(Q,P)

+
∫

Ω
q3(P)w∗(Q,P)dΩ

+
∫

Γ

[
Vn(P)w∗(Q,P)−mn(P)

∂w∗

∂n
(Q,P)

]
dΓ(P)

+
∫

Γ
Cκi jn jui(P)w∗(Q,P)dΓ(P)

+
∫

Ω
C

κi j

ρi j
w∗(Q,P)w(P)dΩ

+
∫

Ω
[Cκi j(P)w∗(Q,P)], j ui(P)dΩ, (3)

where ∂()
∂n is the derivative in the direction of the

outward vector n that is normal to the boundary
Γ; mn and Vn are, respectively, the normal bending
moment and the Kirchhoff equivalent shear force
on the boundary Γ; Rc is the thin-plate reaction
of corners; wci is the transverse displacement of
corners; q3 is the domain force in the transversal
direction; K is a constant equivalent to ci j of equa-
tion (1).

In order to have an equal number of equations
and unknowns, it is necessary to write an inte-
gral equation corresponding to the derivative of
the displacement w(Q) in relation to the unity vec-
tor m that is normal to the boundary in the source
point Q. This equation is given by:

K
∂w
∂m

(Q)

+
∫

Γ

[
∂V ∗

n (Q,P)
∂m

w(P)− ∂m∗
n(Q,P)
∂m

∂w(P)
∂n

]

dΓ(P)+
Nc

∑
i=1

∂R∗
ci
(Q,P)

∂m
wci(P)

=
Nc

∑
i=1

∂Rci(P)∗

∂m
wci(Q,P)

+
∫

Ω
q3(P)

∂w∗(Q,P)
∂m

dΩ

+
∫

Γ

[
Vn(P)

∂w∗(Q,P)
∂m

−mn(P)
∂ 2w∗

∂n∂m
(Q,P)

]

dΓ(P)+
∫

Γ
Cκi jn jui(P)

∂w∗(Q,P)
∂m

dΓ(P)

+
∫

Ω
C

κi j

ρi j

∂w∗(Q,P)
∂m

w(P)dΩ

+
∫

Ω

[
Cκi j(P)

∂w∗(Q,P)
∂m

]
, j

ui(P)dΩ. (4)

As can be seen in equations (1), (3), and (4), do-
main integrals arise in the formulation owing to
the curvature of the shell. These domain integrals
are:

P1(Q) =
∫

Ω
Cκk jwu∗ik, j(Q,P)dΩ, (5)

P2(Q) =
∫

Ω
C

κi j

ρi j
w∗(Q,P)w(P)dΩ, (6)

P3(Q) =
∫

Ω
[Cκi j(P)w∗(Q,P)], j ui(P)dΩ, (7)

P4(Q) =
∫

Ω
C

κi j

ρi j

∂w∗(Q,P)
∂m

w(P)dΩ, (8)

and

P5(Q) =
∫

Ω

[
Cκi j(P)

∂w∗(Q,P)
∂m

]
, j

ui(P)dΩ. (9)

In order to transform these integrals into boundary
integrals, the RIM is used. Details of this method
can be found in Albuquerque, Sollero, and Paiva
(2007). However, for sake of completeness, some
steps of the method are repeated here, in the next
section.

3 The radial integration method

Consider, in a general case, the following domain
integration:

P(Q) =
∫

Ω
b(P)v∗(Q,P)dΩ, (10)

where b and v∗ are generic body force and funda-
mental solution, respectively.

The body force is approximated over the domain
Ω as a sum of M products between approximation
functions fm and unknown coefficients γm, that is:

b(P) =
M

∑
m=1

γm fm (11)

for approximation functions based on pure radial
basis function, or

b(P) =
M

∑
m=1

γm fm +ax+by+c (12)
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with

M

∑
m=1

γmxm =
M

∑
m=1

γmym =
M

∑
m=1

γm = 0 (13)

for approximation functions based on radial basis
function combined with augmentation functions.

Now, considering that the body force is approx-
imated, for simplicity, by equation (11), the do-
main integral (10) can be written as:

P(Q) =
∫

Ω
b(P)v∗(Q,P)dΩ

=
M

∑
m=1

γm

∫
Ω

fmv∗(Q,P)dΩ,
(14)

or

P(Q) =
M

∑
m=1

γm

∫
Ω

fmv∗(Q,P)ρdρdθ , (15)

or

P(Q) =
M

∑
m=1

γm

∫
θ

∫ r

0
fmv∗(Q,P)ρdρdθ , (16)

where r is the value of ρ in a point of the boundary
Γ.

Defining Fm(Q) as the following integral:

Fm(Q) =
∫ r

0
fmv∗(Q,P)ρdρ , (17)

we can write:

P(Q) =
M

∑
m=1

γm

∫
θ

Fm(Q)dθ . (18)

Considering an infinitesimal angle dθ (Figure 2),
the relation between the arch length rdθ and the
infinitesimal boundary length dΓ, can be written
as:

cosα =
r dθ

2
dΓ
2

, (19)

or

dθ =
cosα

r
dΓ, (20)

where α is the angle between unity vectors r and
n.

Q

Γ

Ω

n

r
α

dθ

rdθ

r

dΓ

I

K

J

K
I

J

rdθ
2

dΓ
2

α

Figure 2: Geometric relation for the domain trans-
formation.

Using the inner product properties of the unity
vectors n and r, showed in Figure 2, we can write:

dθ =
n.r
r

dΓ. (21)

Substituting equation (21) into equation (18), the
domain integral (10) can be written as a boundary
integral given by:

P(Q) =
M

∑
m=1

γm

∫
Γ

Fm(Q)
r

n.rdΓ, (22)

or, in a matrix form:

P(Q) =
[ ∫

Γ
F1(Q)

r n.rdΓ
∫

Γ
F2(Q)

r n.rdΓ

...
∫

Γ
FM(Q)

r n.rdΓ
]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ1

γ2
...

γM

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (23)

To compute γm, it is necessary to consider the
body force in M points of the domain and of the
boundary. In the case of this work, these points
are the boundary nodes and some internal points.
Thus, equation (11) can be written as:

b = Fγ, (24)
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and γ can be computed as:

γ = F−1b. (25)

Substituting (25) into equation (23), we have:

P(Q) =
[ ∫

Γ
F1(Q)

r n.rdΓ
∫

Γ
F2(Q)

r n.rdΓ

...
∫

Γ
FM(Q)

r n.rdΓ
]

F−1b. (26)

Writing equation (26) for all source points, i.e., all
boundary nodes and internal points, we have the
following matrix equation:

P = RF−1b = Sb, (27)

where S = RF−1, P is a vector that contains the
value of P(Q) in all source points Q, and R is
a matrix that contains the value of integrals of
equation (26) when this equation is written for all
source points Q.

4 Matrix equation

Considering all body forces that appears in equa-
tions (1), (3), and (4), the vector P for these equa-
tions are given by:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Smc
bb Smc

bi Smc
bc

0 0 Smc
ib Smc

ii Smc
ic

Sp1c
bb Sp1c

bi Sp1
bb Sp1

bi Sp1
bc

Sp2c
bb Sp2c

bi Sp2
bb Sp2

bi Sp2
bc

Sp1c
ib Sp1c

ii Sp1
ib Sp2

ii Sp1
ic

Sp1c
cb Sp1c

ci Sp1
cb Sp1

ci Sp1
cc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ub

ui

wb

wi

wc

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(28)

where the superscript index of matrix S stands for
the type of equation that is being used, i.e., m
stands for the membrane equation given by equa-
tion (1), p1 stands for the first plate equation,
given by equation (3), and p2 stands for the sec-
ond plate equation, given by equation (4). The let-
ter c in the superscript index means that these are
coupling terms. In matrix S, the first subscript in-
dex stands for the location of the source points (b
if source points are at a smooth part of the bound-
ary, i if they are in the domain and c if they are
at corners). The second subscript index shows
where are the body forces that are multiplied by

terms of the matrix S. For the second index, the
same letters of the first subscript index are used
with the same meaning. The right hand side vec-
tor has nodal values of the body forces that in this
case are given by displacements (all the remaining
terms of domain integrals are considered as part of
the fundamental solution v∗). The letter u stands
for displacements in the x1 and x2 directions and
w stands for displacement in the transversal di-
rection. Subscript indices in the right hand side
vector indicate the location of nodes where dis-
placements are computed.

Finally, if the boundary Γ is discretized in bound-
ary elements and equations (1), (3), and (4) is
written for all source points, the following matrix
equation can be obtained:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Hm
bb 0 0 0 0

Hm
ib I 0 0 0

Hp1c
bb 0 Hp1

bb 0 Hp1
bc

Hp2c
bb 0 Hp2

bb 0 Hp2
bc

Hp1c
ib 0 Hp1

ib I Hp1
ic

Hp1c
cb 0 Hp1

cb 0 Hp1
cc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ub

ui

vb

wi

wc

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Gm
bb 0 0

Gm
ib 0 0

0 Gp1
bb Gp1

bc

0 Gp2
bb Gp2

bc

0 Gp1
ib Gp1

ic

0 Gp1
cb Gp1

cc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩

tb

pb

pc

⎫⎬
⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Smc
bb Smc

bi Smc
bc

0 0 Smc
ib Smc

ii Smc
ic

Sp1c
bb Sp1c

bi Sp1
bb Sp1

bi Sp1
bc

Sp2c
bb Sp2c

bi Sp2
bb Sp2

bi Sp2
bc

Sp1c
ib Sp1c

ii Sp1
ib Sp2

ii Sp1
ic

Sp1c
cb Sp1c

ci Sp1
cb Sp1

ci Sp1
cc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ub

ui

wb

wi

wc

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+q

(29)

where H and G are influence matrices of the
BEM; the vector v contains transversal dis-
placements and rotations of the nodes (not only
transversal displacement as vector w). Vectors t
and p contain boundary node reactions for mem-
brane and plate equations, respectively. The vec-
tor q is due to the domain load qi. Domain in-
tegrals due to qi’s are transformed exactly into
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boundary integrals using the procedure presented
in Albuquerque, Sollero, Venturini, and Aliabadi
(2006).

Equation (29) can be written in a more concise
form as:

Hv = Gt+Su+q (30)

Finally, columns of matrices of equation (30) can
be reordered in accordance with boundary condi-
tions and a linear equation system can be obtained
where the unknown displacements and reactions
can be computed.

5 Approximation functions

Two approximation functions are used in this
work. The first is a radial basis function that has
been used extensively in the DRM and is given
by:

fm1 = 1+R. (31)

The second is the well known thin plate spline:

fm3 = R2 log(R), (32)

used with the augmentation function given by
equations (12) and (13). It has been shown in
some works from literature that this approxima-
tion function can give excellent results for many
different formulations [see Partridge (2000), and
Golberg , Chen, and Bowman (1999)].

6 Characteristics of the radial integration
method

An important advantage of the RIM over domain
cell integration technique is that singularities that
need to be treated in the cell integration are re-
moved by the radial integration [Gao (2006)]. In
this work, the domain integral of equation (1) is
weak-singular because the derivatives of the fun-
damental solution u∗ik, j is of order O(1/r). How-
ever, this singularity is removed due to the mul-
tiplication of derivatives of the fundamental solu-
tion by the radius ρ and also by the approximation
function fm in equation (17). So, regular numeri-
cal integration can be used in the computation of
all domain integrals.

The most obvious advantage of the RIM over the
DRM is that particular solutions do not need to
be computed. Apart from that, the application of
RIM to domain integrals like that given by equa-
tion (5) is straight forward while in the DRM it
is necessary first to apply the Gauss theorem to
eliminate the derivative of the fundamental solu-
tion. However, at the same time that the deriva-
tives of the fundamental solution are eliminated,
derivatives of transversal displacements appear in
the DRM formulation. In order to avoid extra
degrees of freedom in the DRM, Wen, Aliabadi,
and Young (2000) proposed the approximation of
derivatives of transversal the displacement by the
nodal values of the transversal displacement mul-
tiplied by derivatives of the approximation func-
tion.

On the other hand, the most important disadvan-
tage of the RIM is the computational cost to gen-
erate the matrix S that is considerably bigger than
the DRM. In the RIM, the matrix S needs to be
built by integration around the entirely boundary
while in the DRM the integration is avoided by
the use of the influence matrices H and G.

7 Numerical results

In order to compare its accuracy, the proposed
method are applied to several numerical examples
with various boundary conditions.

7.1 Circular spherical shallow shell

Consider a spherical shallow shell under pressure
loading as shown in Figure 3. The geometry and
material properties of the shell are as follows:
thickness h = 0.1 m; radius of the base of the shell
a = 5 m; curvature radii R1 = R2 = R = 100 m
(R12 = R21 = 0), elastic modulus E = 210 GPa,
and Poisson ratio ν = 0.3. The internal pressure is
q3 = qo = 1 MPa (q1 = q2 = 0). The edge of the
shell is clamped, i.e., the boundary conditions are
u1 = u2 = w = ∂w/∂n = 0.

The transversal displacement is computed us-
ing approximation functions 1+R and R2 log(R).
Two meshes are used: mesh 1 has 12 constant
boundary elements and 9 internal points and mesh
2 has 24 constant boundary elements and 17 inter-
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a
R

qo

h

Figure 3: Clamped spherical shell under internal
pressure.

nal points (mesh 2 is shown in Figure 4).

Figure 4: Mesh and internal points for the spher-
ical shell (mesh 2, 24 boundary elements and 17
internal points).

Figure 5 shows transverse displacements of the
shell computed using both approximation func-
tions (approximation function 1 is 1 + R and ap-
proximation function 2 is R2 log(R)). Displace-
ments are compared with results presented by
Dirgantara and Aliabadi (1999) for the the same
problem using a thick plate boundary element for-
mulation. Other meshes with a higher number
of nodes and internal points were used, however,
as the results were almost coincident with the re-
sults presented by mesh 2, they will not be shown
here. As it can be seen, the results of the proposed
method converges to values slightly higher than
those obtained by the thick plate formulation. It is
also noted that both approximation functions pre-
sented quite similar results, especially with mesh
2 that has a higher number of nodes and internal

points.

0 1 2 3 4 5
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w
(m

m
)

x (m)

Dirgantara and Aliabadi (1999)
Approx. fun. 1, mesh 1
Approx. fun. 2, mesh 1
Approx. fun. 1, mesh 2
Approx. fun. 2, mesh 2

Figure 5: Transversal displacement for the spher-
ical shell with clamped edge.

7.2 Circular spherical shallow shell with a
hole in the centre

Consider now a circular spherical shallow shell
with a hole in the centre as shown in Figure 6.
The geometry and material properties of the shell
are: radius of the base of the shell a = 5 m, radius
of the hole b = 0.5 m, thickness h = 0.1 m, cur-
vature radii R11 = R22 = 200 m (R12 = R21 = 0),
elastic modulus E = 210 GPa, and Poisson ra-
tio ν = 0.3. The shell is under a uniformly dis-
tributed load q3 = qo = 1 MPa, transversely ap-
plied (q1 = q2 = 0).

a R

qo

h
b

Figure 6: Circular spherical shallow shell with a
hole in the centre under internal pressure.

This problem was analysed using two meshes:
mesh 1 has 12 constant boundary elements in the
outer boundary, 8 constant boundary elements in
the inner boundary, and 10 internal points dis-
tributed uniformly in two rings (5 in each ring)
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with radii equal to 3.5 m and 2.2 m and centre co-
incident with the center of the shell; mesh 2 has 24
constant boundary elements in the outer bound-
ary, 16 constant elements in the inner boundary,
and 20 internal points distributed uniformly in the
two rings (10 in each ring). Mesh 2 is shown in
Figure 7.

Figure 7: Boundary elements and internal points
for the circular spherical shallow shell with a hole
in the centre (mesh 2, 40 boundary elements and
20 internal points).

Figure 8 shows transverse displacements of the
shell computed using the two approximation func-
tions (again, approximation function 1 is 1 + R
and approximation function 2 is R2 log(R)). Dis-
placements are compared with results presented
by Dirgantara (2002). As in the previous prob-
lem, it is also noted that both approximation func-
tions presented quite similar results. This fact was
unexpected because the use of the thin plate ap-
proximation function augmented by polynomials
has significantly improved the accuracy in other
applications of the RIM (see, for example Albu-
querque, 2007). The results obtained with mesh 2
are in good agreement with Dirgantara (2000).

7.3 Square spherical shallow shell

In this example, a square spherical shallow shell,
as shown in Figure 9, is analysed. The geome-
try and material properties of the shell are as fol-
low: length of the base edge of the shell a =0.254
m, thickness h = 0.0127 m, curvature radii R1 =
R2 = R = 2.54 m (R12 = R21 = 0), elastic modulus
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Figure 8: Transversal displacement for the circu-
lar spherical shallow shell with a hole in the cen-
tre.

E = 6.895 GPa, and Poisson ratio ν = 0.3. The
shell is under an uniformly distributed load in the
transversal direction (internal pressure) q3 = 2.07
MPa (q1 = q2 = 0).
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a

Figure 9: Square spherical shallow shell.

This problem was analysed considering two types
of boundary conditions, i.e., clamped and simply-
supported. Three meshes were used. Mesh 1
has 12 constant boundary elements and 9 inter-
nal points, mesh 2 has 20 boundary elements and
25 internal points, and mesh 3 has 28 boundary
elements and 49 internal points. Mesh 3 is shown
in Figure 10. All meshes have elements of equal
length and uniformly distributed internal points.
In this case, as in the previous, both approxima-
tion functions give quite similar results. Because
this, only results obtained by approximation func-
tion 1, given by equation (31), will be shown for
this example.
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Figure 10: Boundary elements and internal points
for the square spherical shallow shell (mesh 3, 28
boundary elements and 49 internal points).

Figures 11 and 12 show results for the clamped
and simply-supported boundary conditions, re-
spectively, together with meshless results ob-
tained by Sladek, Sladek, Wen, and Aliabadi
(2006) for the same problems.
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Figure 11: Transversal displacement for the
square spherical shallow shell with clamped
edges.

As it can be seen, the results for the clamped
boundary conditions are in good agreement
with the meshless results while for the simply-
supported boundary conditions they are slightly
lower. However, the convergence hasn’t been
achieved with these meshes. In order to show that
there is convergence, this problem was analysed
with a very refined mesh, with 124 elements (31
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Figure 12: Transversal displacement for the
square spherical shallow shell with simply-
supported edges.

per edge) and 961 uniformly distributed internal
points (31 × 31). Figure 13 shows results ob-
tained with the very refined mesh.
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Figure 13: Transversal displacement for the
square spherical shallow shell with simply-
supported edges using a very refined mesh.

8 Conclusions

This paper presented a boundary element formu-
lation for the analysis of thin shallow shells where
domain integrals are transformed into boundary
integrals by the radial integration method. As the
radial integration method doesn’t demand partic-
ular solutions, it is easier to implement than the
dual reciprocity boundary element method. Be-
sides, strong singularities in domain integrals are
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cancelled by the radial integration. Two differ-
ent approximation functions are used in the radial
integration method. Results obtained with both
approximation functions are in good agreement
with results presented in literature. As in the dual
reciprocity method, the accuracy of the method
is improved by increasing the number of bound-
ary nodes and internal points. However, different
from dual reciprocity and even from other appli-
cations of the radial integration method, the use of
radial basis function augmented by polynomials
hasn’t produced significantly changes in results.
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