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Modeling 3D Fruit Tissue Microstructure Using a Novel Ellipsoid
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Abstract: Transport processes of gas and mois-
ture are among the most important physiologi-
cal processes in plant tissue. Microscale trans-
port models based on Navier-Stokes equations
provide insight into such processes at the micro-
scopic scale. Due to microscopic complexity,
numerical solutions based on the finite element
or finite volume methods are mandatory. There-
fore, a 3D geometric model of the tissue is es-
sential. In this article, a novel algorithm for geo-
metric reconstruction of 2D slices of synchrotron
tomographic images is presented. The bound-
aries of 2D cells on individual slices were dig-
itized to establish a set of boundary coordinates
and the slice index of individual cells. Then, el-
lipsoids that fit these sets of points were deter-
mined using the Least Squared Fitted Ellipsoids
(LSFEs) algorithm. This algorithm is a modi-
fied version of Minimum Volume Circumscribing
Ellipsoid (MVCE) algorithm that produces min-
imum volume ellipsoids that encloses all sets of
points. Using LSFEs, the size of the MVCEs were
optimized to fit the set of points in a least square
sense. The 3D model tissue geometry was then
generated from these sets of ellipsoids, which
were truncated when neighbouring volumes over-
lapped. As a result, a virtual 3D microstructure
consisting of truncated ellipsoids fills up the en-
tire volume with the same number of cells as that
of the tomographic images.
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1 Introduction

Biological systems are the most complex systems
known to man. These systems develop naturally
in a predefined bottom up manner without a pur-
poseful human intervention. Despite a great deal
of momentum in cell biology and fruit science,
computational modelling of biological systems is
at its infancy. This is amongst others due to the
complicated cellular structure of biological sys-
tems leading to a large range of relevant length
scales. It is impossible, for instance, to generate
a finite element mesh that accurately represents
the microstructure and also allows the numeri-
cal solution of the macroscopic structural com-
ponent within a reasonable amount of time using
the current computational systems [Kouznetsova,
Brekelmans and Baaijens, (2001)]. To over-
come these drawbacks, a multi-scale modelling
approach is required. Multiscale modelling has
a unique capability to simulate and link physical
events occurring at different spatial and temporal
scales. Accordingly, the existing elements of ma-
terials modelling, from quantum first principles
simulations to meso- and macro-scale modelling,
are unified in a self-consistent scheme [Fitzger-
ald, Goldbeck-Wood, Kung, Petersen, Subrama-
nian and Westcott, (2008); Ma, Lui, Lu and Ko-
manduri,(2006)], where each level of modelling
generates information to be fed into the next
level. By using multi-scale modelling, one thus
passes through several characteristic length and
time scales in which different physical models of
varying levels of theoretical sophistication are ap-
plied and linked. This procedure is known as ho-
mogenization. Several techniques have been pro-
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posed for simulation bridging two or more scales
and at each scales simulation procedures have
been well established. Yet, the treatment of tran-
sition regions from one scale to the other or the
handshake region is a challenge [Ma, Lui, Lu and
Komanduri, (2006)]. To implement the homog-
enization procedure, microstructure modelling is
one component of the study. The difficulty of
multi-scale material modelling lies in the geomet-
ric characterization and representation of complex
biological systems.

Classical methods of characterizing microstruc-
ture of biological tissue usually involve viewing
an image from a sectioned surface where the area
of interest is stained and studied with an optical
or scanning electron microscope [Uchic, Groeber,
Dimiduk and Simmons, (2006); Groeber, Uchic,
Dimiduk, Bhandari and Ghosh, (2006a)]. How-
ever, parameters such as connectivity, size and
true shape can not be inferred from 2D sections.
The need for complete characterization of 3D mi-
crostructures has led to the development of meth-
ods that allow one to directly obtain 3D micro-
structural information. One of the methodolo-
gies that have been successfully used is serial
sectioning [Hakenberg and Shiflet, (2007); Kral
and Spanos, (1999)]. Serial sectioning involves
the acquisition of several 2D sections through
the thickness of the material and the 3D recon-
struction of the microstructure based on 2D in-
formation [Chawla and Chawla, (2006)]. How-
ever, the ability to produce serial sections of re-
quired resolution and field of view and at the re-
quired rate is limited. The serial sectioning pro-
cedure being carried out manually is also diffi-
cult to quantify, and any chemical used for stain-
ing is difficult to control [Groeber, Haley, Uchic,
Dimiduk and Gosh, (2006b)]. This can lead to
enhanced or reduced contrast of individual sec-
tions with subsequent image processing difficul-
ties. Moreover, serial sectioning is prone to errors
related to maintaining a constant sectioning thick-
ness [Groeber, Haley, Uchic, Dimiduk and Gosh,
(2006b)]. Despite some efforts to automate the
serial sectioning procedure to get consistent sec-
tions [Spowart, (2006)], it is unlikely that serial
sectioning will ever compete with non-destructive

techniques such a high resolution X-ray micro-
tomography.

X-ray micro-tomography provides detailed 3D
microstructure information at as low as sub-
micron resolution without sample preparation and
chemical fixation [Larson, Yang, Ice, Budal, Tis-
chler, (2002); Mendoza, Verboven, Mebatsion,
Kerckhofs, Wevers and Nicolaï, (2007); Cloetens,
Mache, Schlenker, Mach, (2006); Verboven, Ker-
ckhofs, Mebatsion, Ho, Temst, Wevers, Cloetens,
and Nicolaï, (2008)]. Segmented 3D microstruc-
ture data can readily be imported in finite ele-
ment codes for computational engineering mate-
rials. Voxel based 3D microstructural geometries
were used in computational testing of materials
determine optimum microstructures in compos-
ite science [Mishnaevsky, 2005] and to investi-
gate fracture related mechanical properties [Lee,
Gokhale and Sreeranganathan, (2006)]. Never-
theless, the voxel based modelling approach has
limitations when generating finite element meshes
of anisotropic materials (such as biological ma-
terials). A massive amount of voxels are nec-
essary to form a coherent and adequately cov-
ered modelling volume. Without reducing ma-
terial information and by saving voxel positions,
one would easily end up exceeding the current
average memory size of desktop PCs. Hence,
representative and computationally efficient 3D
geometrical representation of microstructures re-
mains a challenge. This is actually the case for bi-
ological materials. Biomaterials have non-trivial
anisotropy but not all problems are sensitive to
micro-structural details [Brahme, Alvi, Saylor,
Fridy and Rollett, (2006)] and geometric simplifi-
cation could result acceptable results. Even for a
modest resolution, there is, therefore, a need for a
geometric model representation of 3D microstruc-
tural images.

Methods to generate a representative 3D poly-
crystalline geometry based on microstructural
data have been developed [Brahme, Alvi, Say-
lor, Fridy and Rollett, (2006); Groeber, Uchic,
Dimiduk, Bhandari, Ghosh, (2006a); Groeber,
Haley, Uchic, Dimiduk, Gosh, (2006b)]. Brahme,
Alvi, Saylor, Fridy and Rollett, (2006)] com-
bined the optimal ellipsoid packing approach and
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Voronoi tessellation algorithms to represent the
polycrystalline grain structure. The optimal pack-
ing procedure is essentially a search for a combi-
nation of ellipsoids that have no or small overlaps
and fill the sample volume. Ellipsoidal radii and
centres were determined by Electron Back Scat-
ter Diffraction (EBSD) maps. Ellipsoids with ran-
domly chosen centres and radii were placed in a
box (equal to the size of the sample) and overlap-
ping ellipsoids were discarded. When the volume
of the optimally packed ellipsoids equalled the
volume of the grains, the search for center points
contained in only one of the ellipsoids continued.
Finally, 3D Voronoi tessellations were generated
based on the unique center points.

In a separate study on nickel based supper alloy
(IN100) by Groeber et al. (2006b), an advanced
version of the optimal filling ellipsoid approach
was employed. The optimal ellipsoid filling pro-
cedure was similar with that of Brahme, Alvi,
Saylor, Fridy and Rollett, (2006) except that they
allowed a 5% of overlap. This leads to a mas-
sive amount of finite elements. Moreover, such
microstructure data can hardly be parameterized
and it is difficult to evaluate the sensitivity of the
numerical solution to microstructural features.

Though optimal ellipsoid filling methods yielded
virtual tissue geometries, it is apparent that such a
geometric modelling approach results in geome-
tries which are spatially different from the real
microstructures. As shown in the study of metal
deformation, geometrical models which are not a
good representation of tissues may give simulated
predictions completely different from experimen-
tal results [Chawla and Chawla, (2006)].

Mebatsion, Verboven, Ho, Mendoza, Verlinden,
Nguyen and Nicolaï, (2006a) developed an el-
lipse tessellation algorithm to generate 2D ge-
ometric models of plant tissue microstructures
that are spatially and statistically equivalent with
microscopic images. The geometrical models
were successfully interfaced with commercially
available finite element codes (COMSOL Multi-
physics, Stockholm, Sweden) for finite element
simulation of gas and moisture transport [Mebat-
sion, Verboven, Ho, Mendoza, Verlinden, Nguyen
and Nicolaï, (2006a)]. Yet, there are many mi-

crostructural features that can only be measured
in 3D. These include the number of cell per unit
volume, the true size and shape of microstructures
and the connectivity of micro-structural features
[Uchic, Groeber, Dimiduk and Simmons, (2006)].
Hence, there is a need for 3D characterization and
quantification of microstructures.

This paper presents a 3D image based ellipsoid
tessellation algorithm. This is an extension of
the ellipse tessellation algorithm developed by
Mebatsion, Verboven, Ho, Mendoza, Verlinden,
Nguyen and Nicolaï, (2006a) to model 2D fruit
microstructures. We will apply the algorithm
to generate 3D virtual plant tissue microstruc-
ture based on synchrotron X-ray microtomogra-
phy data. Pear fruit tissue will serve as a model
system.

2 Materials and methods

2.1 Sample preparation

Pears (Pyrus communis L. cv. ‘Conference’) were
harvested on September, 13th (optimal picking
date) and 23rd (late picking date), 2006, at the
Fruitteeltcentrum (Rillaar, Belgium), cooled and
stored according to commercial protocols for a
period of 21 days at -0.5˚C, followed by CA stor-
age (2.5 kPa O2, 0.7 kPa CO2 at -0.5˚C) until they
were used for the experiments. Cylindrical sam-
ples of 5 mm diameter were taken from the fleshy
part (parenchyma) of the pear tissue (Fig. 1).

2.2 X-ray microtomography

X-rays are short wave radiations, which can pen-
etrate through plant tissue. The level of transmis-
sion of these rays depends mainly on the mass
density and mass absorption coefficient of the ma-
terial [Salvo, Cloetens, Maire, Zabler, Blandin,
Buffière, Ludwig, Boller, Bellet and Josserond,
(2003)] allowing a distinction to be made between
cellular material and air-filled pore spaces [Ver-
boven, Kerckhofs, Mebatsion, Ho, Temst, Wev-
ers, Cloetens and Nicolaï, (2008)]. The samples
were enclosed in a glass tube to avoid dehydra-
tion. Microtomographic images were acquired
at the European Synchrotron Radiation Facility
(ESRF), Grenoble, France. The synchrotron radi-
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Figure 1: Conference pear and cylindrical
parenchyma sample produced using a hollow
cylindrical glass tube

ation tomography basically consists of recording
a series of radiographs for different angular posi-
tions of the sample, which rotates around an axis
perpendicular to the beam [Baruchel, Buffiere,
Cloetens, Michiel, Ferrie, Ludwig, Maire and
Salvo, (2006)]. When an X-ray beam is radi-
ated towards a specimen, the incident ray may
completely penetrate the specimen and recorded
on a detector (CCD based detector for radiogra-
phy). The filtered back-projection algorithm can
then be used to reconstruct the volume of the sam-
ple from these radiographs. More details can be
found in [Verboven, Kerckhofs, Mebatsion, Ho,
Temst, Wevers, Cloetens and Nicolaï, (2008)].

2.3 Digitization of microstructures

In the tomographic images of 700 nm/pixel res-
olutions, the contrast between the pore space,
the cell walls and the cells was too small for
straightforward segmentation and edge detection.
This calls for an extra image processing proce-
dure known as digitization. Digitization of the
cell boundaries is actually an approximation pro-
cedure, because the objects are constituted of pix-
els which have a discrete structure. In effect, the
digital cell images were represented by a set of
points defining the boundaries of every cell in a
slice and the slice index, defining the third (z-) di-

mension. Only cells were digitized leaving inter-
cellular spaces to be determined by the difference
of the representative volume element (RVE) and
cell volume. Fig. 2 shows the digitization and
ellipsoid generation procedures.

Figure 2: The digitization of tomographic im-
ages (a), the corresponding Least Squared Fit-
ted Ellipsoids (LSFEs) (b), Minimum Volume
Circumscribing Ellipsoid (MVCE) of the lower
digitized cell (c) and the corresponding LSFE
(d). The MVCEs and LSFE were constructed
from digitized geometrical coordinates of the
real tomographic images. The MVCE (c) of
the lower digitized cell (cell 3) has larger radii
([32, 40,104μm]) than that of LSFE (d) ([31, 35,
97μm]).

2.4 Three-dimensional visualization and mod-
elling of fruit microstructure

Studies on 2D microscopic images proved
that the shape of pear fruit cells is approx-
imately (truncated) elliptical [Mebatsion, Ver-
boven, Ho, Mendoza, Verlinden, Nguyen and
Nicolaï, (2006a); Mebatsion Verboven, Verlin-
den, Ho, Nguyen, Nicolaï (2006b)]. Mebatsion,
Verboven, Ho, Mendoza, Verlinden, Nguyen and
Nicolaï, (2006a) used ellipses to quantify the
shape, aspect ratio and orientation of individual
cells using a least square ellipse fitting algorithms.
They modelled the fruit microstructure using el-
lipse tessellation algorithm in which cellular ge-
ometries which were represented by their equiv-
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alent ellipses truncated when they overlapped.
By doing so, statistically and spatially equivalent
model geometries were generated, exported to fi-
nite element codes via interfacing Matlab (The
Mathworks, Natick, MA) codes and used to per-
form computational (in silico) experimentation.
Recent study by Verboven, Kerckhofs, Mebat-
sion, Ho, Temst, Wevers, Cloetens and Nico-
laï, (2008) on 3D pear and apple microstructure
also revealed that the shape of the cells is (trun-
cated) ellipsoidal. Hence, we come up with algo-
rithms to model fruit microstructure using ellip-
soids characterized by microstructural informa-
tion.

2.4.1 Minimum Volume Circumscribing Ellip-
soid (MVCE)

The minimum volume circumscribing ellipsoid
(MVCE) play an important role in several diverse
applications such as optimal design [Titterington,
(1978)], robust statistics and data mining in order
to find the outliers in a given set of data (outliers
can quickly be identified as points on the bound-
ary of minimum volume covering ellipsoids) [Sun
and Freund, (2004)].

The basic procedure goes as follows: Given a set S
of m points in 3D, S = {p1, p2, p3, . . . , pm} ⊆ R3,
there exists a unique ellipsoid that encloses the
set of points that has a minimum volume. Denot-
ing the minimum volume ellipsoid of the set S by
MVCE (S), and assuming the affine hull of the set
S spans R3, we can guarantee the circumscribing
ellipsoid to have a positive volume. The general
equation of an ellipsoid in a center form can be
written as:

ε =
{

pi ∈ R3|(pi −c)E(pi −c)T ≤ 1
}

(1)

where c is the center of the ellipsoid ε and E is
a 3×3 the symmetric matrix. The matrix E de-
termines the size and shape of the ellipsoid that
encloses the set of points. The volume of the el-
lipsoid is given by

Vol(ε) =
1√

det(E)
= det(E− 1

2 ) (2)

The problem of determining the MVCE contain-
ing the points S is thus equivalent to finding a

vector c ∈ R3 and 3×3 positive definite symmet-
ric matrix E which minimizes det(E−1) [Sun and
Freund, (2004); Kumar and Yildirem, (2005); Sal-
danha, Coulomb, and Sabonnadiere, (1992); Go-
toh and Konno, (2006)]. The overall optimization
problem can be summarized as follows:

min
E,c

det(E− 1
2 )

subject to (pi −c)E(pi −c)T ≤ 1

E > 0

(3)

When the number of points is large, solving the
optimization problem of equation (3) can be ex-
pensive (the computation cost is proportional to
the size of the set of points). However, the
cost of solving the equation can drastically be re-
duced by defining polytopes determined by points
that lie at the boundary of the set of points
without compromising the accuracy of the solu-
tion [Gotoh and Konno, (2006)]. The polytopes
that enclose the set of points were determined
by defining a convex hull of the set of points
(http://www.qhull.org).

Equation (3) is not a convex optimization problem
unless the symmetric matrix, E, is a fixed positive
definite matrix and the solution of such a problem
is complicated [Fletcher, (1993)]. Thus, the opti-
mization problem of equation (3) is modified and
converted to a dual concave optimization prob-
lem that is easier to solve. In dual transforma-
tion, convex optimization problems are converted
to concave optimization problems with the con-
straint equation becoming an optimised variable
and vis-versa [Fletcher, (1993); Boyd and Van-
denberghe, (2004)].

To guarantee that any ellipsoid containing a set of
points has a positive volume and avoids trivial so-
lutions individual points are lifted to 4D space by
appending 1 as the 4th component of each of the
points, S′ ⊆ R4 [Sun and Freund, (2004)]. Then,
the MVCE(S) is determined by the intersection of
the MVCE(S’) centred at the origin and the hyper
plane H = [P

1 ] is a 4×n matrix [Kumar and Yil-
drem, (2005)]. This procedure gives rise to the
modified convex optimization problem to com-
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pute MVCE (S):

min
M

det(M− 1
2 )

subject to

[
pi

1

]
M

[
pT

i 1
]≤ 1

M > 0

(4)

where M is a 4×4 symmetric and positive definite
decision variable.

The Lagrangian dual form of equation (4) is
equivalent to

min
u

det(V(u)) = det
n

∑
i=1

ui

[
pi

1

][
pT

i 1
]

subject to eT u = 1

u ≥ 0

(5)

Where u = [u1, u2, u3, . . .,un] is the decision vari-
able and e ∈ Rndenotes the vector of all ones.

After rearrangement and simplification we solve
for the center of the ellipsoid and its 3×3 sym-
metric matrix as given in equation 7. For details
refer to Kumar and Yildrem, (2005).

MVCE(S) = εE,c

=
{

pi ∈ R3|(pi −c)E(pi −c)T ≤ 1
}
(6)

where

E = (
1
3
)(PUPT −Pu∗(Pu∗)T )−1

c = Pu∗
(7)

and U = diag(u∗) is a diagonal matrix whose en-
tries are given by components of u∗, with u∗ the
solution of the optimization problem.

The symmetric matrix, E, and the center of ellip-
soids, c, in equation (7) are determined by itera-
tive calculation of u∗ using Khachiyan’s first or-
der sequential linear programming algorithm for
non-linear optimization problem [Todd and Yil-
drem, (2007)].

The algorithm was implemented in Matlab (The
Mathworks, Natick, MA) to determine the
MVCEs of the set of points on the boundaries

of individual cells at every 10th slice of the mi-
crostructure. The cell digitization at every 10th
slice, with slice interdistances of 0.7μm, reduced
the computation time and energy significantly
without notable difference in the final ellipsoid
tessellation result.

2.4.2 The Least squared Fitted Ellipsoid (LSFE)

The MVCEs is an enclosing algorithm that in-
cludes all set of points that define geometry. It
is sensitive to minor digitization errors and as a
result most of the time yields ellipsoids that are
larger than the cells. To overcome this drawback,
we forwarded a LSFE algorithm. The optimiza-
tion involves a two step procedure. First, a MVCE
of the set of points is determined. MVCE defines
the size (radii) and the orientation of the ellip-
soids. Using the radii as the initial guess, and
keeping the orientation of the MVCEs, the LS-
FEs were optimized in such away that the sum of
squared distances between the set of points and
projected points on the surface of the ellipsoid is
the minimum. The projected points on the ellip-
soid lie on projected line connecting the centroid
of the set of points and the set of points them-
selves. The procedure of determining a projected
point on the surface of the ellipsoid is presented
as follows. Let the MVCE algorithm produce an
ellipsoid for the set of points shown in Fig. 3.

Suppose q is a point a point on the MVCE ob-
tained by the intersection of a projected line L
through the centroid x0of the MVCE and some
data point p and the MVCE.

A line, L, through the centroid of the set of points,
x0 meets the MVCE surface twice. Consider L
and the MVCE, they intersected at pand h. Using
line equation in a parametric form one can write:

q = x0 +α(p−x0) (8)

where α is a scalar defining the slope of L.

Moreover q is also on the ellipsoid and the follow-
ing equation holds:

(q−c)T E(q−c) = 1, (9)

where c and E are the center and 3×3 symmetric
matrix of the MVCE, respectively.
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Figure 3: Least squares fitted ellipsoid (LSFE) de-
termination procedure. The dotted line represents
the boundary of LSFE whereas the solid is that of
MVCE.

Substituting the line equation (8) in to the ellip-
soid equation (9) and rearranging, we can get:

(α(p−x0)+(x0 −c))T E(α(p−x0)+(x0 −c))
= 1 (10)

Equation (10) is a quadratic equation of variable
α , which can be solved readily forα . Subse-
quently, substitution of α in equation (8) yields
q.

Finally, the LSFE is determined by searching for
the ellipsoid that minimizes the sum of square dis-
tances of points and the corresponding projected
points on the ellipsoid. The optimization was car-
ried out using an in-house Matlab (The Math-
works, Natick, MA) based program. The com-
parison between MVCE and LSFE is presented in
Fig. 2. In MVCE all points are enclosed inside
the ellipsoid whereas in LSFE points lie in space
in such a way that the sum of distance squares is
minimized.

2.4.3 Ellipsoid tessellation

In 3D, the digital information of each cell in ev-
ery 10th slice, with slice interdistances of 0.7μm

of the tomographic image was gathered. Based
on 2D cellular boundary coordinates of the to-
mographic slices and the slice index (represent-
ing the third dimension) the cells were approx-
imated by ellipsoids using the LSFE algorithm.
Once LSFEs of individual cells were determined,
the model tissue geometry was generated from the
ellipsoids, which were truncated when neighbour-
ing volumes overlapped. As a result, as many
truncated ellipsoids as there are cellular images
were generated filling the entire 3D cellular vol-
ume.

The ellipsoid tessellation algorithm was imple-
mented in Matlab 7.1 (The Mathworks, Natick,
MA) programming environment.

Using the ellipsoid tessellation algorithms out-
lined above, 3D non-overlapping ellipsoidal re-
gions that represent the fruit microstructure were
generated. Fig. 4 shows three virtual cells, equiv-
alent to digitized cells in Fig. 2, generated us-
ing the ellipsoid tessellation algorithm. The tes-
sellation can be extended to as many represen-
tative volume elements (RVEs) as in the entire
fruit microstructure in an effort to model the en-
tire macroscale. As the ellipsoid tessellation al-
gorithm is an image based microstructural gen-
eration procedure, it gives detailed information
about the true nature of the structure. The statis-
tical and spatial information of the microstructure
that critically influence the numerical simulations
of transport phenomena and mechanical deforma-
tion in biological or engineering material can be
determined from the tessellation.

2.5 Calculations of the geometrical properties

The geometrical parameters that characterize in-
dividual cells in 3D such as volume, and orien-
tations of individual cells can be calculated from
moment calculations. The three Euler angles that
define the orientation of the cells from the three
coordinate axes can be calculated readily from the
orientation matrices. The ellipsoid tessellation al-
gorithm gives a generalized 3×3 rotation matrix
with elements:

R =

⎡
⎣r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ (11)
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Figure 4: Ellipsoid tessellation algorithm applied
to 3 neighbouring cells (left) and individual tes-
sellated cell (right). Truncated surfaces are either
the boundaries of the neighbouring cells or the in-
tersection with the plane that defines the boundary
of the RVE.

Where R is calculated from the singular value de-
composition of E. E = RξV , with R and V are
orthogonal 3×3 matrices and ξ is a diagonal ma-
trix.

This matrix can be considered as a sequence of
three rotations, one about each principal axis, first
about the x-axis, then y-axis and finally the z-axis,
which can be represented as a matrix product (for
details refer to Shoemake, 1985). The three Euler
angles, ψ , φ and θ that define the orientation of
individual cells are determined.

θ =−sin−(r31), ψ = tan−
(

r32

r33

)
, φ = tan−

(
r21

r11

)

(12)

The volume of individual ellipsoid tessellation
cells are calculated using convex hull functions
(http://www.qhull.org/) implemented in Matlab
(The Mathworks, Natick, MA). The porosity of
the virtual microstructure was determined from
the ratio of the volume of the pore space (Vs-Vc)
(Vc is the volume of tessellated cells) and the vol-
ume of the sample (Vs).

2.6 Exporting geometries to finite element soft-
ware package

Individual ellipsoids that were determined by
LSFE algorithm were exported in to ANSYS

(ANSYS, Inc., Canonsburg, PA) via interfacing
Matlab (The Mathworks, Natick, MA) code that
converts surface geometries in to solid IGES (Ini-
tial Graphic Exchange Specification) file formats.
IGES is a file format of data exchange in com-
puter aided design (CAD) applications. The IGES
file format is used by many programs as a stan-
dard ASCII text-based format for saving and ex-
porting vector data; can store wireframe models,
surface or solid object representations. The indi-
vidual solid ellipsoids were as separate bodies and
ellipsoids cut each other when they overlapped.

3 Results and discussions

3D ellipsoid tessellation virtual microstructures
of pear dermal and parenchyma tissues are rep-
resented as shown in Fig. 5. These are the first
geometrical representations of the 3D cell aggre-
gates of fruit microstructure. The pore network
can readily be determined from the difference of
the total volume of the RVE and that of the 3D cell
aggregates. Such geometrical representations re-
veal the complexity of the microstructure, its con-
nectivity, coordination number and orientations of
individual cells. There is a significant variation
in the size and shape distributions of dermal and
parenchyma cells. There is large variability in the
size of the parenchyma cells than that of the der-
mal tissue. Dermal cells are more compact leav-
ing smaller pore volume.

Figure 5: Ellipsoid tessellation geometry of pear
dermal (left) and parenchyma (right) tissues in
ANSYS (ANSYS, Inc., Canonsburg, PA) envi-
ronment. Sample size is 179.2×179.2×84 μm.

The 3D pore network of the synchrotron images
and its equivalent ellipsoid tessellation based pore
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network are represented in Fig. 6. Surface ap-
proximation of discrete digital information has
brought some variation in the continuity of the
pore network (Fig. 6 (right)). This can be ex-
plained by changes in the size or shape of the cell
geometry due to digitization, LSFE and tessel-
lation algorithms. The isosurface reconstruction
of tomographic images might have contributed as
well. Yet, as a geometric model, the ellipsoid tes-
sellation based pore network is a good represen-
tation of the microstructure.

Figure 6: The pore network of the synchrotron
image and its equivalent pore network of ellipsoid
tessellation model (315×315×84μm).

The volume of the individual cells and the poros-
ity of the microstructure can be calculated using
the same software program used for ellipsoid tes-
sellation. Fig. 7 shows the volume distribution of
the pear dermal and parenchyma fruit microstruc-
ture based on six samples. The parenchyma
cells are more variable than the dermal tissues,
which is expressed by the standard deviation of
cells volumes. The mean volumes of the dermal
and parenchyma cells were calculated to be 1.32
±1.42×105 μm3 and 2.32 ±3.08×105μm3, re-
spectively. The porosity of the microstructures
were calculated to be 9 ±0.5 % and 10.3 ±1.7%
for dermal and parenchyma tissues, respectively.
This value is in agreement with previous results
that indicate samples comprising of epidermis and
outer cortex tissues have smaller diffusivities than
parenchyma tissue (Verboven, Kerckhofs, Mebat-
sion, Ho, Temst, Wevers, Cloetens, Nicolaï 2008).
The calculated porosity value of pear parenchyma
is larger than the experimental values of pear mi-
crostructure which about 5.1±1.5 (Mendoza, Ver-
boven, Mebatsion, Kerckhofs, Wevers, Nicolaï
2007; Ho, Verlinden, Verboven, Nicolaï 2006).

The difference might have been caused by the un-
derestimation of the porosity value by the previ-
ous authors due to the inefficiency of the segmen-
tation procedures or the overestimation of poros-
ity by our tessellation algorithms. The biological
variability, sample size and the length scale of the
RVE could have contributed for the variation as
well.

Figure 7: The volume distribution of pear dermal
and parenchyma tissue. Volumes are in cubic μm.
A Weibull distribution was fitted for the two data
sets for ease of comparison. The figure is merely
based on 6 samples per tissue.

Because fruit is a naturally occurring material, its
microstructure is topologically disordered. This
topological variation can be described by the
neighbourhood of a cell with the others. The term
coordination number is used to define the number
of first neighbours. The coordination number is
usually defined for pore networks as the number
of pores in direct contact with a given pore. Nev-
ertheless, the concept of coordination number can
be extended to cells to quantify the relationship of
cells in direct contact with a given cell. The aver-
age coordination number of cells of dermal and
parenchyma tissues represented were calculated
to be 5.25 ± 2.11 and 4.38 ± 2.18, respectively.
The coordination number of the cells is related to
the diffusion mass transport in fruit tissue and me-
chanical properties of the material, as the area and
path of gas transport is inversely proportional to
the number of neighbour cells. In other words, the
concept of the cell coordination number is related
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to the porosity of the material. Fruit tissue that
has larger coordination number is likely to have
shorter pore network paths and hence, has over-
all higher resistance to mass transport and smaller
fractional air volume. Fruit with greater fractional
air volumes have been shown to be softer [Years-
ley, Banks, Ganesh, (1997a); Yearsley, Banks and
Ganesh, (1997b); Volz, Harker, Hallet and Lang,
(2004)] and to have greater internal gas diffu-
sion rates [Rajapakse, Banks, Hewett and Cle-
land, (1990); Ho, Verlinden, Verboven and Nico-
laï, (2006)]. The coordination number distribu-
tion of the dermal and parenchyma tissue is rep-
resented in Fig. 8. As can be seen from the fig-
ures the coordination number of the majority cells
is between 2 to 8. The dermal tissue has greater
coordination number than the parenchyma tissue,
which is also expressed in terms of their porosity
values but with a better perception of the geom-
etry of the microstructure. The porosity of the
fruit tissue might not give a clear picture as to
the behaviour of transport phenomena. The inter-
connection of pores of the tissue is a very crucial
component of multiscale modelling. Using the el-
lipsoid tessellation, we can visualize how pores
are interconnected and conceptualize the transport
phenomena through and, in the end, relate the ge-
ometries with the physiological disorders we are
interested in. Fig. 10 shows the interconnectiv-
ity of pore structure in dermal and parenchymatic
tissues of pear tissue. As can be seen from the fig-
ure, it is not only that the porosity of the material
but also the connectivity of the pore structure that
varies from tissue to tissue.

4 Applications

Ellipsoid tessellation geometries will be used in
the finite element simulation of gas and moisture
transport and in the study of mechanical deforma-
tion of materials once interfaced with appropriate
finite element or finite volume codes. In our re-
search area, geometries will extensively be used
in the multiscale modelling framework of fruit tis-
sue. Simulations will be carried out at the lowest
level by defining such detailed virtual microstruc-
tures and information are passed up the scale in
order to understand the detailed mechanisms of

Figure 8: Coordination number distributions of
dermal tissue and parenchyma tissue. Logistic
distributions were fitted for the two coordination
number data sets for ease of comparison.

physiological disorders in long term storage in
cool rooms and mechanical deformations during
postharvest handling.

The simulation of transport phenomena (gasses
and water) at the microstructural level widens
our knowledge about fruit-environment interac-
tions and the evolution of physiological disorders
core break down and internal browning in pear
tissue. These disorders are characterized by tex-
tual changes, brown discoloration of tissue and
development of cavities, which are not detectable
from the outside. Though non-destructive meth-
ods such as magnetic resonance imaging (MRI)
and X-ray computed tomography gave a good in-
sight on the time course and spatial distribution of
core breakdown, the mechanism of occurrence of
these biological disorders and the continuous time
course of the physiological changes is not known.
In this respect, resolving the microstructure helps
us understand physiological disorders induced by
elevated CO2 and decreased O2 level in pear tis-
sue during long-term storage better. In effect, this
leads to a better cool room designs and efficient
cool room operations.

On the other hand such a geometric representa-
tion of cells and intercellular spaces can helps
us visualize microstructural details and increases
our understanding about the nature of the fruit
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microstructure. It gives us insight as to how
transport phenomena in fruit tissue occur and the
consequence of microstructural variability in the
physiological response of fruits of different na-
ture. Moreover, it helps us understand as to why
different fruits have different transport and physi-
comechanical properties. Fig. 11 shows the
detailed geometrical arrangement of some pear
parenchyma cells in a pore networks in a given
RVE tissue sample.

Figure 9: A geometric model of a pear
parenchyma tissue showing the arrangement of
some cells and interconnection of pores.

The geometrical models can be used in the sim-
ulation of gas and moisture transport in fruit tis-
sues and in the investigation of mechanical defor-
mation once the microstructural components such
as cells, cell wall and pore network are precisely
modelled, meshed, their material properties de-
fined and appropriate boundary and initial con-
ditions are defined. Fig. 10 shows the meshed
geometry of the pear parenchyma tissue.

5 Conclusion

A novel 3D ellipsoid tessellation algorithm that
generates representative fruit tissue geometry to
be used in finite element/volume simulations was
developed. Our algorithm excels previous at-
tempts of material modelling by search of op-
timal ellipsoids that fills the desired volume by

 (a) 

 (b) 
Figure 10: The geometric model of pear
parenchyma tissue in finite volume environment
(ICEM, CFD) a) cell interconnection; b) the pore
network. Geometrical cell aggregate mesh (top
left) and detailed mesh (top right).

Monte Carlo ellipsoid packing method. The al-
gorithm produced image based virtual geome-
tries that were exported to ANSYS (ANSYS, Inc.,
Canonsburg, PA) via an interfacing Matlab (The
Mathworks, Natick, MA) codes. In effect, Matlab
(The Mathworks, Natick, MA) surface geometries
were converted in solid geometries which can be
used for any CAD applications. The geometries
will be used in multiscale modelling to perform
computational (in silico) experimentation of gas
and water transport in fruit tissues and mechanical
deformation. This is one component of a series of
efforts to understand the mechanism of physiolog-
ical disorders (such as internal browning and core
breakdown in pear tissues) in long term controlled
atmosphere (CA) storage in cool rooms. The cell
wall network geometric construction to include in
the multiscale fruit tissue modelling is under sep-
arate study. This calls for accurate determination
of the cell wall thickness using transmission elec-
tron microscopy (TEM).
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