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An Efficient Model for Crack Propagation

S.S. Xu and Y. Dong and Y. Zhang

Abstract: A meshless method for arbitrary
crack growths is presented. The new method is
based on a local partition of unity by introduc-
ing additional degrees of freedom that determine
the opening of the crack. The crack is modeled
with overlapping crack segments located at the
nodes. The crack segments are rotated at direc-
tional changes of the principal tensile stress such
that smearing of the crack is avoided. Such smear-
ing occurs in fixed crack method probably be-
cause of inaccurate stress state around the crack
tip when the crack propagates. The key feature of
our method is that it does not require algorithms to
track the crack path. The simplicity of our method
makes it is especially useful for industrial applica-
tions.
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1 Introduction

Reliability and life assessment analysis is impor-
tant in many industrial applications. Nowadays,
numerical methods are often exploited for such
task. Especially critical is the assessment of struc-
tures that contain cracks and flaws. The simula-
tion of cracking still remains a challenge in nu-
merical methods. Smeared crack methods were
the focus of research especially in the 80s and 90s,
Zimmermann (1986); Bazant and Oh (1983); Ji-
rasek and Zimmermann (1998); Malvar and Four-
ney (1990). They can be classified into fixed and
rotating cracks. The latter models were developed
since one found that fixed crack models gave too
stiff responses. Meshless methods have proven to
be a powerful alternative in simulating arbitrary
growing cracks, Belytschko, Lu, and Gu (1994a);
Belytschko and Lu (1995); Belytschko, Lu, and
Gu (1995); Hao, Liu, Klein, and Rosakis (2004);

Li and Simonson (2003); Han and Atluri (2003);
Tang, Shen, and Atluri (2003); Liu, Han, Rajen-
dran, and Atluri (2006); Nairn (2003); Guo and
Nairn (2004); Liu, Hao, and Belytschko (1999);
Hao, Liu, and Chang (2000); Rabczuk and Be-
lytschko (2005); Rabczuk, Belytschko, and Xiao
(2004); Hao and Liu (2006). They were applied to
modelling static crack growth in 2D for non-linear
materials Hagihara, Tsunori, and Ikeda (2007);
Nishioka, Kobayashi, and Fujimoto (2007); Fu-
jimoto and Nishioka (2006); Chandra and Shet
(2004), piezo-electric materials Sladek, Sladek,
and Zhang (2007); Nguyen-Van, Mai-Duy, and
Tran-Cong (2008) including temperature effects
Chen, Gan, and Chen (2008) and contact Guz,
Menshykov, and Zozulya (2007) in continua and
structures Rabczuk and Areias (2006); Andreaus,
Batra, and Porfiri (2005); Rabczuk, Areias, and
Belytschko (2007). There are also few papers on
three-dimensional crack growths Krysl and Be-
lytschko (1999); Guo and Nairn (2006); Sladek,
Sladek, and Krivacek (2005); Rabczuk and Be-
lytschko (2007); Rabczuk, Bordas, and Zi (2007),
dynamic fracture Maiti and Geubelle (2004); Guz,
Menshykov, and Zozulya (2007); Gao, Liu, and
Liu (2006); Andreaus, Batra, and Porfiri (2005);
Le, Mai-Duy, and Tran-Cong (2008) and mul-
tiscale cracking Ma, Lu, and Wang (2006) us-
ing meshless methods. An excellent overview of
state-of-the-art numerical techniques for fracture
can be found in Nishioka (2005).

Meshless methods were pioneered by Atluri and
Zhu (1998, 2000); Atluri and Shen (2002), Be-
lytschko, Lu, and Gu (1994b); Belytschko and
Tabbara (1996); Belytschko, Krongauz, Organ,
Fleming, and Krysl (1996), Liu, Jun, and Zhang
(1995) and other, see e.g. Duarte and Oden
(1996); Melenk and Babuska (1996). They offer
the opportunity to model the crack explicitly. Due
to the absence of a mesh, the crack can propagate



18 Copyright c© 2008 Tech Science Press CMES, vol.30, no.1, pp.17-26, 2008

arbitrarily. The visibility criterion Belytschko,
Lu, and Gu (1994a) and modifications such as the
transparency and diffraction method are used to
model the correct kinematics of the crack. An ex-
cellent book about meshless methods, their appli-
cations and abilities is given in Atluri (2002).

In linear elastic fracture mechanics, the singular-
ity dominates the stress field around the crack tip.
Stress intensity factors or the energy release rate
is used as failure criterion. However, linear elas-
tic fracture mechanics is only applicable to very
brittle materials. If nonlinear material behavior
is to be modeled, different approaches have to be
used. Cohesive zone models Barenblatt (1962);
Hillerborg, Modeer, and Peterson (1976) are com-
monly used to describe the post-localization be-
havior. This is necessary for materials with strain
softening since the use of pure continuum mod-
els lead to mesh dependent results Bazant and Be-
lytschko (1985).

One key issue in discrete crack models is how to
track the crack path. This is especially cumber-
some for large numbers of cracks and in three di-
mensions.

We present a cohesive crack method that bridges
smeared crack models with discrete meshless
crack methods. These type of methods are
especially suitable for many cracks and three-
dimensional crack growths. Remmers, deBorst,
and Needleman (2003) were the first who pro-
posed such a cohesive segment method. In their
approach, they introduced disconnected cohesive
segments within finite element method similar to
the well known extended finite element method.
Similar methods in finite element concept were
developed by Sancho, Planas, and Fathy (2007);
Feist and Hofstetter (2007). Rabczuk and Be-
lytschko (2004) developed the cracking particle
method in meshfree method. This method is
based on a local partition of unity where the crack
is modeled by discrete crack segments through a
node. Hence, there is no need for tracking the
crack path. In their paper, they used a fixed crack
approach and their results show spurious cracking
and over-smearing of crack width. Based on the
approach in Rabczuk and Belytschko (2004), we
propose a rotating crack method that avoids this

over-smearing. The crack orientation at initiation
is determined by the Rankine criterion.

2 Meshless shape functions and displacement
field

Meshless methods are based only on nodal ap-
proximations. The elementfree Galerkin approx-
imation (EFG) Belytschko, Lu, and Gu (1994b)
is based on a partition of unity concept Rabczuk
and Zi (2007). The partition of unity concept is
especially useful in the context of material failure
since the kinematics of the crack can be incorpo-
rated elegantly into the formulation. Therefore,
the approximation of the displacement field is de-
composed into a continuous ucon and discontinu-
ous part udis:

u(x) = ucon(x)+udis(x) (1)

The continuous EFG shape functions are calcu-
lated by a moving least square approximation,
where the approximation is written in terms of a
polynomial basis p(x) and unknown coefficients
a(x):

uh(x) = ∑
i

pi(x) ai(x) = PT (x) a(x) (2)

Commonly, a linear basis pT (x)= (1,x,y) is used.
Minimizing a discrete weighted L2 error norm
with respect to the unknown coefficients a

J = ∑
I

(
PT (xI) a(xI)−uI

)2
w(x−xI ,h) (3)

where w(x−xI,h) is a so-called weighting func-
tion and h determines the interpolation radius of
the weighting function, leads finally to the famous
EFG approximation

ucon(x) = ∑
I∈W

NI(x)uI (4)

with the EFG shape functions

NI(x) = pT (x) A−1(x) DI(x) (5)

and

DI(x) = w(x−xI ,h)pT (xI)

AI(x) = ∑
I

w(x−xI ,h) p(xI) pT (xI) (6)
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Figure 1: Crack and representation of the crack with overlapping discrete cohesive crack segments

We propose to model the discrete crack by
overlapping cohesive crack segments that pass
through the node instead of trying to create a con-
tinuous crack surface, figure 1. This circumvents
the need of tracking the crack path. The crack
kinematics is obtained by the discontinuous dis-
placement approximation that is active only for
nodes that contain the cohesive crack segments:

udis(x) = ∑
I∈Wc

NI(x) Ψ(x) qI (7)

where Wc are the nodes where the cohesive crack
segments pass through, qI are additional un-
knowns and Ψ(x) is the enrichment function de-
scribing the crack kinematics. A common enrich-
ment function that is able to capture the correct
crack kinematics is the step function

Ψ(x) =
{

1 if n · (x−xI) > 0
−1 if n · (x−xI) < 0

(8)

Note that only cracked nodes are enriched. The
length of the cohesive segment is equal to the
size of the domain of influence of the associated
cracked node. The jump in the displacement field
[[u]] = uΩ+ −uΩ− , where the subscript of Ω indi-
cates the different sides of the crack, only depends
on the additional degrees of freedom qI :

[[u]](x) = ∑
I∈Wc

2 NI(x) qI (9)

We used the Rankine criterion to generate a crack.
The orientation of the crack is perpendicular to
the direction of the maximum principal stress.
Since the stress around the crack tip is inaccu-
rate especially at crack initiation, we use a rotat-

ing crack segment approach where the crack seg-
ments are rotated according to directional changes
in the maximum principal stress. We will show
by numerical examples that over-smearing of the
crack occurs when the orientation of the crack is
fixed. We believe that the initial inaccuracies of
the stress field around the crack tip at crack initi-
ation cause this crack smearing.

The discrete strain field can be derived as

∇us(x) = ∑
I∈W

∇NI(x) uI + ∑
I∈Wc

∇NI(x) Ψ(x) qI

(10)

Integration is done using Gauss quadrature.

3 The cohesive law

In the cohesive model, the traction is related to the
crack opening, equation (9):

tn =

ft − ft
δmax

[[u]]nif[[u]]n < δmax and [[u]]t+Δt
n > [[u]]tn

otherwise tn = 0 when [[u]]t+Δt
n > [[u]]tn (11)

where

[[u]]n = n · [[u]] (12)

is the crack opening and δmax is the point where
the traction have decayed to zero. Unloading is
linear elastic.

Due to its simplicity, we employed the Rankine
criterion where the crack is inserted once the max-
imum principal tensile stress exceeds the tensile
strength.
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4 Equilibrium equations and discretization

The equation of equilibrium for a geometrically
linear system is:

∇ ·P+b = 0 x ∈ Ω (13)

u = u x ∈ Γu (14)

nt ·P = t x ∈ Γt (15)

nc ·P = tc([[u]]) x ∈ Γc (16)

where u are the displacements, t are the tractions,
P is the stress tensor, b are the body forces, Γ is
the boundary and the subscript u, t, c denote "dis-
placement", "traction" and "crack", respectively.
With the test functions v that are of similar struc-
ture than the trial functions, equations (4), (7), the
weak form of the equations of equilibrium can be
assembled:

n

∑
j=1

[∫
Ω j

∇sv j : P dΩ+
∫

Γc, j

v · tc dΓ
]

=
n

∑
j=1

∫
Γt, j

v · t dΓ (17)

Inserting the trial functions, equations (7) and (4),
and the test functions that are of similar structure
into equation (18), the equation to be solved is
given in matrix form:

∫
Ω

B̂T P dΩ+
∫

Γc

N̂T tc dΓ

=
∫

Γt

N̂T t dΓ+
∫

Ω
N̂T b dΩ (18)

where B̂ and N̂ contain continuous and discontin-
uous shape functions and their spatial derivatives,
respectively. Continuous B-matrix:

Bu
I =

⎡
⎣ NI,x 0

0 NI,y

NI,y NI,x

⎤
⎦ (19)

Discontinuous B-matrix:

Bq
I =

⎡
⎣ ÑI,x 0

0 ÑI,y

ÑI,y ÑI,x

⎤
⎦ (20)

with Ñ = NΨ(x).

The final system of equations:

[
Kuu

IJ Kuq
IJ

Kqu
IJ Kqq

IJ

]
·
[

ΔuJ

ΔqJ

]
=

[
fu
I,ext − fu

I,int

fq
I,ext − fq

I,int

]
(21)

is solved with an incremental iteration scheme in
which

Ki j
IJ =

∫
Ω

(
Bi

I

)T
C B j

J dΩ+κ
∫

Γc

NT D N dΓ (22)

where κ = 1 when i = j = q, otherwise κ = 0,
D is the tangential stiffness of the cohesive model
and the superscript i and j indicate u and q for
the continuous and discontinuous shape functions
and

fi
I,ext =

∫
Γt

(
Ni

I

)T
tdΓ+

∫
Ω

(
Ni

I

)T
bdΩ (23)

fi
I,int =

∫
Ω

(
Bi

I

)T
PdΩ+

∫
Γc

(
Nq

I

)T tcdΓ (24)

5 Results

Three examples are tested. The first example,
specimen under uni-axial tension, is academic ex-
ample to verify the method. It can be used as
simple benchmark problem for other researchers
to test novel methods. The second example is a
notched two-point bending sample and the last ex-
ample is a three-point bending beam that develops
several cracks.

5.1 Uni-axial tensile test

A simple mode I failure is studied first. The sys-
tem is depicted in Figure 2. The square plate is
fixed at the bottom and is loaded a the top edges
with uniform displacement boundary conditions.
A horizontal pre-crack exists on the left-hand side
of the structure. The material has a Young’s mod-
ulus E = 100 and Poisson’s ration ν = 0.0, tensile
strength ft = 0.05 and fracture energy G f = 0.01.
We study this problem with different number of
nodes and show results for 400 nodes and 1,600
nodes. Our aim is to prove that the results (load-
displacement curve) is independent of the number
of degrees of freedom. This control has to be done
for any new numerical method.
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1

P,u

Figure 2: Square plate subject to uni-axial tension

The crack begins to propagate from the pre-notch
perpendicular to the direction the load is applied.
The crack is perfectly straight as expected and
not illustrated. The load-displacement for 400
nodes and 1,600 nodes is presented in figure 3.
The load-displacement curve is independent of
the number of nodes.

5.2 Tensile-shear beam

As a second example, the pre-notched beam in
figure 4 is subjected by two concentrated forces
F . The beam has a rectangular cross-section with
thickness 156mm. The material has a Young’s
modulus E = 25,000MPa, Poisson’s ratio ν =
0.2, tensile strength ft = 2.8MPa and fracture en-
ergy G f = 100N/m. This experiment was done by
Arrea and Ingraffea (1982).

The crack propagates from the prenotch
obliquely. Initially shear stresses dominate
the crack orientation. In the later stage, dominant
tensile stresses cause the crack to straighten.
Figure 5 shows the crack pattern for the rotating
vs. fixed crack method. The crack is smeared
wider for the fixed crack method probably due to
inaccuracies in the crack orientation at initiation.
The crack pattern of the rotating crack method
is closer to the experimental data of Arrea and
Ingraffea (1982).
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Figure 3: Load-displacement curve of the uni-
axial tensile test
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Figure 4: The prentoch beam subject to two con-
centrated loads; all dimensions are in mm

(a) Fixed crack method

(b) Rotating crack method

Figure 5: Crack in the tensile-shear beam
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Figure 7: 3-point beam in bending

Also the load-displacement curve is stiffer for the
fixed crack method, figure 6. It overestimates the
fracture energy and falls outside the experimen-
tal data. Note that the experimental data underlies
certain scatter in the post-localization. We show
the averaged curve. The rotating crack method
is closer to the experimental data except close to
the end of the load-displacement curve but experi-
mental measurements are difficult when the beam
is close to fracture.

5.3 3-point bending beam

The final example is 3-point beam in bending.
The geometry and dimensions of the beam are de-
picted in figure 7. The material has a Young’s
modulus E = 36,000MPa, Poisson’s ratio ν =
0.2, tensile strength ft = 3MPa and fracture en-

ergy G f = 100N/m. Initially, bending stresses
are dominant at crack initiation at the bottom and
cracks propagate perpendicular to the bottom line.
The cracks incline due to shear stresses at a later
stage. Figure 8 shows that the fixed crack method
smears the crack widely and is less realistic than
the rotating crack method.

(a) Fixed crack method

(b) Rotating crack method

Figure 8: Cracks in the 3-point bending beam

6 Conclusions

The discrete rotating cohesive crack method was
implemented into a meshfree concept. In this
method, the crack was modelled by a set of
cracked cohesive segments that directly pass
through the nodes. The partition of unity method
was exploited to describe the crack kinematics.
The Rankine criterion initiated the crack at the
node and the crack segment was placed perpen-
dicular to the direction of the maximum princi-
pal tensile stress though other criteria such as the
strong-ellipticity criterion can be used. The dis-
crete crack segments were allowed to rotate if di-
rectional changes in the principal tensile stresses
occur. Since the stress field is especially inaccu-
rate around the crack tip, this strategy improves
the results and avoids smearing of the cracks that
is observed when the crack orientation is fixed at
initiation. The method is applied to three exam-
ples and shows good behavior.

The proposed method could also be employed for
a dynamic analysis. It is especially effective for
many cracks and complicated crack pattern that
includes fragmentation. These applications will
be investigated in our future research.
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