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A Lie-Group Shooting Method for Post Buckling Calculations of Elastica

Chein-Shan Liu1

Abstract: In this paper we propose a new
numerical integration method of second-order
boundary value problems (BVPs) resulting from
the elastica of slender rods under different load-
ing conditions and boundary conditions. We con-
struct a compact space shooting method for find-
ing unknown initial conditions. The key point is
based on the construction of a one-step Lie group
element G(T ) and the establishment of a gener-
alized mid-point Lie group element G(r) by us-
ing the mean value theorem. Then, by imposing
G(T ) = G(r) we can search the missing initial
condition through a closed-form solution in terms
of the weighting factor r ∈ (0,1). The Lie-group
shooting method is very effective for large deflec-
tion problems of elastica even exhibiting multiple
solutions.

Keyword: Elastica, Post-Buckling, Multiple
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1 Introduction

The beam is one of the most common structural
elements used in a variety of aerospace, civil and
mechanical engineering structures. In dealing
with the nonlinear deformable behavior of beams
the relation between extensional strain and dis-
placement is taken to be nonlinear. This type of
nonlinearity is most commonly found in struc-
tures.

If a naturally straight rod is subjecting to a small
compressive load at its ends it remains straight.
If the load is slowly increased beyond a certain
critical value, called the buckling load, the rod as-
sumes a configuration called a buckled state, that
is not straight. This process is called buckling.
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The buckling analyses of structural members are
important; see, e.g., Baiz and Aliabadi (2006), Sa-
pountzakis and Tsiatas (2007), Li, Xiang and Xue
(2005), Yoda and Kodama (2006), Kim, Kim and
Lee (2004), and Lin and Hsiao (2003).

Analysis of finite deflections of prismatic elas-
tic columns after buckling was initiated by Eu-
ler in the 18th century; he used elliptic integrals
and elliptic functions, and the relevant deflection
curve was called Euler’s elastica. This direc-
tion was later widely developed; classical results
were presented in the books by Popov (1948) and
Frisch-Fay (1962). In most cases the behavior
of force during buckling was assumed as follows:
the point of application fixed to the matter, and the
direction fixed in space. This type of behavior is
being called the Eulerian behavior of loading. In
many cases, however, the loading behavior does
not conform to this scheme.

Probably the first exact analysis of finite deflec-
tions of columns under non-Eulerian loading be-
havior is due to Stern (1979). He considered elas-
tica for a cantilever column loaded via a rigid rod
with sliding upper end and determined the regions
of stable and unstable post-buckling path. The
direction of force loading the column is here no
longer constant in space. Later results concern-
ing with the non-Eulerian forces based on elas-
tica were made by Wilson and Snyder (1988) and
Kandakis (1992).

The advantages of Euler’s approach are connected
with exactness of the analysis and with applicabil-
ity within the whole range of loadings and deflec-
tions. However, the results are not so perspicu-
ous and the stability of postbuckling behavior is
difficult to be estimated. Koiter (1945) proposed
an alternative approach based on energy criterion
of stability combined with perturbations, namely,
expansions into power series of a certain small pa-
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rameter ε characterizing deformations. This pa-
rameter should be defined as a suitable norm for
functions describing deformation, monotonically
increasing during the buckling process. In the
simplest case of a cantilever column usually the
deflection at the free end is chosen as that parame-
ter: it may be regarded as a Chebyshev’s norm for
deflections. From among other proposals defin-
ing ε we mention that by Riks (1979) with the
current length of the equilibrium path, obviously
increasing during the process, and by Privalova
and Seyranian (1997) with the Gaussian norm for
the deflection angle.

The signs of coefficients of expansion of the load-
ing parameter P into power series of ε determine
stability of post-buckling behavior. Such expan-
sions can also be derived directly from the gov-
erning nonlinear equation of the problem without
energy considerations. Then the manoeuvre pro-
posed by Croll (1971), orthogonalization of the
expanded equation with a suitably chosen func-
tion and integration by parts, makes it possible to
evaluate a higher-order expansion coefficient for
P by using just a lower-order deflection function.

For some applications it is important to know re-
lations of the type ε = ε(P), inverse with respect
to those described above. Such relations may be
obtained for stable post-buckling behavior. For
a prismatic column under Eulerian force it was
derived by Zyczkowski (1991), who used the in-
version of the relevant power series for P = P(ε)
[Zyczkowski (1965)]. However, the convergence
of such a series is rather poor; it can be improved
by a suitable extrapolation procedure, e.g., Zy-
czkowski (1998).

Koiter’s theory and related approaches were
extensively developed, mainly in connection
with shell buckling problems since initial post-
buckling behavior of shells is in most cases un-
stable. Moreover, for imperfect shells it deter-
mines upper critical loading in terms of the im-
perfection parameter. Many results were pre-
sented in the survey papers by Hutchinson and
Koiter (1970), Budiansky (1974), Potier-Ferry
(1987), and in the books by Thompson and Hunt
(1973), Dym (1974), Huseyin (1975), Bazant
and Cedolin (1991), Troger and Steindl (1991),

Nguyen (1995), and Atanackovic (1997). More
papers devoted to the post-buckling behavior
of prismatic elastic columns were Plaut (1979)
and Kolkka (1984) for multiparameter loading,
Plaut (1978), Kounadis (1991), Rao and Rao
(1991) for non-conservative loading, Haslach
(1985), Kounadis and Mallis (1987), Szymczak
and Mikulski (1990) for effects of material non-
linearity, Tauchert and Lu (1987), Hui (1988),
Lee and Waas (1996), Wu and Zhong (1999) for
columns on elastic foundation, Damil and Potier-
Ferry (1990) for higher-order expansion terms,
Luongo and Pignataro (1992) for nearly sym-
metric structures, Godoy (1996) for the depen-
dence on certain parameters, e.g. responsible
for deformation of a cross-section, Beda (1996)
and Wu (1998) for secondary buckling, Kuo and
Yang (1991a) for curved beam, and Kuo and Yang
(1991b) for torsional loading.

Most of the research that deals with large deflec-
tion problems has used four different approaches.
The first approach is based on elliptic integral
formulation, e.g., Barten (1945), Bisshop and
Drucker (1945), Timoshenko and Gere (1961),
Lau (1985), Mattiasson (1981), Chucheepsakul,
Buncharoen and Wang (1994), Bona and Ze-
lenika (1997), Wang, Lam, He and Chucheep-
sakul (1997), Chucheepsakul, Wang, He and
Monprapussorn (1999), Coffin and Bloom (1999),
and Ohtsuki and Ellyin (2001). This approach
is tedious and only suitable for simple loading
cases. For example, it cannot solve any non-
prismatic or prismatic beam with simple uni-
formly distributed load in the vertical or horizon-
tal directions. The second approach uses numeri-
cal integration with iterative shooting techniques,
e.g., Freeman (1946), Conway (1947), Holden
(1972), Wang and Watson (1980, 1982), Wang
(1981), Watson and Wang (1981, 1983), Mau
(1990), Wang and Kitipornchai (1992), Lee and
Oh (2000), Lee (2001), and Magnusson, Ristin-
maa and Ljung (2001). However, it is suitable
only for beams subjected to loads producing mod-
erate deflections and it fails in cases incorporating
very large deflection. The third approach utilizes
incremental finite element method in connection
with Newton-Rhapson iteration techniques for
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solving elastic problems, e.g., Schmidt (1977),
Golley (1984, 1997), and Kooi (1985). This
method requires the use of expensive commercial
packages and the generation of a very fine mesh
requiring huge computational time. In addition,
the method may experience divergence problems
in very large deflection cases and it requires spe-
cial types of numerical techniques such as arc-
length continuation method. Moreover, an ex-
perience user of this program is needed to setup
the model and the solution method in the proper
form. In the fourth approach, the incremen-
tal finite differences method in connection with
Newton-Rhapson iteration techniques is used e.g.,
Kooi and Kuipers (1984), Saje and Srpcic (1985),
and Srpcic and Saje (1986). This method requires
a very large number of nodes for accurate results
and it is prone to divergence in very large deflec-
tion cases.

The problem of buckling of a thin rod subjecting
to compressive load is one of the most important
and yet simple problems in nonlinear structural
mechanics, e.g., Yang and Kuo (1994). Assume
a rod with length L, fixed at one end at x = 0 and
compressed by the load P at the other end at x = L.
When P is small the rod only reveals a compres-
sion along the x-direction, remaining a straight
rod. However, when P is increased over a criti-
cal value, the rod experiences a drastical change
from a straight state to a buckled state with de-
flection u in the y-direction. The arc length of the
deflected curve is assumed to be s and the tangen-
tial angle of the deflected curve with the x-axis is
assumed to be θ ; hence, the curvature of the de-
flected curve is κ = dθ/ds. Under a compressive
load P, there exists a bending moment Pu, which
is proportional with the curvature κ by

κ(s)+ p2u(s) = 0, u(0) = u(L) = 0, p =

√
P
EI

,

(1)

where E is the Youngs modulus of the rod and
I is the inertial moment [Ramachandra and Roy
(2001); Vaz and Silva (2003); Vaz and Mascaro
(2005)].

In the case of small deflection with ux ∼ 0, the cur-
vature is approximated by κ = u′′, and Eq. (1) re-

duces to a linear differential equation EIu′′+Pu =
0. The solution is u = C sin(knx) by imposing the
boundary conditions of u(0) = u(L) = 0, where
kn = nπ/L, n = 1,2, . . ., and C is a constant not
yet uniquely determined. There are several criti-
cal loads with P = Pn = EI(nπ/L)2, of which the
smallest one is called the first critical load denoted
by Pcr = EI(π/L)2. It can be seen that the lin-
ear theory is insufficient to uniquely determine the
height C of deflection curve and to give solutions
under these loads with P > Pcr and P not equal to
the critical load.

To remedy these two defects of the linear the-
ory we must consider the nonlinear equation (1)
again, but with a further differential of it with re-
spect to s, resulting in

θ ′′(s)+ p2 sinθ (s) = 0, θ ′(0) = θ ′(L) = 0, (2)

where dκ/ds = d2θ/ds2 and u′(s) = sinθ were
used. The boundary conditions are obtained by
imposing the simply support conditions at two
ends.

On the other hand, we can also derive the gov-
erning equation of the buckling problem of a
cantilever beam under a transversal loading [Ra-
machandra and Roy (2001); Kumar, Ramachan-
dra and Roy (2004)]:

θ ′′(s)+ p2 cosθ (s) = 0, θ (0) = θ ′(L) = 0. (3)

Depending on the precise mode of loading and
the nature of the rod, the transition to a buck-
led state can be very rapid. If the loading is fur-
ther increased the deflection of the rod from its
straight state is likewise increased. If this entire
process is repeated, the rod may well buckle into
another configuration such as the reflection of the
first state through a plane of symmetry. The per-
formance of a whole series of such experiments
on different rods would lead to the observation
that the buckling loads and the nature of buck-
led states depend upon the material and shape of
the rod and upon the manner in which it is sup-
ported at its ends. It can also be observed that the
experimental results are highly sensitive to slight
deviations of the rod from perfect straightness or
of the load from perfect symmetry. The study of
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buckling for different bodies is one of the richest
sources of important problems in nonlinear solid
mechanics, e.g., Antman (1995).

The present objective is to appropriately integrate
the governing nonlinear ODEs, such that the so-
lution satisfies all the boundary conditions. Since
the governing nonlinear ODEs are generally non-
integrable, the most efficient and accurate way to
integrate the nonlinear vector fields is to employ
some direct integration schemes. However, in or-
der to effectively employ one of these techniques,
sufficient information on initial conditions (at one
of the two boundaries) is needed a priori, i.e.,
boundary value problem (BVP) needs to be posed
as a conditional initial value problem (IVP). To
begin with, some of the initial conditions of this
conditional IVP are not known and they would
have to be optimally selected via a genetic search
so as to satisfy all the known boundary conditions.
In this paper we propose a new method for the
computation of the following second-order non-
linear two-point BVPs:

w′′ = H(x,w,w′), a < x < b, (4)

under one of the following boundary conditions:

w(a) = α , w′(b) = β , (5)

w′(a) = α , w′(b) = β , (6)

which include Eqs. (3) and (2) as special cases.
After developing the Lie-group shooting method
for these problems in the following sections, one
would find that the present method is very effec-
tive to find the unknown missing initial condition,
for example, θ (0) for Eq. (2) or θ ′(0) for Eq. (3).

Eq. (4) together with Eq. (5) is called the Cauchy-
Neumann type BVP, while Eq. (4) together
with Eq. (6) is called the Neumann type BVP.
The last problem will be discussed until Section 7.

2 Transforming the BVP into a canonical one

For Eqs. (4) and (5) we consider the following
transformations:

x = b+(b−a)t, (7)

y(t) = w(x)−β (b−a)(1+ t)+c−α , (8)

and they can be reduced to

ÿ = F(t,y, ẏ), (9)

y(−1) = c, ẏ(0) = 0, (10)

where

F(t,y, ẏ) :=(b−a)2H(b+(b−a)t,
y+β (b−a)(1+ t)+α −c,

ẏ/(b−a)+β ).

(11)

Through a symmetric extension into the interval
of t ∈ (0,1], we can write Eqs. (9) and (10) to be

ÿ = f (t,y, ẏ), (12)

y(−1) = c, y(1) = c, (13)

where

f (t,y, ẏ) =
{

F(−t,y,−ẏ) if 0 < t ≤ 1,
F(t,y, ẏ) if −1 ≤ t ≤ 0.

(14)

If the initial value of y2(t0)= ẏ(t0)= A is available
together with the known initial value of y1(t0) =
y(t0) = c, then we can numerically integrate the
following IVP step-by-step in a forward direction
from t = t0 = −1 to t = 1:

ẏ1 = y2, (15)

ẏ2 = f (t,y1,y2), (16)

y1(t0) = c, (17)

y2(t0) = A. (18)

Eqs. (15)-(18) are called the (y, t)-IVP, where
y(t) = (y1(t),y2(t)) denotes the system variables
in the t-domain. We are going to develop a Lie-
group shooting method to solve A.

3 One-step GPS

Our approach of the above second order BVP
is based on the group preserving scheme (GPS)
developed by Liu (2001) for the integration of
IVP. The GPS method is very effective to deal
with ODEs with special structures as shown by
Liu (2005, 2006a) for stiff equations and ODEs
with constraints. Previously, Liu (2006b, 2006c,
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2006d) has developed the Lie-group shooting
method for second-order BVPs, and it is not yet
applied to the solution of elastica’s BVPs. Our
method can be applied to the elastica BVPs, since
we are able to search the missing initial condition
through a closed-form solution in terms of r in a
compact space of r ∈ (0,1), where the factor r is
used in a generalized mid-point rule for the Lie
group of one-step GPS.

3.1 The GPS

Let us write Eqs. (15) and (16) in a vector form:

ẏ = f(t,y), (19)

where

y :=
[

y1

y2

]
, f :=

[
y2

f (t,y1,y2)

]
. (20)

Liu (2001) has embedded Eq. (19) into an aug-
mented system:

Ẋ :=
d
dt

[
y

‖y‖
]

=

⎡
⎣ 02×2

f(t,y)
‖y‖

fT(t,y)
‖y‖ 0

⎤
⎦[ y

‖y‖
]

:=AX,

(21)

where A is an element of the Lie algebra so(2,1)
satisfying

ATg+gA = 0 (22)

with

g :=
[

I2 02×1

01×2 −1

]
(23)

a Minkowski metric. Here, I2 is the identity ma-
trix, and the superscript T stands for the transpose.

The augmented variable X satisfies the cone con-
dition:

XTgX = y ·y−‖y‖2 = 0. (24)

Accordingly, Liu (2001) has developed a group-
preserving scheme (GPS) as follows:

Xk+1 = G(k)Xk, (25)

where Xk denotes the numerical value of X at the
discrete tk, and G(k) ∈ SOo(2,1) satisfies

GTgG = g, (26)

det G = 1, (27)

G0
0 > 0, (28)

where G0
0 is the 00th component of G. In Section

6.1 we will write a GPS explicitly.

3.2 Generalized mid-point rule

Applying scheme (25) on Eq. (21) with a spec-
ified initial condition X(t0) = X0 we can com-
pute the solution X(t) by GPS. Assuming that
the stepsize used in GPS is h = (1− t0)/K, and
starting from an initial augmented condition X0 =
X(t0) = (yT

0 ,‖y0‖)T we will calculate the value
X(1) = (yT(1),‖y(1)‖)T at t = 1.

By applying Eq. (25) step-by-step we can obtain

X f = GK(h) · · ·G1(h)X0, (29)

where X f approximates the exact X(1) with a cer-
tain accuracy depending on h. However, let us re-
call that each Gi, i = 1, . . .,K, is an element of
the Lie group SOo(2,1), and by the closure prop-
erty of the Lie group, GK(h) · · ·G1(h) is also a Lie
group denoted by G. Hence, we have

X f = GX0. (30)

This is a one-step Lie-group transformation from
X0 to X f .

We can calculate G by a generalized mid-point
rule, which is obtained from an exponential map-
ping of A by taking the values of the argument
variables of A at a generalized mid-point. The
Lie group generated from such an A ∈ so(2,1) is

G =

⎡
⎢⎣ I2 + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎥⎦ , (31)
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where

ŷ = ry0 +(1− r)y f , (32)

f̂ = f(t̂, ŷ), (33)

a = cosh

(
(1− t0)

‖f̂‖
‖ŷ‖

)
, (34)

b = sinh

(
(1− t0)

‖f̂‖
‖ŷ‖

)
. (35)

Here, we use the initial y0 and the final y f through
a suitable weighting factor r to calculate G, where
t̂ = t0 + r(1− t0) and 0 < r < 1 is a parameter to
be determined. The above method applied a gen-
eralized mid-point rule on the calculation of G,
and the resultant is a single-parameter Lie group
element G(r).

3.3 A Lie group mapping between two points

Let us define a new vector

F :=
f̂

‖ŷ‖ , (36)

such that Eqs. (31), (34) and (35) can also be ex-
pressed as

G =

⎡
⎣ I2 + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (37)

a = cosh[(1− t0)‖F‖], (38)

b = sinh[(1− t0)‖F‖]. (39)

From Eqs. (30) and (37) it follows that

y f = y0 +ηF, (40)

‖y f‖= a‖y0‖+b
F ·y0

‖F‖ , (41)

where

η :=
(a−1)F ·y0 +b‖y0‖‖F‖

‖F‖2 . (42)

Substituting

F =
1
η

(y f −y0) (43)

into Eq. (41) we obtain

‖y f‖
‖y0‖ = a+b

(y f −y0) ·y0

‖y f −y0‖‖y0‖ , (44)

where

a = cosh

(
(1− t0)‖y f −y0‖

η

)
, (45)

b = sinh

(
(1− t0)‖y f −y0‖

η

)
(46)

are obtained by inserting Eq. (43) for F into
Eqs. (38) and (39).

Let

cosφ :=
[y f −y0] ·y0

‖y f −y0‖‖y0‖ , (47)

S := (1− t0)‖y f −y0‖, (48)

and from Eqs. (44)-(46) it follows that

‖y f‖
‖y0‖ = cosh

(
S
η

)
+cosφ sinh

(
S
η

)
. (49)

Upon defining

Z := exp

(
S
η

)
, (50)

from Eq. (49) we obtain a quadratic equation for
Z:

(1+cosφ )Z2 − 2‖y f‖
‖y0‖ Z +1−cos φ = 0. (51)

The solution is found to be

Z =

‖y f ‖
‖y0‖ +

√(‖y f‖
‖y0‖
)2 −1+cos2 φ

1+cosφ
, (52)

and from Eqs. (50) and (48)

η =
(1− t0)‖y f −y0‖

lnZ
(53)

is uniquely determined by y0 and y f .

Therefore, between any two points (y0,‖y0‖) and
(y f ,‖y f‖) on the cone, there exists a Lie group
element G ∈ SOo(2,1) mapping (y0,‖y0‖) onto
(y f ,‖y f‖), which is given by[

y f

‖y f‖
]

= G
[

y0

‖y0‖
]
, (54)
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where G is uniquely determined by y0 and y f

through the following equations:

G =

⎡
⎣ I2 + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (55)

a = cosh((1− t0)‖F‖), (56)

b = sinh((1− t0)‖F‖), (57)

F =
1
η

(y f −y0). (58)

4 The Lie-group shooting method for BVP

From Eqs. (15)-(18) it follows that

ẏ1 = y2, (59)

ẏ2 = f (t,y1,y2), (60)

y1(t0) = c, y1(1) = c, (61)

y2(t0) = A, y2(1) = B, (62)

where A and B are two supplemented unknown
constants, and c is a given positive constant.

From Eqs. (40), (61) and (62) it follows that

F :=
[

F1

F2

]
=

1
η

[
0

B−A

]
. (63)

Starting from an initial guess of (A,B) we use the
following equation to calculate η:

η =
(1− t0)

√
(A−B)2

lnZ
, (64)

in which Z is calculated by

Z =

√
c2+B2√
c2+A2 +

√
c2+B2

c2+A2 −1+cos2 φ
1+cosφ

, (65)

where

cosφ =
A(B−A)√

(A−B)2
√

c2 +A2
. (66)

The above three equations were obtained from
Eqs. (53), (52) and (47) by inserting Eq. (20) for
y.

When compare Eq. (63) with Eq. (36), with the
aid of Eqs. (32), (33) and (59)-(62) we obtain

rA+(1− r)B = 0, (67)

A−B+
η
ξ

f̂ = 0, (68)

where

f̂ (r) := f (t0 + r(1− t0),c,0), (69)

ξ :=
√

c2 +[rA+(1− r)B]2. (70)

It can be seen that f̂ is a simple function of r. This
result is due to the fact of ŷ1 = rc +(1− r)c = c
and ŷ2 = rA+(1− r)B = 0 by Eqs. (61), (62) and
(67).

The above derivation of the governing equations
(64)-(70) is based on by equating the two F’s in
Eqs. (36) and (58). It also means that the two Lie
groups defined by Eqs. (31) and (55) are equal.
Under this sense we may call our shooting tech-
nique a Lie-group shooting method.

From Eqs. (67) and (70) it follows that

ξ = c, (71)

where c is a positive constant. Hence, from
Eqs. (67)-(69) and (71) we obtain an algebraic
equation for A:

H(A) = Ac+η0 f̂ = 0, (72)

where

Z =
√

c2 +B2 +
√

B2
√

c2 +A2 −
√

A2
, (73)

η0 =
(1− t0)

√
A2

lnZ
. (74)

Here B = rA/(r−1) has a different sign with A.

Eq. (72) can be used to solve A for the given r. If
A is available, we can integrate Eqs. (15)-(18) by
a suitable forward IVP solver.

5 The solution of A

Eq. (72) can be solved analytically for A. Here
we just consider the case of A > 0. For this case
inserting Eq. (74) for η0 into Eq. (72) we obtain

lnZ =
−(1− t0) f̂

c
. (75)

Defining

f1 := exp

(
−(1− t0) f̂

c

)
, (76)
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and substituting Eq. (73) for Z into Eq. (75) we
obtain
√

c2 +B2 +
√

B2
√

c2 +A2 −
√

A2
= f1. (77)

Eq. (77) can be written as

f1A−B = f1

√
c2 +A2 −

√
c2 +B2 (78)

by using A > 0 and B < 0. Squaring the above
equation and cancelling the common terms we
can rearrange it to

2 f1

√
c2 +B2

√
c2 +A2 = (1+ f 2

1 )c2 +2 f1AB.

(79)

Squaring again and cancelling the common term
get

4 f 2
1 (A2 +B2)−4 f1(1+ f 2

1 )AB = (1− f 2
1 )2c2.

(80)

Inserting B = rA/(r−1) and through some alge-
braic manipulations we eventually obtain:

4 f1

(r−1)2 [ f1− (1− f1)2r2 +(1− f1)2r]A2

= (1− f 2
1 )2c2. (81)

If the following condition holds

f2(r) := f1 − (1− f1)2r2 +(1− f1)2r > 0, (82)

then A has a positive solution:

A =

√
(r−1)2(1− f 2

1 )2c2

4 f1 f2
. (83)

The condition (82) can be used to detect the range
where r is permitted.

6 Adjusting the slope A

6.1 The GPS

A closed-form solution to calculate the slope A for
each r in its admissible range is derived, and we

can integrate the (y, t)-IVP in Eqs. (15)-(18) by
the following GPS method [Liu (2005)]:

yn+1 = yn+

sinh
(

h‖fn‖
‖yn‖
)
‖yn‖‖fn‖+

[
cosh

(
h‖fn‖
‖yn‖
)
−1
]

fn·yn

‖fn‖2 fn,

(84)

where

fn = f(tn,yn). (85)

6.2 Adjusting A for the other two type BVPs

For the Cauchy-Neumann type BVPs, we have
employed the symmetric extension technique to
construct the canonical equations in Section 2.
Therefore the target used to adjust the slope A is
ẏ(0) = 0.

For a trial r in the admissible range, we calcu-
late A and then numerically integrate Eqs. (15)-
(18) from t = −1 to t = 0, and compare the end
value of yr

2(0) with the exact one y2(0) = 0. If
|yr

2(0)| is smaller than a given tolerance error ε ,
then the process of finding solution is finished.
Otherwise, we need to calculate the end values
of y2(0) corresponding to a different r1 < r or
r2 > r, which are denoted by yr1

2 (0) and yr2
2 (0),

respectively. If yr1
2 (0)yr

2(0) < 0, then there exists
one root between r1 and r; otherwise, the root is
located between (r, r2). Then, we apply the half-
interval method to find a suitable r, which requires
to calculate Eqs. (15)-(18) at each of the calcula-
tion of yr

2(0), until |yr
2(0)| is smaller enough to

satisfy the criterion of |yr
2(0)| ≤ ε .

In principle, we can increase the accuracy by im-
posing a smaller ε on the shooting error, which
however requires more iterations. Since the nu-
merical method is very stable we can quickly pick
up the correct value of r through some trials and
modifications. Therefore, in the following cal-
culations we do not use the above half-interval
method to pick up the weighting factor r.
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7 The Neumann problem

For Eqs. (4) and (6), in addition Eq. (7), we use
the following transformation:

y(t) = w(x)+
1
2

k1t2 +k2t

= w(x)+
1
2
(β −α)(a−b)t2 +α(a−b)t, (86)

and then, Eqs. (4) and (6) can be reduced to

ÿ = f (t,y, ẏ), (87)

ẏ(0) = 0, ẏ(1) = 0, (88)

where

f (t,y, ẏ) :=(b−a)2H(a+(b−a)t,

y−k1t2/2−k2t,

(ẏ−k1t −k2)/(b−a))+k1.

(89)

The equation, required to determine the unknown
y(0) = C, can be obtained by a similar argument
as that in Section 3. For this purpose let us write

ẏ1 = y2, (90)

ẏ2 = f (t,y1,y2), (91)

y1(t0) = C, y1(1) = D, (92)

y2(t0) = A, y2(1) = B. (93)

In above t0 = 0 and A = B = 0.

From Eq. (47) it follows that

cosφ =
C(D−C)+A(B−A)√

(C−D)2 +(A−B)2
√

C2 +A2
. (94)

Because of A = B = 0, cosφ may be -1 or +1. Let
us first consider the case of cosφ = −1, of which
C(D−C) < 0 is deduced. Under this condition
from Eq. (51) we obtain

Z =

√
C2

√
D2

. (95)

If C < 0 then D−C > 0 and from Eqs. (48) and
(50) we have

S = D−C, η =
D−C

ln
√

C2√
D2

, (96)

due to A = B = 0.

From Eqs. (43), (92), (93) and (36) it follows that

F :=
[

F1

F2

]
=

1
η

[
D−C
B−A

]
=

1
‖ŷ‖

[
ŷ2

f̂

]
, (97)

and that ŷ1 = rC + (1 − r)D and ŷ2 =

rA + (1 − r)B = 0, where ‖ŷ‖ =
√

ŷ2
1 + ŷ2

2 =√
[rC +(1− r)D]2 	= 0.

From the second equation in Eq. (97) it follows
that

f̂ = f (r, ŷ1, ŷ2) = f (r, rC+(1− r)D,0) = 0, (98)

due to A = B = 0.

On the other hand, from the first equation in
Eq. (97) we have

1
η

(D−C) =
ŷ2

‖ŷ‖ = 0, (99)

because of ŷ2 = 0. Substituting Eq. (96) for η into
the above equation we obtain

ln

√
C2

√
D2

= 0. (100)

Therefore, we have D = −C, and Eq. (98) can be
used to solve C for the given r.

Now, suppose that C > 0, and then D−C < 0 fol-
lows from the inequality C(D−C) < 0. Under
this condition from Eqs. (51), (48) and (50) we
obtain

Z =

√
D2

√
C2

, (101)

S = C−D, η =
C−D

ln
√

D2√
C2

. (102)

A similar argument as that in the above leads to
D = −C.

The case of cosφ = 1 implies that C(D−C) >

0 by Eq. (94). However, the same argument as
that in the above leads to D = −C. This results
in C(D −C) = −2C2 < 0, which contradicts to
C(D−C) > 0. It means that there exists no such
case that cosφ = 1.

Therefore, by inserting D = −C into Eq. (98) we
have the following equation to solve C:

f (r, (2r−1)C,0) = 0, (103)
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no matter C is positive or negative. If C is avail-
able, we can integrate Eqs. (90)-(93) by a suitable
IVP solver with y1(0) = C and y2(0) = A.

8 Numerical examples

8.1 Example 1

Let us consider the Euler problem of a slender
rod under a simple support subjecting to a com-
pressive load as shown by Eq. (2) with L = π .
The above equation can be simply transformed by
t = s/π and y = θ into Eqs. (87) and (88) with

f (t,y, ẏ) = −p2π2 siny. (104)

Substituting Eq. (104) into Eq. (103) we obtain

f (r, (2r−1)C,0) = −p2π2 sin[(2r−1)C] = 0,

(105)

which means that

C =
kπ

2r−1
(106)

for some integer k.

Then we use the GPS method to integrate the fol-
lowing equations:

ẏ1 = y2, (107)

ẏ2 = −p2 siny1, (108)

y1(0) = C, (109)

y2(0) = 0, (110)

with C given by Eq. (106) with k = 1. Here, y1 and
y2 represent respectively θ and θ ′. Let r run in the
interval of (0,0.5) and we plot the θ (π) in Fig. 1
under the load p = 3.1. It can be seen that there
are many intersection points of the curve with the
zero line θ (π) = 0, which means that the Euler
problem has multiple solutions.

In Figs. 2-7 we plot these solutions in the planes
of (s,θ ) and (x,u), where

u =
∫ s

0
sinθ (ξ )dξ =

−y2

π p2
, (111)

x =
∫ s

0
cosθ (ξ )dξ . (112)

The corresponding r is marked in each figure.

0.0 0.1 0.2 0.3 0.4 0.5

r

-6

-3

0

3

6

 (
)

 

Figure 1: For Example 1 the roots of θ (π)= 0 are
plotted as the intersection points.

8.2 Example 2

Now, let us consider the Euler problem of a slen-
der rod under a transversal loading as shown by
Eq. (3) with L = π . The above equation is sim-
ply transformed by t = s/π and y = θ + c into
Eqs. (12) and (13) with

f (t,y, ẏ) = −p2π2 cos(y−c). (113)

In Fig. 8(a) by subjecting to p = 0.5 and with
c = 10 we plot the variation of y2 = ẏ with respect
to r in the range of r ∈ (0,1). It can be seen that
there exists only one root of ẏ = 0. Therefore, by
fixing r = 0.608 we plot the curve of deflection
angle θ with respect to s in Fig. 8(b), of which
the boundary conditions of θ (0) = θ ′(π) = 0 are
matched very well. We found that the Euler elas-
tica problem under these boundary conditions has
no multiple solutions.

9 Conclusions

In this paper we have developed a new Lie-group
shooting method for the elastica problems by sub-
jecting to different boundary conditions. These
problems can be solved in a closed-form of the
unknown initial conditions in terms of r in a com-
pact space of r ∈ (0,1), which is without need-
ing of any iterations. This method is better than
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-0.3

0.0

0.3

0.6
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Figure 2: For Example 1 the (θ , s) and (u,x) curves
are plotted with r=0.0968887.
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-0.1

0.0

0.1

0.2

0.3

u 

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

x

(a) r=0.217678

(b)

Figure 3: For Example 1 the (θ , s) and (u,x) curves
are plotted with r=0.217678.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

s

-7.0

-6.5

-6.0

-5.5
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-0.2
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0.0

0.1

0.2

0.3

u 

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

x

(a) r=0.2756815

(b)

Figure 4: For Example 1 the (θ , s) and (u,x) curves
are plotted with r=0.2756815.
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-3.9

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

u 

-0.36 -0.26 -0.16 -0.06 0.04 0.14

x

(a) r=0.31881744

(b)

Figure 5: For Example 1 the (θ , s) and (u,x) curves
are plotted with r=0.31881744.
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Figure 6: For Example 1 the (θ , s) and (u,x) curves
are plotted with r=0.3344136.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
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Figure 7: For Example 1 the (θ , s) and (u,x) curves
are plotted with r=0.4614805.

that used in the previous literature by using the
Newton-Rhapson method. More importantly, we
can use the new method to detect the number
of multiple solutions. Numerical examples were
examined to ensure that the Lie-group shooting
method can calculate the solutions of elastica.
The numerical solutions could match the speci-
fied boundary conditions with high accuracy. We
can conclude that the Lie-group shooting method
is accurate and effective, and its numerical imple-
mentation is simple and the computation cost is
low to find all possible solutions.

Acknowledgement: Taiwan’s National Sci-
ence Council project NSC-95-2221-E-019-002
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