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The Geometric Interpretation of Linking Number, Writhe and Twist for a
Ribbon

C. K. Au1

Abstract: Ribbons may be used for the model-
ing of DNAs and proteins. The topology of a rib-
bon can be described by the linking number, while
its geometry is represented by the writhe and the
twist. These quantities are integrals and are re-
lated by the Cǎlugǎreanu’s theorem from knot the-
ory. This theorem also describes the relationship
between the various conformations. The heart of
the Cǎlugǎreanu’s theorem rests in the Gauss In-
tegral. Due to the large number of molecules, the
topology and the geometry of a ribbon model can
be very complicated. As a result, these integrals
are commonly evaluated by numerical methods.
The writhe of a ribbon is usually computed by
mapping its self-crossing onto a unit sphere. The
twist of a ribbon is mainly due to the geometric re-
lationship between its central spine and boundary.
This article offers a geometric interpretation of the
twist of a ribbon in terms of crossing between the
central spine and boundary of the ribbon. This ap-
proach facilitates the calculation of the twist of a
ribbon. Some basics in visibility will enhance the
intuition.

Keyword: Linking number, writhe, twist,
Gauss Integral, Cǎlugǎreanu’s theorem.

1 Introduction

Coiling and twisting are common physical phe-
nomena of filament deformation. It can be found
in example from everyday life such as ribbon and
telephone cords as well as the nano-scale DNA
[Steffen, Murphy, Lathrop, Opel, Tolleri and Hat-
field (2002)] and protein molecules [Karcher, Lee,
Kaazempur-Mofrad and Kamm (2006)], and car-
bon nanotube [Park, Cho, Kim, Jun and Im
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(2006)]. Bending due to applied forces in straight
carbon nanotube can be easily happen while in-
trinsically coiled tubes have been observed as
well. A curve has only length; it has no width
or thickness. If endowed with a width in a cer-
tain direction, a curve becomes a ribbon. If the
width is uniform in all directions, then a tube
results. Ribbons serve as a convenient way to
model macromolecules such as DNA and pro-
tein [Carson and Bugg (1986), (1987), (2000)].
The functions of these macromolecules are de-
termined by their form, or geometry, while their
inter-connectedness, or topology, is important to
many biological processes [Cozarelli, Boles and
White (1990), Fuller (1971)] such as protein fold-
ing, replication and transcription. In the parlance
of biology, the chemical constituents, in a linear
string of symbols, are called the “primary” repre-
sentation. The spatial arrangement of balls-and-
sticks, as in the celebrated double-helix model for
the DNA, is called the “secondary” representa-
tion. Upon a closer examination, the balls at the
two ends of a stick follow certain geometric mo-
tifs.

Thus, the two helical clusters of amino acids in
the DNA, for example, can be abstracted as two
intertwining ribbons.

Curvature and torsion characterize how a curve L
changes with respect to the Frenet-Serret frame on
the curve itself. But suppose the frame of refer-
ence is on another curve K. Then, two new quan-
tities, writhe and twist, arise. In a closed end rib-
bon, let there be a central “spine” K. Also, let one
of the two boundary curves of the ribbon be L.
Then, the “tangling” between curve K and curve
L gives an indication of how complex the ribbon
is, spatially. Intuitively, as writhe and twist are
analogous to curvature and torsion, they describe
the geometry of a ribbon. Yet, because curve K
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“threads” curve L, or vice versa, there must be
another parameter that characterizes the “knotti-
ness” of the tangle – called linking number, a
topological quantity. Indeed, the Cǎlugǎreanu’s
theorem [Cǎlugǎreanu’s (1959)] gives the connec-
tion.

The topology of two separate curves (of zero
width and thickness) is easier to visualize than
that of a single ribbon (with one curve as its
“spine” and another as its boundary). Consider
the two interlocking closed end curves K and L,
the linking number Lk(K,L) remains the same
even more geometry is added to the two curves
– by giving each more writhe and twist. For two
open end curves, their linking number would nec-
essarily be Lk(K,L) = 0, as one can “slip” out of
the entanglement by the other. Similarly, for two
curves, one closed and the other open, the linking
number Lk(K,L)= 0; they are not linked.

Fundamentally, the two quantities, linking num-
ber Lk(K,L) and writhe Wr(K,K) are rooted in
the evaluation of the so-called Gauss Integral.
Due to the large number of molecules, the topol-
ogy and the geometry of a ribbon model can be
very complicated. As a result, difficulties arise
in evaluating the integral. Several approaches for
computing the writhe of a polygonal curve [Ban-
choff (1976), Cimasoni (2001), Agarwal, Edels-
brunner and Wang (2002), Dennis and Hannay
(2005), Klenin and Langowski (2000)] are dis-
cussed. Different from the evaluation of writhe
and linking number of a ribbon which only in-
volve the ribbon central spine and boundary, com-
putation of twist of a ribbon needs to consider the
material between two curves. This paper reviews
the technique of interpreting the writhe in terms
of spherical area and offers a similar geometric in-
terpretation to the twist which enables an approxi-
mation formula. Based on these interpretations, it
also explains the algebraic property of summing
up two real numbers of writhe and twist always
yields a linking number integer in the Cãlugãre-
anu’s theorm.

2 Reviews

Mathematically, the linking number Lk(K,L)
[Dennis and Hannay (2005)] between two closed

end space curves K and L is given by

Lk(K,L) =
1

4π

�
K×L

(dp×dq) ·pq

|pq|3 (1)

Similarly, the writhe Wr(K,K) [Dennis and Han-
nay (2005)] of a closed end curve K is

Wr(K,K) =
1

4π

�
K×K

(dp×dq) ·pq

|pq|3 (2)

where the expression
�

K×L
(dp×dq)·pq

|pq|3 is termed

Gauss Integral.

2.1 Crossing number as complex measure

The amount of entanglement of two space curves
can be characterized by the number of crossings.
The intuition is clear: the more crossings there
are, the more entangled the two curves must be
in space. Yet, the number of crossings depends
on the direction of the projection. In other words,
over all possible orientations, there must be a di-
rection which gives the maximal number of cross-
ings; corresponding, there must be one that yields
the minimal. A weighted average with crossing
number as the weight over all angles can be cal-
culated.

The crossing of two space curves is determined
by the visibility. A point q is visible to point p
if there is a line of sight pq connecting the points
p and q. Two space curves cross each other if a
point on one curve is visible to a point on the other
curve.

Consider two space curve segments, dq and dp, a
point p on segment dp, as the source for viewing
the target segment dq. As the point p moves along
segment dp, segment dq is visible to point p if the
line of sight pq intersects the planar quadrilateral
area dA = (dp×dq)·pq

|pq| which is perpendicular to the
line of sight pq as depicted in figure 1. The solid
angle dΩ includes all lines of sight along which
the segment dq crosses dp is given by

dΩ =
dA

|pq|2 =
(dp×dq) ·pq

|pq|3 (3)

Hence, the solid angle equals to the Gauss Inte-
gral.
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Figure 1: Planar quadrilateral and solid angle

When two curves are oriented, in having a “head”
and a “tail”, then the notion of signed crossing
arises due to the cross product dp×dq in the pla-
nar quadrilateral dA. Given two skewed curve
segments dq and dp, the crossing is said to be
positive, if the tip of the arrow for the curve seg-
ment in front (ordered along the direction of line
of sight, from the source to the view plane) is to be
rotated counter-clockwise with an angle less than
π – in order to be aligned with the curve segment
in the back; conversely, the crossing is negative.

Mapping the solid angle in equation (3) onto a
unit sphere is a common approach to evaluate the
Gauss Integral.

Definition A crossing map χK is a map of the
line of sight from curve segment K to L on a
unit sphere S (these two curve segments K and
L can be either from a single curve or two dis-
tinct curves), hence χK : K×L → Ssuch that v =
χ(p,q) = pq

|pq| , ∀p ∈ K , ∀q ∈ L and v ∈ S.

Figure 2 shows the relationship between the
signed area of the planar quadrilateral dA (as de-
picted in figure 2) and that of the spherical quadri-
lateral dS on a unit sphere S. Since both areas
dS and dA subtend the same solid angle dΩ in a
sphere:

dΩ =
dA

|pq|2 =
dS
r2 (4)

where r = 1 is the radius of the unit sphere.

v
d

crossing map )(pqK  with 
area dS

Figure 2: Spherical quadrilateral and planar
quadrilateral

2.2 Computation of linking number and writhe

The linking number Lk(K,L) between the two
curve segments K and L is the average value of
the signed crossing number over every possible
line of sight:

Lk(K,L) =
1

4π

∫
dΩ (5)

which yields the expression as defined by equa-
tion (1). Similarly, the writhe Wr(K,K) of a
self intersect curve K is the average value of the
signed crossing number over every possible line
of sight:

Wr(K,K) =
1

4π

∫
dΩ (6)

which gives equation (2) for the writhe Wr(K,K).

Discretizing a curve into a series of line segments
facilitates the computation of Gauss Integral nu-
merically. Figure 3(a) shows two linear segments
p jp j+1 and qkqk+1. The segments cross each
other along the line of sight pq.

Specifically, the point p can move along the seg-
ment p jp j+1 while the point q goes from qk to
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Figure 3: Angle ranges as curved quadrilateral

qk+1. The extreme solid angle Ω jk of an area
swept out on the unit sphere must be bounded
by the four segments: p jqk, p jqk+1, p j+1qk and
p j+1qk+1.

The spherical quadrilateral crossing map with sur-
face area S jk, illustrated in figure 3(b), gives the
entire range of solid angle Ω jk along which the
two line segments cross when projected.

From equation (3) and (4),

S jk = Ω jk =
∫ p j+1

p j

∫ qk+1

qk

(dp×dq) ·pq

|pq|3 (7)

where p j ∈ K and qk ∈ L. Hence, the linking

number given by equation (1) can be rewritten as

Lk(K,L) =
1

4π

n

∑
j=1,

n+1=1

n

∑
k=1,

n+1=1

SLk
jk (8)

where SLk
jk = S jk, ∀p j ∈ K, ∀qk ∈ L.

Similarly, the writhe Wr(K,K) expressed by
equation (2) is rewritten as

Wr(K,K) =

1
4π

n

∑
j=1
j �=k

j �=k±1
n+1=1

n

∑
k=1

n+1=1

∫ p j+1

p j

∫ qk+1

qk

(dp×dq) ·pq

|pq|3 (9)

which implies

Wr(K,K) =
1

4π

n

∑
j=1
j �=k

j �=k±1
n+1=1

n

∑
k=1

n+1=1

SW r
jk (10)

where SW r
jk = S jk, ∀p j ∈ K and ∀qk ∈ K.

Two special cases for the indices deserve some
elaboration. When j = k ± 1, the quadrilateral
produced on the unit sphere is the great circle in
the plane containing the two segments; its area is
nil or S jk = 0 ( j = k ± 1). But when j = k, the
area degenerates to a point (with zero area) on the
unit sphere.

3 Computation of twist

The twist Tw(K,L) of a ribbon is due to the ge-
ometric relationship between its central spine K
and the boundary L. Let L(s) = K(s) + u(s),
where u(s) is a vector perpendicular to the unit
tangent vector t of curve K pointing from curve
K to curve L and s is their common parameter.
The twist Tw(K,L) [Dennis and Hannay (2005)]
is

Tw(K,L) =
1

2π

∫
K

(t×u)
du
ds

·ds (11)

3.1 Twist of a ribbon

The computation of the twist Tw(K,L) of a rib-
bon is different from that of its linking number



The Geometric Interpretation of Linking Number, Writhe and Twist for a Ribbon 155

Lk(K,L) and writhe Wr(K,K), which only in-
volve the curve K (the central spine of a rib-
bon) and curve L (one of the boundaries of a rib-
bon). Since the material between the central spine
(curve K) and the boundary (curve L) also con-
tribute to the twist, it must be considered in the
computation.

A ribbon is characterized by two curves K = K(s)
and L(s) = K(s)+ u(s) (∀s ∈ R) as shown in fig-
ure 4(a). Curve K represents the central spine of
the ribbon while its boundary is the curve L.

Let K = p1p2 · · ·pn and L = q1q2 · · ·qn be two se-
ries of line segments. A discrete ribbon model
is shown in Figure 4(b) which relates all the
points on curve K to those on curve L. When
the two free ends of the ribbon are connected
into a closed knot, then K = p1p2 · · ·pnp1 and
L = q1q2 · · ·qnq1.

In a discrete ribbon model, the integrals of link-
ing number Lk and writhe Wr expressed in equa-
tion (1) and (2) can be computed more efficiently,
and with nearly equal effectiveness, by consider-
ing their geometric meanings. A similar approach
is employed to compute the twist Tw.

Rewriting equation (11) as

Tw(K,L) = ∑ j
Twj (12)

with Twj = 1
2π

∫ p j+1
p j

(t×u) du
ds ds. Consider the

ribbon segment characterized by points p j, p j+1

on curve K as shown in figure 5. Since curve
K and L have the same parmeterization, the cor-
responding points q j and q j+1 are identified on
curve L. The segment q j q j+1 twists around p j

p j+1 with dihedral angle α j. Since the twist Tw
in equation (11) can also been expressed in terms
of crossings 13, the vectors v1, v2, v5 and v6 shown
in figure 5 are the extreme lines of sight to have
crossings between the two curve segments

The vectors t, u and t×u forms a moving frame
along the curve K which is similar to Frenet
frame. The vector du

ds measures how the curve L
is moving with respect to curve K. Taking the dot
product with t×u measures how much it is mov-
ing in a direction perpendicular to the direction of
the curve.

jq 1jq1jq

jp 1jp1jp

(b) A discrete ribbon model 

curve K

curve L

(a) A ribbon 

u

Figure 4: A ribbon and its model

K=K(s)
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L(s)=K(s)+u(s)
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Figure 5: Segment on curve L twists around seg-
ment on curve K
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3.2 Equations and mathematical expressions

The crossing map of segment q j q j+1 with re-
spect to segment p j p j+1 is shown in figure 6.
Since curve K and L have the relationship L(s) =
K(s)+ u(s), the crossing map χK(u) is a portion
of equator with dihedral angle α j. The spherical
region v1v2v5v6 is the crossing map χK(pq) with
points p and q on segment p j p j+1 and segment q j

q j+1 respectively. Due to the twist condition, the
crossing maps are within the spherical lune with
dihedral angle α j.

crossing map )(uK

crossing map )(pqK

(shaded area) 

v1

v2

v5
j

v6

Figure 6: Crossing maps of segments p j p j+1 and
q j q j+1

A parameter t (t ∈ [0,1]⊂ R) is used to character-
ize the material between the curves. The material
between curve K and L is expressed as curve M
on the ribbon parallel to K and L with a specific
parameter t:

M(s) = (1−t)K(s)+t ·L(s), ∀s ∈ R, 0 ≤ t ≤ 1

(13)

When t = 1, curve M coincides with curve L
which implies no material is between the curves
K and L.

Let M be the series of line segments M =
r1r2 · · ·rn. The spherical quadrilateral v1v2v5v6

is defined as

v1v2v5v6 =
{

v|v = χK(pr),

∀p ∈ K, r ∈ M = L
}

(14)

Figure 7 depicts the crossing map with 1 > t > 0.
The shaded region within the spherical lune is the
accumulated crossing map with respect to curve
K as the parameter t decreases from 1. As the
parameter t starts changing from 1, the location
of curve M slides away from curve L and moves
towards curve K. This is equivalent to thicken-
ing curve L (or adding material between curves L
and M) as parameter t decreases from 1. In figure
7(a), the shaded region v1v2v5v6 (as shown in fig-
ure 5) is enlarged to v1v3v5v7 as the parameter t
decreases from 1 to 0.5. This is the accumulated
crossing map of the “thickened” curve segments
L (with width t) with respect to curve segment K,

v1v3v5v7 =
⋃

t,1≥t>0.5

{
v|v = χK(pr),

∀p ∈ K, r ∈ M = (1− t)K+ t ·L
}

(15)

Hence, the complete spherical lune v1v4v5v8 is
the crossing map of a ribbon with spine curve K
and boundary curve L

v1v4v5v8 =
⋃

t,1≥t≥0

{
v|v = χK(pr),

∀p ∈ K, r ∈ M = (1− t)K+ t ·L
}

(16)

The twist Twj between segment p j p j+1 and seg-
ment q j q j+1 is the average crossing over every
possible line of sight, hence

Twj =
Ω j

4π
(17)

From equation (4), the solid angle is area of the
spherical lune which is 2α j, hence,

Twj =
α j

2π
(18)
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(a) Crossing map of the thickened curve L
(as t decreases from 1 to 0.5) with 
respect to curve K.

4v

j 1v

2v
3v
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(b) Crossing map of the thickened curve L
(as t decreases from 0.5 to 0) with 
respect to curve K.
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Figure 7: The crossing maps of a twisted ribbon

Hence, the twist of a ribbon is

Tw(K,L) =
1

2π

n

∑
j=1

α j (19)

where

α j = cos−1
(

q jp j×q jp j+1

‖q jp j×q jp j+1‖ ·
q j+1p j×q j+1p j+1

‖q j+1p j×q j+1p j+1‖
)

∀p j ∈ K and ∀q j ∈ L.

Figure 8 shows two examples of computing the
twist and writhe of two conformations of an open
end ribbon by considering the area of the crossing
maps. In figure 8(a), a twisted ribbon and its dis-
crete model with six segments are shown. Hence,
there are six lunes (cyan region) on the unit sphere
as the crossing map. Similarly, a discrete coiled
ribbon of ten segments is employed to depict the
crossing map in figure 8(b). The crossing map
consists of two parts; one is on the left hand side
of the northern hemisphere which the other part is
on the right hand side of the southern hemisphere.
For these two simple conformations, a point in the
map refers to a line of sight from the centre of the
unit sphere to the point which gives one crossing
(the map shown in figure 8(a) gives a crossing be-
tween curves K and L while that in figure 8(b)
yields a self crossing of curve K).

4 Cǎlugǎreanu’s theorem

The mathematics of knot theory for which
Cǎlugǎreanu’s theorem is one of the pillars ap-
plying to closed end curves. It relates the link-
ing number (the topology) with the writhe and
twist (the geometry) of a ribbon model. The link-
ing number of a closed end ribbon is an invariant
while writhe and twist are interchangeable. Math-
ematically,

Lk(K,L) = W r(K,K)+Tw(K,L) (20)

4.1 Algebraic property

Since curves K and L are closed end, their cross-
ing maps cover the entire unit sphere. Hence the

expression
n
∑

j=1,
n+1=1

n
∑

k=1,
n+1=1

SLk
jk covers the whole unit

sphere. The linking number is obtained by di-
viding it by the area of the unit sphere surface
(which is 4π). Hence, the linking number of two
closed end curves is an integer number of times
that the unit sphere covered by the image of the
two curves under the mapping χK . On the other
hand, the geometry of a ribbon is described by its
writhe and twist. Summing up the writhe (Wr)
and twist (Tw), which are not necessarily integers
(indeed most often they are real numbers), always
yields an integer (linking number Lk).
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(a) A twisted ribbon and its crossing map 

(b) A coiled ribbon and its crossing map 

A twisted ribbon 

A discrete twisted ribbon Crossing map 

Crossing map A discrete coiled ribbon 

A coiled ribbon 

Figure 8: Discrete ribbon models and their cross-
ing maps

It is obvious to explain the reason by considering
their geometric interpretations.

Substituting equation (8), (10) and (19) into equa-
tion (20) yields

Stotal = SW r +STw (21)

where Stotal =
n
∑

j=1,
n+1=1

n
∑

k=1,
n+1=1

SLk
jk ∈ R is the total area

of the crossing maps on the unit sphere, SW r =
n
∑
j=1
j �=k

j �=k±1
n+1=1

n
∑

k=1
n+1=1

SW r
jk ∈ R is the area of the crossing

maps due to the writhe and STw = 2
n
∑
j=1

α j ∈ R is

the area of the crossing maps due to the twist.

Rewriting equation (21) as

Lk(K,L) ·4π = SW r +STw (22)

The three quantities Lk(K,L) · 4π , SWr and STw

are all real numbers. Rearranging yields

Lk(K,L) =
SW r

4π
+

STw

4π
(23)

Therefore, the two geometric quantities SWr
4π

(which is Wr) and STw
4π (which is Tw) on the right

hand side of equation (20) are real numbers and
the topological quantity Lk(K,L) on the left is an
integer.

4.2 Open end ribbon

Whatever the linking number between two closed
end curves might be, the change in the geometry
as writhe and twist counter-balances each other.
Algebraically, the derivative of a constant (for the
linking number) is zero. Therefore, according to
(20)

δWr(K,K)+δTw(K,L) = 0 (24)

When a system is closed, as in the case of a knot
(or with the total energy in a system), there tends
to be a “conservation” theorem characterizing the
behavior of the different aspects in the closed sys-
tem. Yet, most proteins in their native forms are
open end. To save Cǎlugǎreanu’s theorem, the no-
tion of “nano-robotics” comes to rescue.

The mechanics of a single bio-molecule at the
nanometer scale is an important pursuit as it
provides insight into how a molecule functions
under external influences, as well as in reveal-
ing the limitations of classical mechanics in the
Newtonian scale. The forces underlie the var-
ious chemistries and molecular biology of ge-
netic material are of the order of μN. Several
techniques differing in force ranges are avail-
able: atomic force microscopy [Mehta, Rief, Spu-
dich, Smith and Simmons (1999)](AFM), optical
tweezers, and magnetic tweezers [Fritz, Baller,
Lang, Rothuizen, Vettiger, Meyer, Güntherodt,
Gerber and Gimzewski (2000), Eggar (2000)].
Mechanicstically, a molecule is “clamped” at one
end and on a substrate and is manipulated by the
other, free end. Both the AFM and optical tweez-
ers are for applying pulling forces on the free end,
in different force ranges. The forces range for
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AFM is greater than 1μN while that for the optical
tweezers is between 0.1μN to 150μN. Measuring
the rate and force at which a DNA is packed by
a virus is an example of using the optical tweez-
ers. Pulling or pushing is translational. If rota-
tional input is required, such as in coiling a DNA
and measuring the rate of uncoiling by an en-
zyme, the magnetic tweezers are used. The typ-
ical force range for a magnetic tweezer is 0.01-
100μN. In geometry, these nano-manipulation ap-
paratuses effectively close the open end curve.

(a) Twisting an open end 
ribbon by 2 .

(b) End B of the ribbon 
moves toward end A 
which is fixed. 

(c) Supercoiling 
conformation forms. 

(d) Another supercoiling 
conformation as one 
end gets closer to the 
other end. 

(e) Another supercoiling 
conformation as both 
ends meet.  

(f) End B moves to the 
“other” side of end A. 

A B

A B

A B

A B

A B

AB

Figure 9: Various conformations due to the mo-
tion of the ribbon ends

Twisting an open end ribbon by 2π as depicted in
figure 9(a) yields a conformation with planar cen-
tral spine K. The self crossing map of this curve
on the unit sphere is a great circle with zero area.
Hence, the writhe of a twisted ribbon is zero and
the twist is 1. As one end of the ribbon moves to-
wards the other end, the twisted ribbon turns into
a coiled ribbon as shown in figure 9(b) – 9(e).

Twenty points are marked on the spline K and
boundary curve L of a ribbon respectively and

their spatial positions in each shown conformation
are measured. Three canonical conformations of
the ribbon are illustrated in figure 10. Figure 10(a)
shows a twisted ribbon while a coiled ribbon is
shown in figure 10(b) and 10(c). Their writhe and
twist are computed.

The writhe (W r) and twist (Tw) of the conforma-
tions shown in figure 10(a) and 10(b) conforms to
equation (24). However, the conformation shown
in figure 10(c) (which is the same the conforma-
tion shown in figure 9(f)) yields a decrement in
writhe (a) A twisted ribbon with W r=0, Tw=1 as
shown in figure 9(a).

A coiled ribbon with Wr ∼= 0.95, Tw ∼= 0.05 as
shown in figure 9(e).

Another conformation of a coiled ribbon with
Wr ∼= 0.07, Tw ∼= 0.05 as shown in figure 9(f).

(a) A twisted ribbon with Wr=0, Tw=1 as shown in figure 9(a) 

(b) A coiled ribbon with Wr  0.95, Tw  0.05 as shown in 
figure 9(e) 

(c) Another conformation of a coiled ribbon with Wr 0.07, 
Tw 0.05 as shown in figure 9(f) 

AB

A B

A

B

Figure 10: Canonical ribbon conformations

When the ends of an open end ribbon is held (for
instance, the DNA or protein molecules held by
the nano-manipulation apparatuses), it is equiva-
lent to have an imaginary ribbon connecting both
ends as illustrated in figure 11. A twisted open
end ribbon is shown on the left hand side with two
ends A and B. As end B of the ribbon moves to-
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wards end A, it turns into a coiled ribbon as shown
on the right hand side with the twist converting
into writhe.

Imaginary 
part 

crossing 

A

AB B

Figure 11: Closing an open end ribbon

Rewriting the closed end curve K = Kr ∪Ki and
L = Lr ∪Li where the subscripts r and i represent
the real part and the imaginary part of a “closed”
end ribbon respectively. The writhe W r(K,K)
and the twist Tw(K,L) are expressed as

Wr(K,K) = Wr(Wr(Kr,Kr))+Wr(Wr(Ki,Ki))
+ 2Wr(Wr(Ki,Kr)) (25)

where

Wr(Wr(Kr,Kr)) =
1

4π ∑ j ∑k SW r
jk ,

∀p j ∈ Kr,q j ∈ Kr

;

Wr(Wr(Ki,Ki)) =
1

4π ∑ j ∑k SW r
jk ,

∀p j ∈ Ki,q j ∈ Ki

and

Wr(Wr(Ki,Kr)) =
1

4π ∑ j ∑k SW r
jk = W r(Kr,Ki)

∀p j ∈ Kr,q j ∈ Ki

Tw(K,L) = Tw(Wr(Kr,Lr))+Tw(Wr(Ki,Li))
(26)

where

Tw(Wr(Kr,Lr)) =
1

2π ∑ j
α j,

∀p j ∈ Kr and ∀q j ∈ Kr

and

Tw(Wr(Ki,Li)) =
1

2π ∑ j
α j,

∀p j ∈ Ki and ∀q j ∈ Ki

Therefore, substituting equation (25) and (26) into
(24) and rearranging yields

δWr(Wr(Kr,Kr))+δTw(Wr(Kr,Lr))︸ ︷︷ ︸
real part of the ribbon

+δWr(Wr(Ki,Ki))+δTw(Wr(Ki,Li))
+2δWr(Wr(Ki,Kr))︸ ︷︷ ︸

Imaginary part of the ribbon

= 0

(27)

Equation (27) can be categorized into two parts,
the real part (which is equivalent to an open end
ribbon) and the imaginary part of a “closed” end
ribbon.

When an open end ribbon is isotropic to a new
conformation, any change in twist will be exactly
balanced by the change in its writhe provided
the crossings due to either twist or writhe re-
main in the real part as shown in figure 8(a)-8(e).
This condition refers to δW r(Wr(Ki,Ki)) = 0,
δWr(Wr(Ki,Kr)) = 0 and δTw(Wr(Ki,Li)) = 0
in equation (27) which gives

δWr(Wr(Kr,Kr))+δTw(Wr(Kr,Lr)) = 0 (28)

When the crossings (due to either twist or
writhe) are moved to the imaginary part as
shown in figure 8(f), the terms δWr(Wr(Ki,Ki)),
δWr(Wr(Ki,Kr)) and δTw(Wr(Ki,Li)) no
longer vanish and the changes in twist and writhe
in the open end (the real part) ribbon do not
counter balance each other. Hence, the writhe
decreases as the crossing moves to the imaginary
part.
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5 Concluding remarks

The geometry and the topology of a ribbon are re-
lated to each other by their linking number, writhe
and twist. It turns out that these three quantities
in the Cǎlugǎreanu’s theorem are rooted in the
notion of an area on a unit sphere, more gener-
ally known as the Gauss Integral. Behind these
quantities are the crossings. The integrals can be
very complicated and are hard to compute for a
complex ribbon conformation, since no analytic
expression is available for the curves. Simplifi-
cation is offered by having considered their geo-
metric interpretations. These geometric interpre-
tations also reveal the reason for the property of
the Cǎlugǎreanu’s theorem that adding two real
numbers (writhe Wr and twist Tw) always yields
an integer (linking number Lk). The change in
twist and writhe for an open end ribbon is also
discussed.

The Cǎlugǎreanu’s theorem accounts for the
transformation between a twisted ribbon and a
coiled ribbon which happens in many biological
processes. To understand these processes better,
many more issues deserve further exploration –
one of which has to the forces and energies that
drive a molecule from one conformation to an-
other.
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