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Derivation of Anti-Plane Dynamic Green’s Function for Several Circular
Inclusions with Imperfect Interfaces

Jeng-Tzong Chen1 and Jia-Nan Ke

Abstract: A null-field integral equation is em-
ployed to derive the two-dimensional antiplane
dynamic Green’s functions for a circular inclu-
sion with an imperfect interface. We employ the
linear spring model with vanishing thickness to
characterize the imperfect interface. Analytical
expressions of displacement and stress fields due
to time-harmonic antiplane line forces located ei-
ther in the unbounded matrix or in the circular in-
clusion are presented. To fully capture the circu-
lar geometries, degenerate- kernel expressions of
fundamental solutions in the polar coordinate and
Fourier series for boundary densities are adopted.
Good agreement is made after comparing with
the analytical solution derived by Wang and Su-
dak’s results. Parameter study of wave number
and interface constant is done. In this paper, we
employ the null-field BIE to derive the analytical
Green’s function instead of choosing the Trefftz
bases by using the Wang and Sudak’s approach.
Special cases of cavity and ideal bonding as well
as static solutions are also examined. Besides,
two-inclusions case in the matrix with a concen-
trated force problem is also solved.

Keyword: Time-harmonic Green’s function,
inclusion, imperfect interface, null-field integral
equation, degenerate kernel, Fourier series.

1 Introduction

Analytical as well as numerical Green’s functions
have received many BEM researchers’ attention
[Ang (1987); Ang and Telles (2004); Hwu and
Yen (1991)]. Boundary element method (BEM)
was employed to solve time-harmonic Green’s
function [Kitahara (1985); Denda, Wang and
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Yong (2003); Denda, Araki and Yong (2004)].
Also, dynamic Eshelby problems [Mikata and
Nemat-Nasser (1990); Cheng and Batra (1999);
Michelitsch, Levin and Gao (2002)], piezoelec-
tricity problems [Wang and Zhong (2003); Chen
and Wu (2006); Yang and Tewary (2006); Wu and
Chen (2007)] and scattering problems in elasto-
dynamics [Willis (1980a, b); Talbot and Willis
(1983)] were solved. Although a lot of papers
on homogeneous case were published, only a
few of the time-harmonic dynamic Green’s func-
tions of a circular cylindrical inclusion can be
found [Mura (1988); Mura, Shodja and Hirose
(1996)]. Recently, Wang and Sudak [Wang and
Sudak (2007)] derived an analytical solution for
antiplane time-harmonic Green’s functions of a
circular inhomogeneity with an imperfect inter-
face [Ang and Fan (2004)]. The interface between
the inclusion and the matrix is modeled to the
linear-spring with vanishing thickness. Interface
boundary conditions are tractions equilibrium but
the displacements across the interface are discon-
tinuous. In addition, the stress response is pro-
portional to the linear springs interface with van-
ishing thickness. The key concept of Wang and
Sudak’s method is that they introduced the Trefftz
bases for the solution representation of inclusion
and matrix, respectively. However, the complete-
ness of Trefftz bases needs special case. Our main
concern is to revisit the problem solved by Wang
and Sudak and derive the analytical solution in
an alternative way by using the null-field integral
equation. Based on the null-field integral formu-
lation, the analytical solution will be derived in
a more systematic and straightforward way. Be-
sides, special cases of cavity and ideal bonding as
well as static solutions will be examined.
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2 Derivation of anti-plane dynamic Green’s
function for Helmholtz problems with im-
perfect circular boundaries

2.1 Problem statement and null-field integral
formulation

For a two-dimensional problem with an imperfect
interface, we consider a unbounded matrix con-
taining a circular inclusion of radius a with its
centre at the origin. A time-harmonic antiplane
line force of strength pe−iωt is located at (e,0) on
the x axis either in the inclusion (0 < e < a) or
in the matrix (a < e) as shown in Figs. 1(a) and
1(b). The μM and μI represent the shear moduli
of matrix and inclusion, respectively. The anti-
plane displacement field subject to the concen-
trated load in the matrix is shown below

(∇2 +k2
I )G(x,ξ ) = − p

μI
δ (x−ξ ),

x ∈ DI if e < a (1)

For the infinite matrix with a single inclusion sub-
ject to a concentrated load, we have

(∇2 +k2
M)G(x,ξ ) = − p

μM
δ (x−ξ ),

x ∈ DM if e > a (2)

where ∇2 is the Laplacian operator, kI and kM are
the wave numbers for the inclusion and matrix,
δ (x−ξ ) denotes the Dirac-delta function, DI and
DM are domains of the inclusion and matrix, re-
spectively. The time factor e−iωt has been omitted
due to the frequency-domain approach after em-
ploying the separable property. For a linear elastic
body, the stress components are

σ I
zr = μI

∂uI

∂ r
, σ I

zθ = μI
∂uI

r∂θ
, x ∈ DI (3)

σM
zr = μM

∂uM

∂ r
, σM

zθ = μM
∂uM

r∂θ
, x ∈ DM (4)

Moreover, we presume that the circular bound-
ary interface is imperfect and homogeneous in the
angular direction [Ang, Choo and Fan (2004)].
The interface boundary conditions are given by
[Hashin (1991); Ru and Schiavone (1997); Wang

and Meguid (1999)].

σ I
zr = σM

zr = β (uM −uI),
on the interface r = a (5)

where the non-negative constant β is the parame-
ter of imperfect interface. The circular inclusion
is perfectly bonded to the matrix if β approaches
infinity. On the other hand, the circular inclusion
is fully debonded from the matrix if β approaches
zero. In order to employ the Green’s third identity
as follows�

D

[
u(x)∇2v(x)−v(x)∇2u(x)

]
dD(x)

=
∫
B

[
u(x)

∂v(x)
∂n

−v(x)
∂u(x)

∂n

]
dB(x) (6)

we need two systems, u(x) and v(x). We choose
u(x) as G(x,ξ ) and set v(x) as the fundamental
solution U(x, s) such that

∇2U(x, s) = 2πδ (x− s) (7)

Then, we can obtain the fundamental solution as
follows

U(s,x) =
−iπH(1)

0 (kr)
2

(8)

where H(1)
0 (kr) is the zeroth Hankel function of

the first kind and r ≡ |s−x|. In the present
method, we adopt the mathematical tools, de-
generate kernels, for the purpose of analytical
study. The combination of degenerate kernels and
Fourier series plays the major role in handling
problems with circular boundaries. Based on the
separable property, the kernel function U(s,x) and
T (s,x) can be expanded into separable form by di-
viding the source point s = (R,θ ) and field point
x = (ρ ,φ ) in the polar coordinate [Chen, Liu and
Hong (2003)]. After exchanging with the vari-
ables x and s, we have

2πG(x,ξ ) =
∫
B

T (s,x)G(s,ξ )dB(s)

−
∫
B

U(s,x)
∂G(s,ξ )

∂ns
dB(s)+U(ξ ,x), x ∈ D

(9)
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where T (s,x) is defined by

T (s,x)≡ ∂U(s,x)
∂ns

(10)

where ns denotes the outward normal vector at the
source point s. To solve the unknown boundary
densities G(s,ξ ) and ∂G/∂ns(s,ξ ), the field point
x is located outside the domain to yield the null-
field integral equation as shown below:

0 =
∫
B

T (s,x)G(s,ξ )dB(s)

−
∫
B

U(s,x)
∂G(s,ξ )

∂ns
dB(s)+U(ξ ,x), x ∈ Dc

(11)

where Dc is the complementary domain. By using
the degenerate kernels, the BIE for the “bound-
ary point” can be easily derived through either the
null-field integral equation in Eq. (11) or the BIE
for the domain point of Eq. (9) by exactly collo-
cating x on B [Chen, Shen and Chen (2006)].

2.2 Expansion of kernel function and bound-
ary density

Based on the separable property, the kernel func-
tion U(s,x) can be expanded into series form by
separating the field point x(ρ ,φ ) and source point
s(R,θ ) in the polar coordinate:

U(s,x) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ui(s,x) = −πi
2

∞
∑

m=0
εmJm(kρ)H(1)

m (kR)

cos(m(θ −φ )), R ≥ ρ

Ue(s,x) = −πi
2

∞
∑

m=0
εmH(1)

m (kρ)Jm(kR)

cos(m(θ −φ )), ρ > R

(12)

where the superscripts “i” and “e” denote the inte-
rior and exterior cases for the expressions of ker-
nel, respectively, and εm is the Neumann factor

εm =

{
1, m = 0

2, m = 1,2, . . .∞
(13)

It is noted that the larger argument is contained in
the complex Hankel function to ensure the series

convergence and log singularity. According to the
definition of T (s,x) in Eq. (10), we have

T (s,x) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T i(s,x) = −πki
2

∞
∑

m=0
εmJm(kρ)H ′(1)

m (kR)

cos(m(θ −φ )), R > ρ

T e(s,x) = −πki
2

∞
∑

m=0
εmH(1)

m (kρ)J′m(kR)

cos(m(θ −φ )), ρ > R

(14)

The unknown boundary densities can be repre-
sented by using the Fouries series as shown be-
low:

G(s,ξ ) = a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ ),

s ∈ B (15)

∂G(sk,ξ )
∂ns

= p0 +
∞

∑
n=1

(pn cosnθ +qn sinnθ ),

s ∈ B (16)

where a0, an, bn, p0, pn and qn are the Fourier
coefficients. In the real computation, the integra-
tions can be easily calculated by employing the
orthogonal property of Fourier series, and only the
finite M terms are used in the summation.

2.3 Series representation for the Green’s func-
tion of an inclusion case

For the problems with inclusion, we can decom-
pose into subsystems of matrix and inclusion af-
ter taking the free body on the interface as shown
in Fig. 1(c). By collocating x on (a−,φ ) and
(a+,φ ) for the matrix and inclusion, respectively,
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the null-field equations yield

0 = −ae
0kMπ2aJ0 (kMa)

[
Y ′

0 (kMa)− iJ′0 (kMa)
]

−
∞

∑
m=1

(ae
m cos(mφ )+be

m sin(mφ))kMπ2aJm (kMa)

[
Y ′

m (kMa)− iJ′m (kMa)
]

− pe
0π2aJ0 (kMa) [Y0 (kMa)− iJ0 (kMa)]

−
∞

∑
m=1

(pe
m cos (mφ)+qe

m sin(mφ ))π2aJm (kMa)

[Ym (kMa)− iJm (kMa)]

− p
μM

{π
2

J0(kMa)[Y0(kMe)− iJ0(kMe)]

+
∞

∑
m=1

πJm(kMa)[Ym(kMe)− iJm(kMe)]cos(mφ )
}

x → (a−,φ ) (17)

0 = ai
0kIπ2aJ′0 (kIa) [Y0 (kIa)− iJ0 (kIa)]

+
∞

∑
m=1

(
ai

m cos (mφ )+bi
m sin(mφ )

)
kIπ2aJ′m (kIa)

[Ym (kIa)− iJm (kIa)]

− pi
0π2aJ0 (kIa) [Y0 (kIa)− iJ0 (kIa)]

−
∞

∑
m=1

(
pi

m cos (mφ)+qi
m sin(mφ )

)
π2aJm (kIa)

[Ym (kIa)− iJm (kIa)]
x → (a+,φ ) (18)

Interface conditions of Eq. (5) can be rewritten as

tI =
β
μI

(uM −uI), on the interface (19)

−μMtM = μItI, on the interface (20)

By assembling the matrices in Eqs. (17), (18),
(19) and (20), we have

⎡
⎢⎢⎣

T M
11 −UM

11 0 0
0 0 T I

11 −UI
11

0 μM 0 μI

β μM −β 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

uM
1

tM
1
uI

1
tI
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

p
μM

U(ξ ,x)
0
0
0

⎤
⎥⎥⎦ (21)

After rearranging Eq. (22), we have

[
T M

11 −UM
11

T I
11

μM
β T I

11 + μM
μI

UI
11

][
uM

1
tM
1

]
=
[ p

μM
U(ξ ,x)

0

]
(22)

The unknown coefficients in the algebraic system
can be determined as shown below:

ae
0 =
− p[J0(kMe)+ iY0(kMe)][β J0(kIa)+kI μIJ

′
0(kIa)]

/2πa
{

kI μIJ
′
0(kIa)[−β [J0(kMa)+ iY0(kMa)]

+kM μM [J′0(kMa)+ iY ′
0(kMa)]]+β kMμMJ0(kIa)

[J′0(kMa)+ iY ′
0(kMa)]

}
(23)

pe
0 = pβ kI μI [J0(kMe)+ iY0(kMe)]J′0(kIa)

/2πaμM

{
kI μI J

′
0(kIa)[−β [J0(kMa)+ iY0(kMa)]

+kM μM [J′0(kMa)+ iY ′
0(kMa)]]+β kMμMJ0(kIa)

[J′0(kMa)+ iY ′
0(kMa)]

}
(24)

ae
m =
−p[Jm(kMe)+iYm(kMe)][β Jm(kIa)+kIμIJ

′
m(kIa)]

/πa
{

kI μI J
′
m(kIa)[−β [Jm(kMa)+ iYm(kMa)]

+kM μM [J′m(kMa)+ iY ′
m(kMa)]]+β kMμMJm(kIa)

[J′m(kMa)+ iY ′
m(kMa)]

}
(25)

pe
m = pβ kIμI [Jm(kMe)+ iYm(kMe)]J′m(kIa)

/πaμM

{
kI μIJ

′
m(kIa)[−β [Jm(kMa)+ iYm(kMa)]

+kM μM [J′m(kMa)+ iY ′
m(kMa)]]+β kMμMJm(kIa)

[J′m(kMa)+ iY ′
m(kMa)]

}
(26)

where ae
0, pe

0, ae
m and pe

m, m = 1,2,3, . . . are the
Fourier coefficients of boundary densities for the
matrix. According to interface boundary condi-
tion of Eqs. (19) and (20), we obtain the Fourier
coefficient of the inclusion as shown below:[

ai
0

pi
0

]
=
[ μM

β pe
0 +ae

0

0

]
(27)
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[
ai

m

pi
m

]
=

[μM
β pe

m +ae
m

−μM
μI

pe
m

]
(28)

where ai
0, pi

0, ai
m and pi

m are the Fourier coef-
ficients of boundary densities for the inclusion.
Then, we can obtain the series-form Green’s func-
tion for the matrix by applying Eq. (9) as shown
below:

G(x,ξ ) = −πa
2

[ae
0kMJ′0 (kMa)+ pe

0J0 (kMa)]

[Y0 (kMρ)− iJ0 (kMρ)]

− πa
2

∞

∑
m=1

[ae
mkMJ′m (kMa)+ pe

mJm (kMa)]

[Ym (kMρ)− iJm (kMρ)]cos (mφ)

− p
4μM

[Y0(kMr)− iJ0(kMr)], a ≤ ρ < ∞ (29)

If we expand the fundamental function, we have

G(x,ξ ) = −πa
2

[ae
0kMJ′0 (kMa)+ pe

0J0 (kMa)]

[Y0 (kMρ)− iJ0 (kMρ)]

− πa
2

∞

∑
m=1

[ae
mkMJ′m (kMa)+ pe

mJm (kMa)]

[Ym (kMρ)− iJm (kMρ)]cos (mφ)

− p
4μM

{
J0(kMe)[Y0(kMρ)− iJ0(kMρ)]

+2
∞

∑
m=1

Jm(kMe)[Ym(kMρ)− iJm(kMρ)]cos(mφ )
}

e ≤ ρ < ∞ (30)

G(x,ξ ) = −πa
2

[ae
0kMJ′0(kMa)+ pe

0J0(kMa)]

[Y0(kMρ)− iJ0(kMρ)]

− πa
2

∞

∑
m=1

[ae
mkMJ′m(kMa)+ pe

mJm(kMa)]

[Ym(kMρ)− iJm(kMρ)]cos(mφ )

− p
4μM

{
J0(kMρ)[Y0(kMe)− iJ0(kMe)]

+2
∞

∑
m=1

Jm(kMρ)[Ym(kMe)− iJm(kMe)]cos(mφ )
}

a ≤ ρ < e

(31)

2.4 Linear algebraic equation

By moving the null-field point x j to the jth circu-
lar boundary in the limit sense for Eq. (11), we
have the linear algebraic equation

[U]{t} = [T]{u}+{b} (32)

where {b} is the vector due to the source of
Green’s function, [U] and [T] are the influence
matrices with a dimension of (N +1)(2M +1) by
(N +1)(2M +1), {u} and {t} denote the column
vectors of Fourier coefficients with a dimension
of (N + 1)(2M + 1) by 1 in which [U], [T], {u},
{t} and {b} can be defined as follows:

[U] =

⎡
⎢⎢⎢⎣

U00 U01 · · · U0N

U10 U11 · · · U1N
...

...
. . .

...
UN0 UN1 · · · UNN

⎤
⎥⎥⎥⎦ ,

[T] =

⎡
⎢⎢⎢⎣

T00 T01 · · · T0N

T10 T11 · · · T1N
...

...
. . .

...
TN0 TN1 · · · TNN

⎤
⎥⎥⎥⎦

(33)

{u} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

u1

u2
...

uN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, {t} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t0

t1

t2
...

tN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,{b} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b0

b1

b2
...

bN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(34)

where the vectors {uk} and {tk} are in

the form of
{

ak
0 ak

1 bk
1 · · · ak

M bk
M

}T
and{

pk
0 pk

1 qk
1 · · · pk

M qk
M

}T
respectively; the

first subscript “ j” ( j = 0,1,2, . . .,N) in
[
U jk

]
and[

T jk
]

denotes the index of the jth circle where
the collocation point is located and the second
subscript“k” (k = 0,1,2, · · · ,N) denotes the index
of the kth circle where boundary data {uk} or {tk}
are specified, N is the number of circular holes in
the domain and M indicates the truncated terms of
Fourier series. The coefficient matrix of the linear
algebraic system is partitioned into blocks, and
each off-diagonal block corresponds to the influ-
ence matrices between two different circular cav-
ities. The diagonal blocks are the influence ma-
trices due to itself in each individual hole. After
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uniformly collocating the point along the kth cir-
cular boundary, the submatrix can be written as

[
U jk

]
=⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0c
jk (φ1) U1c

jk (φ1) U1s
jk (φ1)

U0c
jk (φ2) U1c

jk (φ2) U1s
jk (φ2)

U0c
jk (φ3) U1c

jk (φ3) U1s
jk (φ3)

...
...

...
U0c

jk (φ2M) U1c
jk (φ2M) U1s

jk (φ2M)
U0c

jk (φ2M+1) U1c
jk (φ2M+1) U1s

jk (φ2M+1)

· · · UMc
jk (φ1) UMs

jk (φ1)
· · · UMc

jk (φ2) UMs
jk (φ2)

· · · UMc
jk (φ3) UMs

jk (φ3)
. . .

...
...

· · · UMc
jk (φ2M) UMs

jk (φ2M)
· · · UMc

jk (φ2M+1) UMs
jk (φ2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

[
T jk

]
=⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 0c
jk (φ1) T 1c

jk (φ1) T 1s
jk (φ1)

T 0c
jk (φ2) T 1c

jk (φ2) T 1s
jk (φ2)

T 0c
jk (φ3) T 1c

jk (φ3) T 1s
jk (φ3)

...
...

...
T 0c

jk (φ2M) T 1c
jk (φ2M) T 1s

jk (φ2M)
T 0c

jk (φ2M+1) T 1c
jk (φ2M+1) T 1s

jk (φ2M+1)

· · · T Mc
jk (φ1) T Ms

jk (φ1)
· · · T Mc

jk (φ2) T Ms
jk (φ2)

· · · T Mc
jk (φ3) T Ms

jk (φ3)
. . .

...
...

· · · T Mc
jk (φ2M) T Ms

jk (φ2M)
· · · T Mc

jk (φ2M+1) T Ms
jk (φ2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

{
b j
}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−iπ
2 H(1)

0 k
∣∣x(ρ j,φ1)−ξ

∣∣
−iπ

2 H(1)
0 k

∣∣x(ρ j,φ2)−ξ
∣∣

−iπ
2 H(1)

0 k
∣∣x(ρ j,φ3)−ξ

∣∣
...

−iπ
2 H(1)

0 k
∣∣x(ρ j,φ2M+1)−ξ

∣∣

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(37)

where the influence coefficients are explicitly ex-
pressed as

Unc
jk (φm) =

∫
Bk

U(sk,xm)cos(nθk) Rkdθk, (38)

Uns
jk (φm) =

∫
Bk

U(sk,xm) sin(nθk) Rkdθk, (39)

T nc
jk (φm) =

∫
Bk

T (sk,xm)cos(nθk) Rkdθk, (40)

T ns
jk (φm) =

∫
Bk

T (sk,xm) sin(nθk) Rkdθk (41)

in which n = 0,1,2, · · · ,M, m = 1,2, · · · ,2M + 1,
and φm is the polar angle of the collocating points
xm along the boundary. By rearranging the known
and unknown sets, the unknown Fourier coeffi-
cients are determined. Equation (11) can be calcu-
lated by employing the relations of trigonometric
function and the orthogonal property in the real
computation. Only the finite M terms are used in
the Fourier expansion of boundary densities and
kernels. After obtaining the unknown Fourier co-
efficients, we can obtain the interior potential by
employing Eq. (9).

2.5 Derivation of the Green’s function with
several circular holes and inclusions

For the problems with inclusions, we can decom-
pose into subsystems of matrix and inclusion after
one taking free body on the interface. The prob-
lem subject to the concentrated load in the matrix,
we have[
UM]{tM}=

[
T M]{uM}+{b} (42)[

UI]{tI}=
[
T I]{uI} (43)

The problem subject to the concentrated load in
the inclusion is shown below[
UM]{tM}=

[
T M]{uM} (44)[

UI]{tI}=
[
T I]{uI}+{b} (45)

where the superscripts “M” and “I” denote the
systems of matrix and inclusion, respectively.
Similarly, interface conditions of Eq. (5) can be
rewritten as

tI =
β
μI

(uM −uI), on the interface (46)

−μMtM = μIt
I, on the interface (47)
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By assembling the matrices in Eqs. (42), (43),
(46) and (47), we have

⎡
⎢⎢⎣

T M
11 −UM

11 0 0
0 0 T I

11 −UI
11

0 μM 0 μI

β μM −β 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

uM
1

tM
1
uI

1
tI
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

p
μM

U(ξ ,x)
0
0
0

⎤
⎥⎥⎦ (48)

By assembling the matrices in Eqs. (44), (45),
(46) and (47), we have⎡
⎢⎢⎣

T M
11 −UM

11 0 0
0 0 T I

11 −UI
11

0 μM 0 μI

β μM −β 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

uM
1

tM
1
uI

1
tI
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0
p

μM
U(ξ ,x)

0
0

⎤
⎥⎥⎦ (49)

The unknown coefficients in the algebraic system
can be determined. Then, we can solve the po-
tential by Eq. (9). A general-purpose program
for deriving the Green’s function of Helmholtz
problems with arbitrary number of circular holes
and/or inclusions of arbitrary radii and various po-
sitions involving the Dirichlet or the Neumann or
mixed boundary condition was developed.

3 Illustrative examples and discussions

Case 1: one inclusion in the matrix with a con-
centrated force

Following the same example of Wang and Su-
dak [Wang and Sudak (2007)], we suppose that
μI = 4μM , cI = 2cM, and e is located at 1.1a on
the x axis as shown Fig. 1(a). For the static
case (k = 0), we can replace the H(1)

0 (kr) by lnr
and redo the procedure. The formulation can be
found in the Appendix A. On the other hand,
the static solution by using the limiting process
(k → 0) is also derived in the Appendix B. The
stress σ∗

zr along the circular boundary is shown
in Fig. 2(a). In the real implementation, direct

substitution of zero k value yields the singular be-
havior in our formulation of Hankel function and
can not be carried out in the program. We se-
lect ka = 0.01 to simulate the quasi-static result.
Good agreement is made in Fig. 2(b) after com-
paring with that of Fig. 2(a). Parameter study
of β on the stress σ∗

zr along the circular bound-
ary is done as shown in Fig. 3(a). To simulate
the ideally bonded case, we choose β = 1032 in
the real computation. Good agreement is made
after comparing with that of the ideally bonded
case (β = ∞). The derivation of ideally bonded
case is also given in the Appendix C. Figs. 3(a)
and 3(b) show that the higher the λ value is, the
larger the stress appears. Our results also match
well with those of Wang and Sudak’s data. Fur-
thermore, test of convergence for the Fourier se-
ries using Parseval’s sum are shown in Figs. 4(a)
and 4(b). Figs. 5(a) and 5(b) show the distribution
of displacement (u∗I = μM |uI|/p) along the circu-
lar boundary versus the wave number with λ = 1
by using the Wang and Sudak’s approach and our
method, respectively. Good agreement is made. It
is expected that higher wave number yield higher
oscillation along the angle from 0 ∼ 2π .

Case 2: infinite matrix with a single inclusion
subject to a concentrated force

We also suppose the same parameters of μI = 4μM

and cI = 2cM as the case 1. Here, the source is
located at e = 0.9a in the inclusion as shown in
Fig. 1(b). To verify the accuracy of the present
solution, we compare with the quasi-static result
(kMa = 0.01) for the stress distribution along the
interface as shown in Fig. 6 using the static so-
lution (kM = 0) as derived in the Appendix A.
Also, an alternative method by limiting the pro-
cess (k → 0) is also given in the Appendix B. Re-
garding the series solution as well as the closed-
form solution for the static case, the result is sum-
marized in the Table 1. Excellent agreement be-
tween the two results is observed from the Fig. 6.
The stress σ∗

zr versus kMa for different values of λ
is shown in Fig. 7. Some amplifications for cer-
tain values of kMa can be found in the same trend
of Fig. 3(b). Fig. 8 shows the distribution of
displacement (u∗I = μM |uI|/p) along the circular



118 Copyright c© 2008 Tech Science Press CMES, vol.29, no.3, pp.111-135, 2008

2 2( ) ( , ) ( )
M

p
k G x x

a

( ,0)e

a

,I Ic

,M Mc

Figure 1(a): An infinite matrix containing a circu-
lar inclusion with a concentrated force at ξ in the
matrix
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Figure 1(b): An infinite matrix containing a circu-
lar inclusion with a concentrated force at ξ in the
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Figure 1(c): An infinite matrix containing a circu-
lar inclusion with a concentrated force at ξ in the
matrix (take free body)
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Figure 2(a): Distribution of σ∗
zr for the dynamic

(kMa = 0.01) solution along the circular boundary
(Wang and Sudak’s solution)
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zr for the dynamic
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by using the present solution
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Figure 3(a): Parameter study of λ = aβ/μM for
the stress response (Wang and Sudak’s solution)
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Figure 4(a): Test of convergence for Fourier series
with a concentrated force in the matrix (real part)
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Figure 4(b): Test of convergence for Fourier se-
ries with a concentrated force in the matrix (imag-
inary part)
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Figure 5(a): The distribution of displacement u∗I
along the circular boundary for the case of λ = 1
(kMa = 1,2,3,4,5) (Wang and Sudak’s solution)
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Figure 5(b): The distribution of displacement u∗I
along the circular boundary for the case of λ = 1
(kMa = 1,2,3,4,5) by using the present solution

boundary versus the wave number with λ = 1.

Case 3: two inclusions in the matrix with a con-
centrated force

Following the success of the single-inclusion case
to compare well with the Wang and Sudak’s re-
sult, we extend to two inclusions as shown in
Fig. 9. We also suppose the same properties
of μI = 4μM and cI = 2cM as the case 1. Here,
the concentrated source is located in the matrix
of e = (2.5,0).Figure 10 shows the variation of
σ∗

zr = R
∣∣σ I

zr

∣∣/p at the point (−a1,π) for various
distances d = 0.01 ∼ 13.The local maximum or
minimum of σ∗

zr occurs in a period of half wave-
length. The contour of the displacement for the
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two-inclusions problem is shown in Fig. 11.

4 Conclusions

Two-dimensional antiplane dynamic Green’s
functions for a circular inclusion or two circu-
lar inclusions with imperfect interface have been
successfully derived by using the present formu-
lation. A limiting case of zero wave number
matches well with the static solution. Ideally
bonded case can be seen as a special case of our
solution. Moreover, good agreement is made af-
ter comparing with the analytical solution derived
by Wang and Sudak’s results. Parameter study of
wave number and interface constant is also done.
Following the success of two-dimensional an-
tiplane dynamic Green’s functions, it is straight-
forward to extend to solve screw dislocation prob-
lems [Fan and Wang (2003)].
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Appendix A Static cases

Case 1: a concentrated force in the matrix

For the static case (k = 0) and ideally bonded in-
terface (β → ∞), we can replace the H1

0 (kr) by
lnr and redo the procedure. Then, we follow the
formulation for Laplace problems in [Chen, Ke
and Liao (2007)]. For the problem with an inclu-
sion, we can decompose into subsystems of the
matrix and inclusion after taking free body on the
interface as shown in Fig. 1(c). Then, by col-
locating x on (a−,φ ) and (a+,φ ) for the matrix
and inclusion, respectively, the null-field equa-
tions yield

0 = −2πae
0 −

∞

∑
m=1

π(ae
m cosmφ +be

m sinmφ )

−2πa lnape
0 +

∞

∑
m=1

aπ
m

(pe
m cosmφ + pe

m sinmφ )

− p
μM

[lne−
∞

∑
m=1

1
m

(
a
e
)m cos(mφ )]

x → (a−,φ ) (A1)

0 = −
∞

∑
m=1

π(ai
m cosmφ +bi

m sinmφ )−2πa lnapi
0

+
∞

∑
m=1

aπ
m

(pi
m cosmφ +qi

m sinmφ )

x → (a+,φ ) (A2)

Similarly, interface conditions of Eq. (5) can be
rewritten as

tI =
β
μI

(uM −uI), on the interface (A3)

−μMtM = μItI, on the interface (A4)

By assembling the matrices in Eqs. (A1), (A2),
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(A3) and (A4), we have

⎡
⎢⎢⎣

T M
11 −UM

11 0 0
0 0 T I

11 −UI
11

0 μM 0 μI

β μM −β 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

uM
1

tM
1
uI

1
tI
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

p
μM

U(ξ ,x)
0
0
0

⎤
⎥⎥⎦ (A5)

After rearranging Eq. (A5), we have

[
T M

11 −UM
11

T I
11

μM
β T I

11 + μM
μI

UI
11

][
uM

1
tM
1

]
=
[ p

μM
U(ξ ,x)

0

]
(A6)

The unknown coefficients in the algebraic system
can be determined as shown below:

⎡
⎢⎢⎢⎢⎢⎢⎣

ae
0

ae
m

be
m

pe
0

pe
m

qe
m

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− p
2πμM

lne
p(βa+mμI)

mπ [mμM μI+βa(μM+μI)]
( a

e )m

0
0

− pβ μI
μMπ[mμMμI+βa(μM+μI)]

( a
e)

m

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

where ae
0, pe

0, ae
m and pe

m, m = 1,2,3, . . . are the
Fourier coefficients of boundary densities for the
matrix. As β approaches infinity, we have

⎡
⎢⎢⎢⎢⎢⎢⎣

ae
0

ae
m

be
m

pe
0

pe
m

qe
m

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− p
2πμM

lne
p

mπ(μM+μI)
( a

e)
m

0
0

− pμI
aμMπ(μM+μI)

( a
e)

m

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A8)

Then, we can obtain the analytical result for the
static stress σ�

zr = aσ I
zr/p = aσM

zr /p of the matrix
as shown below:

σ�
zr =

a
p

σM
zr =

μI

π(μI + μM)

∞

∑
m=1

(
a
e
)m cosmθ ,

e > a (A9)

The Wang and Sudak’s closed-form solution is
shown below:

σ�
zr =

μI

π(μI + μM)

(
eacosθ −a2

e2 +a2 −2eacosθ

)
,

e > a (A10)

By expanding the Eq. (A10) into Fourier series,
we have

σ�
zr =

μI

π(μI + μM)

∞

∑
m=1

am cos(mθ ), e > a

(A11)

where the Fourier coefficient of am can be deter-
mined by using the Poison integral formula [Chen
and Chou (2007)] as shown below:

am =
1
π

∫ 2π

0
(

eacosθ −a2

e2 +a2 −2eacosθ
)cos(mθ )dθ

=
1
π

∫ 2π

0
[

( a
e)cosθ − ( a

e )2

1+( a
e )2 −2( a

e)cosθ
]cos(mθ )dθ

=
2

1− ( a
e )2

( a
e )m − ( a

e )m+2

2

=
(a

e

)m
, e > a

(A12)

An alternative proof by using the degenerate ker-
nel can also be obtained as shown below:

U (s,x) = ln
√

e2 +a2 −2eacosθ

=

⎧⎪⎨
⎪⎩

lne−
∞
∑

m=1

1
m( a

e)
m cos(mθ ), e ≥ a

lna−
∞
∑

m=1

1
m( e

a)m cos (mθ ), a > e

(A13)

L(s,x) =
∂U (s,x)

∂a
=

a−ecosθ
e2 +a2 −2eacosθ

=

⎧⎪⎨
⎪⎩
−

∞
∑

m=1
( am−1

em )cos(mθ ), e > a

1
a +

∞
∑

m=1
( em

am+1 )cos (mθ ), a > e

(A14)
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By multiplying (−a) into Eq. (A14), we can also
obtain the result of static case

σ�
zr =

μI

π(μI + μM)

∞

∑
m=1

(
a
e
)m cos (mθ ),

e > a (A15)

Therefore, we have proved that our series-
form solution is mathematically equivalent to the
closed-form solution of Wang and Sudak.

Case 2: a concentrated force in the inclusion

Similarly as shown in the case 1, we can obtain
the unknown coefficients as shown below:

⎡
⎢⎢⎢⎢⎢⎢⎣

ae
0

ae
m

be
m

pe
0

pe
m

qe
m

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− pμI

2πμ2
M

lna
pβaμI

mμM[aπβ μM+πμI(aβ+mμM)] (
e
a)m

0
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(A16)

where ae
0, pe

0, ae
m and pe

m , m = 1,2,3, . . . are the
Fourier coefficients of boundary densities for the
inclusion. As β approaches infinity, we have
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(A17)

Then, we can obtain the analytical result for the
static stress (σ�

zr = aσ I
zr/p = aσM

zr /p) of the in-
clusion as shown below:

σ�
zr =

a
p

σM
zr

=
μI

2πμM
+

μI

π(μI + μM)

∞

∑
m=1

(e
a

)m
cosmθ ,

a > e (A18)

A closed-form solution can be obtained by using
the degenerate kernel. By multiplying (a) into

Eq. (A14), we can also obtain the result of closed-
form solution for the inclusion

σ�
zr =
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π(μI + μM)

(
a2−eacos θ

e2 +a2 −2eacosθ

)

+
1

2π

(
μ2

I −μM μI

μ2
M + μM μI

)
, a > e (A19)

Therefore, we have proved that the closed-form
solution can be obtained mathematically by using
the degenerate kernel. Based on the Fourier series
expansion, the closed-form solution of Eq. (A19)
yields

σzr = a0 +
μI

π(μI + μM)

∞

∑
m=1

am cos(mθ ),

a > e (A20)

where the Fourier coefficient of a0 and am can be
determined by using the Poison integral formula
as shown below:
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It is straightforward to represent the closed-form
solution into Fourier series solution. On the con-
trary, it always needs special treatment, e.g., Wat-
son transformation if we would obtain the closed-
form solution by way of Fourier series solution.
Here, we do not employ the Watson transforma-
tion, but take advantage of expressions of degen-
erate kernels for the fundamental solution. The
contours of shear stress σzx = σzr cosφ −σzθ sinφ
and σzy = σzr sinφ + σzθ cosφ for a concentrated
force in the matrix and inclusion are summarized
in the Table 2 and 3, respectively.
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Table 1: Series-form & closed-form solutions for the static case (ideally bonded interface)
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Table 2: Stress contours of σzx and σzy for the static and dynamic solutions (a concentrated force in the
matrix)
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Table 3: Stress contours of σzx and σzy for the static and dynamic solutions (a concentrated force in the
inclusion)
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Appendix C Special cases of β → ∞ and β = 0

Case 1: an ideally bonded case (β → ∞)
As the parameter β approaches ∞, the interface
condition yields the force equilibrium and dis-
placement continuity. Then, we follow the for-
mulation for the Helmholtz problem in the case
1. For the problem with an inclusion, we can de-
compose into subsystems of matrix and inclusion
after taking free body on the interface as shown
in Fig. 1(c). By collocating x on (a−,φ ) and
(a+,φ ) for the matrix and inclusion, respectively,
the null-field equations yield Eqs. (17) and (18).
Then, the interface conditions of Eq. (5) can be
rewritten as

uM = uI, on the interface (C1)

−μMtM = μItI, on the interface (C2)

By assembling the matrices in Eqs. (17), (18),
(C1) and (C2), we have⎡
⎢⎢⎣

T M
11 −UM

11 0 0
0 0 T I

11 −UI
11

0 μM 0 μI

I 0 −I 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

uM
1

tM
1
uI

1
tI
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

p
μM

U(ξ ,x)
0
0
0

⎤
⎥⎥⎦ (C3)

After rearranging Eq. (C3), we have[
T M

11 −UM
11

T I
11

μM
μI

UI
11

][
uM

1
tM
1

]
=
[ p

μM
U(ξ ,x)

0

]
(C4)

The unknown coefficients in the algebraic system
can be determined as shown below:

ae
0 =− pJ0(kIa)[J0(kMe)+ iY0(kMe)]

/2πa
{
−kI μIJ

′
0(kIa)[J0(kMa)+ iY0(kMa)]

+kM μMJ0(kIa)[J′0(kMa)+ iY ′
0(kMa)]

}
(C5)

pe
0 =− pkI μI J

′
0(kIa)[J0(kMe)+ iY0(kMe)]

/2πaμM

{
kI μIJ

′
0(kIa)[J0(kMa)+ iY0(kMa)]

−kMμMJ0(kIa)[J′0(kMa)+ iY ′
0(kMa)]

}

(C6)

ae
m =− pJm(kIa)[Jm(kMe)+ iYm(kMe)]

/πa
{
−kI μIJ

′
m(kIa)[Jm(kMa)+ iYm(kMa)]

+kMμMJm(kIa)[J′m(kMa)+ iY ′
m(kMa)]

}
(C7)

pe
m =− pkI μIJ

′
m(kIa)[Jm(kMe)+ iYm(kMe)]

/πaμM

{
kI μI J

′
m(kIa)[Jm(kMa)+ iYm(kMa)]

−kM μMJm(kIa)[J′m(kMa)+ iY ′
m(kMa)]

}
(C8)

where ae
0, pe

0, ae
m and pe

m, m = 1,2,3, . . . are the
Fourier coefficients of boundary densities for the
matrix. According to the interface boundary con-
dition of Eqs. (C1) and (C2), we obtain the coef-
ficient of the inclusion as shown below:

{
ai

0
pi

0

}
=
{

ae
0

−μM pe
0/μI

}
(C9){

ai
m

pi
m

}
=
{

ae
m

−μM pe
m/μI

}
(C10)

where ai
0, pi

0, ai
m and pi

m are the Fourier coef-
ficients of boundary densities for the inclusion.
Then, we can obtain the series-form Green’s func-
tion for the matrix and the inclusion, respectively,
by applying Eq. (9) to have

G(x,ξ ) = −πa
2

[ae
0kMJ′0 (kMa)+ pe

0J0 (kMa)]

[Y0 (kMρ)− iJ0 (kMρ)]

− πa
2

∞

∑
m=1

[ae
mkMJ′m (kMa)+ pe

mJm (kMa)]

[Ym (kMρ)− iJm (kMρ)]cos(mφ)

− p
4μM

[Y0(kMr)− iJ0(kMr)], a ≤ ρ < ∞

(C11)
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G(x,ξ ) =
πa
2

J0 (kIρ)
{

ai
0kI [Y ′

0 (kIa)− iJ′0 (kIa)]

− pi
0[Y0 (kIa)− iJ0 (kIa)]

}
πa
2

Jm (kIρ)
{

ai
mkI [Y ′

m (kIa)− iJ′m (kIa)]

− pi
m[Ym (kIa)− iJm (kIa)]

}
, 0 < ρ < a

(C12)

The absolute amplitude of potential |u| for the ide-
ally bonded case and for the parameter (β = 1032)
are shown in Figs. 12 and 13. Good agreement is
made.

u

1, 1, 1.1, 1, 2, 4, 1, , 70a P e k k MI M I Mμ μ β= = = = = = = = ∞ =
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Figure 12: The absolute amplitude of displace-
ment for an ideally bonded case

Case 2: a cavity case (β = 0)
As the parameter β is zero as shown in Fig. 14,
the circular inclusion is fully debonded from the
matrix. Similarly as shown in the case 1, we can
obtain the unknown coefficients as shown below:

[
ae

0
ae

m

]
=

[ −p
2kMπaμM

Y0(kMe)−iJ0(kMe)
Y ′

0(kMa)−iJ′0(kMa)
−p

kMπaμM

Ym(kMe)−iJm(kMe)
Y ′

m (kMa)−iJ′m(kMa)

]
(C13)

where ae
0 and ae

m, m = 1,2,3, . . . are the Fourier
coefficients of boundary densities for the matrix.
Then, we can obtain the series-form Green’s func-
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321, 1, 1.1, 1, 2, 4, 1, 10 , 70a P e k k MI M I Mμ μ β= = = = = = = = =

u

Figure 13: The absolute amplitude of displace-
ment for β = 1032

tion for the matrix by applying Eq. (9) to have

G(x,ξ ) =

− πa
2

ae
0kMJ′0 (kMa) [Y0 (kMρ)− iJ0 (kMρ)]

− πa
2

∞

∑
m=1

ae
mkMJ′m (kMa)

[Ym (kMρ)− iJm (kMρ)]cos(mφ)

− p
4μM

[Y0(kMr)− iJ0(kMr)], a ≤ ρ < ∞

(C14)

The absolute amplitude of potential |u| for the
cavity case and for the parameter(β = 10−32) are
shown in Figs. 15 and 16. Good agreement is also
made.
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Figure 14: A matrix with a debonded inclusion
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Figure 15: The absolute amplitude of displace-
ment for the cavity
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Figure 16: The absolute amplitude of displace-
ment for β = 10−32




