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The MLPG Mixed Collocation Method for Material Orientation and
Topology Optimization of Anisotropic Solids and Structures

Shu Li1 and S. N. Atluri2

Abstract: In this paper, a method based on a
combination of an optimization of directions of
orthotropy, along with topology optimization, is
applied to continuum orthotropic solids with the
objective of minimizing their compliance. The
spatial discretization algorithm is the so called
Meshless Local Petrov-Galerkin (MLPG) “mixed
collocation” method for the design domain, and
the material-orthotropy orientation angles and the
nodal volume fractions are used as the design
variables in material optimization and topology
optimization, respectively. Filtering after each it-
eration diminishes the checkerboard effect in the
topology optimization problem. The example re-
sults are provided to illustrate the effects of the
orthotropic material characteristics in structural
topology-optimization.
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1 Introduction

The use of anisotropic materials in structural de-
sign provides superior physical and mechanical
properties in a wide range of engineering ap-
plications such as complex aircraft: low-mass
army ground-vehicles, simple sails: high speed
and light rotating disks [Spalatelu-Lazar, Léné
and Turbé(2008), Khoshnood and Jalali (2008)].
Composite materials are used to design a mate-
rial with properties which are impossible to be
achieved by isotropic materials. It is well known
that the characteristics and properties of compos-
ite structures made of orthotropic materials are di-
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rectly related to the orientation of material princi-
pal axes. For complicated engineering structures
with many design parameters, simple structural
design is not sufficient for the desired structural
performance. Topology optimization is becom-
ing a potentially important tool for structural de-
sign. By adding material where it is required for
desired performance, and by removing material
where it is redundant, while keeping the volume
of the structure constant, topology optimization
methods transform the structural design problem
into a material distribution optimization problem.

The conventional topology optimization of a
structure proceeds in a sequential manner, and
it simultaneously solves the equilibrium equa-
tions and optimizes the structure subjected to cer-
tain objectives and constraints [Norato, Bend-
søe, Haber and Tortorelli (2007), Vemaganti and
Lawrence (2005), Cisilino(2006), Wang, Lim,
Khoo and Wang (2007), Zhou and Wang (2006)].
Simpler, convenient and efficient numerical meth-
ods are also mandatory, because of the inten-
sive computation involved in topology optimiza-
tion. With the potential benefits of the mesh-
less methods, especially research in [Atluri and
Zhu(1998), Atluri and Shen(2002a, 2002b), and
Atluri(2004)] shows that the MLPG method is
becoming the most effective numerical-analytical
method for optimizing structures. In this paper,
the equilibrium equations of the topology opti-
mization problem are solved by a Meshless Lo-
cal Petrov-Galerkin (MLPG) “mixed collocation”
method which was presented by Atluri, Liu, and
Han (2006). This meshless method avoids any nu-
merical integration either over a local domain or
over the local boundary and has inherent advan-
tages such as the computational efficiency and the
ease of implementation.

In the present work, we extend our previous work
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[Li and Atluri (2008)] to perform topology op-
timization of orthotropic composite structures.
This work focuses on a combination of the opti-
mization of material-axes orientation, along with
topology optimization, of orthotropic continuum
solids. We deal with this problem in two stages.
The first stage is based on ideas from optimiza-
tion of orientation angles of an orthotropic ma-
terial. The orientations of orthotropic materials
are important design parameters, because they can
change the structural mechanical behavior. In the
“orientation-optimization” of an orthotropic ma-
terial, one of the early works is due to Pedersen
(1989). The objective of the optimization is to
treat the compliance minimization as a measure
of the material stiffness. To this end the compli-
ance of the structure is evaluated using the Mesh-
less Local Petrov-Galerkin (MLPG) “mixed col-
location” method, the one already used by the au-
thors for isotropic plane structures [Li and Atluri
(2008)]. Finally, a topology optimization of the
orthotropic composite structure, with the opti-
mized material orientations, is performed. The
methods can be easily extended to thick-section
composite laminates, wherein each lamina can be
modeled as an orthotropic material. The meth-
ods that are developed in the present paper, and
in Li and Atluri (2008) are germane to our over-
all goal of implementing multi-scale material and
topology optimization strategies for maximizing
the fracture and damage resistance of light weight
structures subject to intense dynamic loading.

The outline of this paper is as follows: the MLPG
mixed collocation method is introduced in Sec-
tion 2, where the moving least squares (MLS)
approximation is briefly reviewed and the equi-
librium equations for an anisotropic solid are
discussed. An “optimal orientation-of-material-
angles” problem of an anisotropic material is de-
fined in Section 3. Section 4 gives the formu-
lation for the structural topology optimization, a
scheme for the Lagrange method and the filtering
principle. Several examples are presented to illus-
trate the characteristics of topology optimization
for orthotropic materials, in section 5. Finally, we
summarize, discuss, and generalize the results of
the paper in section 6.

2 MLPG Mixed Collocation Method

2.1 The moving least squares (MLS) approxi-
mation

The moving least squares (MLS) approximation
is often chosen as the interpolation function in
a meshless approximation of the trial function.
The MLPG Mixed Collocation Method adopts the
MLS interpolation [while other functions such as
the Radial Basis Functions, MQ, etc. can also
equally well be used] to approximate a function
u(x) over a number of nodes randomly spread
within the domain of influence. The approxi-
mated function u(x) can be written as [Atluri
(2004)]

u(x) = pT (x)a(x) (1)

where pT (x) is a monomial basis which can
be expressed as pT (x) = [1, x1, x2] for two-
dimensional problems and pT (x) = [1, x1, x2, x3]
for three dimensional problems, respectively.
a(x) is a vector of undetermined coefficients,
which can be obtained by minimizing the
weighted discrete L2 norm, defined as

J(x) =
m

∑
I=1

wI(x)
[
pT (xI)a(x)− ûI]2 (2)

where {xI} : (I = 1,2, . . .,m) are scattered local
points (nodes) to approximate the function u(x),
wI are the weight functions and ûI are the ficti-
tious nodal values. After the coefficient vector
a(x) is obtained, we substitute it into Eq. (1). The
function u(x) can be approximated by these ficti-
tious nodal values, as

u(x) =
m

∑
I=1

ΨI(x)ûI (3)

where ûI is the virtual nodal value at node I, and
ΨI(x) is the shape function. The detailed formu-
lations and discussions for the MLS interpolation,
using the true nodal values can be found in Atluri
(2004).

Generally speaking, the MLS shape function does
not have the Dirac Delta property, namely

uI ≡ u(xI) =
m

∑
J=1

ΨJ (x) ûI �= ûI (4)
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However, with the mapping relationship between
the virtual and true nodal values [Eq. (4)], it is
straightforward to establish the trial functions in
the true nodal-values space as

u(x) =
m

∑
I=1

ΦI(x)uI (5)

2.2 Equilibrium equations

We consider a linear elastic body Ω undergo-
ing infinitesimal deformations. The equilibrium
equation can be expressed as

∇ ·σσσ + f = 0 (6)

subject to the boundary conditions:

u = u on Γu

t = n ·σσσ = t on Γt
(7)

In which σσσ is the stress tensor, ∇ is the gradient
vector, f is the body force vector; u is the displace-
ment vector, t is the traction vector, and n is the
outward unit normal to the boundary Γ.

Within the general MLPG framework
[Atluri(2004)], one may choose the Dirac
Delta function as the test function for the un-
symmetric local weak form, and apply it to each
nodal point. The momentum balance equation is
enforced at the nodal points, as

[∇ ·σσσ ]
(
xI)+ f

(
xI)= 0 (8)

where
{

xI
}

(I = 1,2, . . .,N) are the distributed
nodes, and N is the number of total distributed
nodes in the solution domain. In the present
mixed scheme, we interpolate the displacement
vector u(x) and the stress tensor σσσ (x) indepen-
dently, using the same shape functions obtained
from the MLS approximation [Eq. (3)], the dis-
placement field u(x) and the stress field σσσ(x) can
be represented in matrix form

u(x) =
m

∑
J=1

ΦΦΦJ (x)uJ (9)

σσσ(x) =
m

∑
J=1

ΦΦΦJ (x)σσσ J (10)

Here, uJ and σσσ J are the nodal displacement vec-
tor and stress vector [note that the stress tensor is
now symbolically re-written as a stress-vector] at
node J, respectively. In the case of the orthotropic
linear elastic problem, the plane orthotropic con-
stitutive relation is described by four independent
material parameters and by a specified direction
(Q11 > Q22) as

⎡
⎣ σ1

σ2

σ12

⎤
⎦=

⎡
⎣Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤
⎦
⎡
⎣ ε1

ε2

ε12

⎤
⎦

Q11 =
E1

1−ν12ν21
, Q22 =

E2

1−ν12ν21
,

Q66 = G12, Q12 = ν12Q11 = ν21Q22

With E1, E2 the Young’s modulus, ν12, ν21 the
Poisson’s ratio.

x 

y

θ

1
2 

Figure 1: The orientation angle

Using a matrix expression for the rotated elastic
coefficients, we can define

⎡
⎣ σ1

σ2

σ12

⎤
⎦= T

⎡
⎣σx

σy

σxy

⎤
⎦

where the matrix T stands for the rotation matrix,
θ is the orientation angle of the materials’ princi-
ple direction of orthotropy. The rotation matrix T
can be given by

T =

⎡
⎣ m2 n2 2mn

n2 m2 −2mn
−mn mn

(
m2 −n2

)
⎤
⎦
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and

T−1 =

⎡
⎣m2 n2 −2mn

n2 m2 2mn
mn −mn

(
m2−n2

)
⎤
⎦

m = cosθ , n = sinθ

The relation between the stress vector σσσ and strain
vector the εεε can be written as

σσσ = Q ·εεε (11)

Where

Q = T−1 ·Q · (T−1)T

εεε = L∗ ·u (12)

where, L∗ a differential operator, for the present
2D problem.

Upon substituting the stress interpolation Eq. (10)
into Eq. (8), we have

m

∑
J=1

∇ ·ΦΦΦJ (xI) ·σσσ J + f
(
xI)= 0;

for I = 1,2, . . .,N (13)

It clearly shows that there are no second deriva-
tives of the shape functions for the displacements
involved in the system equations, due to the inde-
pendent interpolation of the stress variables. It is
well known that in the meshless approximation,
specifically the MLS, usually results in a very
complex form of the second derivatives. The Eq.
(13) has less number of equations than the number
of the independent stress variables, because the
nodal stress variables are more than the displace-
ment ones. Therefore, we need to establish some
more equations in addition to Eq. (11) through the
stress displacement relation. The standard collo-
cation method may be applied to enforce the stress
displacement relation at each nodal point. For lin-
ear elasticity problems, this relation can be writ-
ten as

σσσ
(
xI)Q ·εεε (xI)= Q ·L∗ ·u(xI) (14)

After substituting the displacement interpolation
Eq. (9) into Eq. (14), we have

σσσ J =
m

∑
J=1

QBJ (xI)uJ (15)

where

BJ
(
xI
)

=

⎡
⎣ΦJ

,x

(
xI
)

0
0 ΦJ

,y

(
xI
)

ΦJ
,y

(
xI
)

ΦJ
,x

(
xI
)
⎤
⎦ (16)

σσσ J =
[
σ J

x σ J
y τJ

xy

]T
uJ =

[
uJ

x uJ
y

]T
Eq. (13) and Eq. (14) can be rewritten in the
forms as follows, respectively:

KS ·σσσ = fb (17)

σσσ = T ·u (18)

in which fb is the body force vector.

We set BIJ = BJ
(
xI
)
, thus

KS =

⎡
⎢⎢⎢⎣

BT
11 BT

12 · · · BT
1n

BT
21 BT

22 · · · BT
2n

...
...

...
...

BT
n1 BT

n1 · · · BT
nn

⎤
⎥⎥⎥⎦

T = Q ·

⎡
⎢⎢⎢⎣

B11 B12 · · · B1n

B21 B22 · · · B2n
...

...
...

...
Bn1 Bn1 · · · Bnn

⎤
⎥⎥⎥⎦

and

σσσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σσσ1

σσσ2

...
σσσ J

...
σσσN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...
uJ

...
uN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let

K = KS ·T (19)

which yields the well known formulation of equi-
librium equation

Ku = fb (20)

Where

KIJ =
m

∑
K=1

BT
IKQBKJ (21)
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It should be noted that BIK = BK
(
xI
)

and BKJ =
BJ
(
xK
)
. We can write Eq.(21) as

KIJ =
m

∑
K=1

(
BK (xI))T

Q̂BJ (xK) (22)

Obviously, KIJ is not a symmetric matrix.

2.3 Boundary Conditions

The traction boundary conditions are enforced at
each of the traction boundary nodes K, as:

nK ·σσσK = tK for K = 1, . . .,S (23)

where S is the number of total traction boundary
nodes, the matrix nK is the transformation matrix
between the coordinates, as

nK =
[

nK
x 0 nK

y

0 nK
y nK

x

]

and

σσσK =
[
σK

x σK
y τK

xy

]T
, tK =

[
tK
x tK

y

]T
Assuming σσσ1 and σσσ2 represent the known and un-
known stress vectors, respectively. Hence Eq.(20)
can be written as

K1 ·σσσ 1 +K2 ·σσσ2 = fb (24)

where

σσσ1 = T1 ·u (25)

σσσ2 = T2 ·u (26)

Premultiplying Eq. (23) by the penalty number α
and the transpose of the transformation matrix n,
we obtain:

αnT ·n ·σσσ 1 = αnT · t (27)

where

n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1 0
n2

. . .
nK

. . .
0 nS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

σσσ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σσσ 1

σσσ 2

...
σσσK

...
σσσ S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1

t2

...

tK

...
tS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easy to obtain

σσσ1 +αnT ·n ·σσσ1 = T1 ·u+αnT · t (28)

and

σσσ1 =
(
I +αnT ·n)−1 (

T1 ·u+αnT · t) (29)

where I is unit matrix.

Let

R =
(
I +αnT ·n)−1

(30)

then

σσσ1 = R ·T ·1 u+αR ·nT · t (31)

By substituting Eq. (31) into Eq.(24), we can ob-
tain a discretized system which is expressed as

K ·u = f (32)

where

K = K1 ·R ·T1 +K2 ·T2

f = fb −αK1 ·R ·nT · t (33)

3 Optimal orientation of material axes

We consider the problem of optimal orientation
of material axes in two different problems. In the
first problem, the design domain consists of an or-
thotropic material with a fixed orientation angle.
In the second problem, the orientation angles are
functions of the spatial coordinates in the design
domain. The orientation optimization problem is
to search for the minimization of total compli-
ance of orthotropic material structures. The de-
sign variable is the orientation of material axes.
The mean compliance is the function to be mini-
mized with respect to the variations of the orien-
tation angles. Here, ‘compliance’ is defined as the
product of the external loads and the correspond-
ing displacements.
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3.1 The fixed orientation angle case

According to Eq.(32), the objective function (the
mean compliance of a structure) is formulated as
follows:

C (θ ) = fT ·u (34)

where u is the global displacement vector, and f
is the prescribed force vector. Considering C (θ )
as a scalar function, the above expression can also
be written, for linear response, as:

C (θ ) = uT KT u = uT Ku (35)

If we set KT u = f′, Eq.(35) means that the both
systems of Ku = f and KT u = f′ have the same
compliance value under the same deformation
condition.

The orientation optimization problem is treated
as an unconstrained optimization problem. The
mathematical statement of the orientation opti-
mization problem is as follows:

min
θ

C (θ ) (36)

The optimization problem is solved using a se-
quential quadratic programming algorithm. This
algorithm requires the sensitivity derivatives of
the objective function with respect to the design
variables to determine the optimal orientation of
extreme compliance.

For the single orientation angle case, the orienta-
tion optimization problem only has a design vari-
able θ . We now differentiate Eq. (36) with respect
to θ :

dC (θ )
dθ

=
duT

dθ
Ku +uT dK

dθ
u+uT K

du
dθ

= uT dK
dθ

u+uT (K+KT ) du
dθ

(37)

Using the fact that applied forces are design-
independent of Ku = f and KT u = f′, we have

K
du
dθ

= −dK
dθ

u

KT du
dθ

= −dKT

dθ
u

Finally, the sensitivity derivatives of the compli-
ance function is given by

dC (θ )
dθ

= −uT dKT

dθ
u (38)

3.2 The distributed angles case

When the material-orientation angles are func-
tions of spatial coordinates at discrete locations,
the orientation optimization problem is a multi-
variable θ = (θ1, θ2, · · · ,θn) design problem. The
orientation optimization problem is stated as:

min
θi

C (θi)

Eq.(38) can be extended to multiple variable cases
as follows,

∂C (θ )
∂θi

= −uT ∂KT

∂θi
u (39)

A sequential quadratic programming algorithm is
also used to solve the optimal design problem.

4 Topology optimization problem

4.1 General topology optimization

Topology-optimization implies the optimal distri-
bution of material in a structure, so as to mini-
mize its compliance, subject to the specified con-
straints of the total material to be used. According
to Eq.(32), the mean compliance of a structure is
formulated as follows:

C = fT ·u

where u is the global displacement vector, f is the
force vector. Also, the above expression can also
be written, for linear response, as:

C = uT Ku (40)

In this paper, Eq.(40) is formed by using the
MLPG Mixed Collocation Method. The design
domain Ω (Fig.1) is partitioned into randomly dis-
tributed N nodes which have no connectivity in
the form of a mesh. For an arbitrary node i, if the
number of nodes around point i which influence
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the trial function at node i is r, a sub-system con-
sists of these r nodes. In this sub-system, we have

kiui = fi (41)

where ui is the displacement vector and ki is the
“stiffness” matrix constructed in the same way as
Eq.(19). The MLPG form of Eq.(40) becomes

C =
N

∑
i=1

uT
i kiui (42)

uΓ  Displacement boundary 

 
Void 
(� =0) Solid 

(� = 1) 

Design domain 

 

tΓ  Traction boundary 

Figure 2: Topology optimization design domain

If we consider the nodal volume fractions ρi as
the design variables, then the topology optimiza-
tion problem for minimizing the compliance can
thus be stated, with the volume constraint V ∗ as
follows:

min
ρ

C (ρρρ) = uT Ku =
N

∑
i=1

uT
i kiui

s.t. V (ρρρ) =
N

∑
i=1

ρiVi = V ∗

Ku = f

0 < ρmin ≤ ρi ≤ 1

(43)

where ρρρ , the vector consisting of design variable
ρi , ρmin, is the vector of minimum allowable rel-
ative volume fractions (non-zero to avoid singu-
larity), N is the number of nodes to discretize the
design domain, and V ∗ is the prescribed volume.
V (ρ) is the total volume of material.

Setting ρmin to a small but positive value keeps the
“stiffness” matrix ki from becoming singular. The
artificial variable ρi is considered as an indicator
of the local material volume Vi. The final material
volume V ∗ is linearly related to the design vari-
ables.

The Solid Isotropic Material with Penalization
(SIMP) model leads to a common and efficient
called power-law approach. To avoid intermedi-
ate volume fraction values ρi (between 0 and 1), a
SIMP-like model (Solid Isotropic Microstructure
with Penalty) is adopted in the proposed topology
optimization method. In this SIMP-like model,
the penalized “stiffness” matrix ki is given by

ki = (ρi)
p k0

i (44)

k0
i is the initial value of the matrix ki, p is the pe-

nalization power (typically p = 3). Fig.2 displays
the relative “stiffness” ratio vs. volume fraction
values ρi, for different values of the penalization
power p.

Figure 3: SIMP-like model for different values of
the penalization power p

The MLPG Mixed Collocation Method for topol-
ogy optimization problem requires the computa-
tion of the sensitivity derivatives of the compli-
ance with respect to the design variables. The
sensitivities of the compliance respect to design
variable ρi can be derived from the expression of
Eq.(40) in the same manner as Eq.(39) as follows:

∂C
∂ρi

= −uT ∂KT

∂ρi
u (45)
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Considering the adaptation of the SIMP-like
model as Eq.(44), the above expression of Eq.(45)
is written as

∂C
∂ρi

= −p(ρi)
p−1 uT

i

(
k0

i

)T
ui (46)

4.2 The Lagrange method

The classical Lagrangian method is called as
the linear Lagrangian theory in [Goh and Yang
(2001)]. In the linear Lagrangian theory, the La-
grangian function is a linear combination of the
objective and constraint functions for solving con-
strained optimization problems. Based on linear
Lagrangian theory, we consider the Lagrangean
associated with the constrained topology opti-
mization problem Eq.(43)

L(ρρρ) = C +λ1

(
N

∑
i=1

ρiVi−V ∗
)

+ΛΛΛT (Ku− f)

+
N

∑
i=1

μ i
1 (ρmin −ρi)+

N

∑
i=1

μ i
2 (ρi −1) (47)

where λ1 and μi are Lagrange multipliers for the
equality and inequality constraints, respectively.
ΛΛΛ is the Lagrange multiplier vector.

To tackle this problem, the typical way of the
Lagrangian method is the use the Kuhn–Tucker
optimality condition which is a generalization
of the first order optimality necessary conditions
(FONC).

For a general classical single-objective nonlinear
programming problem as:

min f (x)
s.t. gi(x)≤ 0 for i = 1,2, . . ., I

h j(x) = 0 for j = 1,2, . . .,J

x = (x1,x2, · · · ,xN)

The Kuhn-Tucker condition is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ f (x)+∑ μi∇gi(x)+∑λ j∇h j(x) = 0

(optimality)

gi(x)≤ 0 for i = 1,2, · · · , I (feasibility)

h j(x) = 0 for j = 1,2, · · · ,J (feasibility)

μigi(x) = 0 for i = 1,2, · · · , I

(complementary slackness condition)

μi ≥ 0 for i = 1,2, · · · , I (non - negativity)

(Note: λ j is unrestricted in sign)

The Kuhn-Tucker condition is a necessary con-
dition for optimality in constrained minimization
(or maximization) under a constraint qualifica-
tion. Here, the assumption is that ∇gi(x∗) for i
belonging to active constraints and ∇h j(x∗) for j
= 1,...,J are linearly independent. This is the so-
called “constraint qualification”.

The Kuhn-Tucker conditions not only give the
necessary conditions for optimality but also pro-
vide a way of finding optimal solutions. So the
Lagrange method essentially transforms a con-
strained problem to an unconstrained problem.

In this paper, the optimality criterion (OC) was
formulated in a form suitable for incorporation in
the meshless method codes. The necessary condi-
tions for optimality can be obtained by using the
Kuhn–Tucker conditions as follows:

∂L
∂ρi

= 0, i = 1,2, · · · ,N

Differentiating (47) with respect to ρi and ma-
nipulating the terms, the Kuhn-Tucker optimality
condition can be written for problems [Eq.(43)]
subject to multiple constraints as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂ρi

= ∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

−μ1 + μ2 = 0

V (ρρρ)
N
∑

i=1
ρiVi−V ∗=0

(the equality constraints)

Ku = f (the equality constraints)

ρmin −ρi ≤ 0 (the inequality constraints)

ρi −1 ≤ 0 (the inequality constraints)

μ1 (ρmin −ρi) = 0

μ2 (ρi −1) = 0

μi ≥ 0 i = 1,2
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(48)

Note: λ1 and ΛΛΛ are unrestricted in sign, corre-
sponding to the equality constraints. It is clear
that the efficiency of the OC method is determined
mainly by the number of active constraints. If
ρmin < ρi < 1, the lower and upper bounds of
the design variables are inactive, then we have
μ1 = μ2 = 0. If ρi = ρmin, the lower bound of the
design variables are active, then we have μ1 ≥ 0,
μ2 = 0. If ρi = ρmax, the upper bound of the de-
sign variables are active, then μ1 = 0, μ2 ≥ 0. and
(48) yields:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

= 0 ρmin < ρi < 1
∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

≥ 0 if ρi = ρmin
∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

≤ 0 if ρi = ρmax

V (ρρρ) =
N
∑

i=1
ρiVi −V ∗ = 0 (the equality constraints)

Ku = f (the equality constraints)

μi ≥ 0 i = 1,2

(49)

The above sensitivity of a node is dependent on
several surrounding points. For different posi-
tions, the number of nodes around one point may
different. So the sensitivity analysis is more com-
plex and time consuming when compared with the
case of element-based methods.

To derive the iterative formulation more conve-
niently, only the equality cases in Eq.(49) are used
in the present illustration, i.e.

∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT
(

∂K
∂ρi

u+K
∂u
∂ρi

)
= 0

Utilizing the expression Ku = f, it is easy to ob-
tain

∂K
∂ρi

u+K
∂u
∂ρi

= 0

then

p(ρi)
p−1 uT

i

(
k0

i

)T
ui +λ1Vi = 0 (50)

Set

Bi =
p(ρi)

p−1 uT
i

(
k0

i

)T ui

λ1Vi
= 1 (51)

Eq.(50) is regarded as an Optimally Criterion
(OC) based on the discretization of the MLPG
Mixed Collocation Method. Thus, we can update
the design variables as follows:

ρnew
i =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max (ρmin,ρi −m)
if ρiB

η
i ≤ max(ρmin,ρi −m)

ρiB
η
i

if max(ρmin,ρi −m) < ρiB
η
i < min(1,ρi +m)

min(1,ρi +m)
if min(1,ρi +m) ≤ ρiB

η
i

(52)

Where m is the limit ([Bendsøe and Kikuchi
(1988)]), which represents the maximum allow-
able change in the relative nodal volume fractions
ρi in the OC iteration. η is the damping coeffi-
cient. This updating scheme was often adopted in
many presented papers. The values of m and η in-
fluence the convergence of the scheme, and they
are chosen by experience ([Bendsøe and Kikuchi
(1988)]).

The penalty parameter p is set to be 3, and the nu-
merical damping coefficient η is set to 0.5. The
Lagrange multiplier for the volume constraint λ1

is determined at each OC iteration using a bi-
sectioning algorithm, as in the paper [Sigmund
(2001)].

4.3 Filtering principle

Here we describe the principle of suppressing
checkerboard patterns which is a familiar problem
in topology optimization when numerical stabil-
ity is not guaranteed. The appearance of checker-
boarding causes difficulties in interpreting and
fabricating topology-optimized structural compo-
nents. Sigmund (1994, 1997) developed a sensi-
tivity filter method for preventing numerical insta-
bilities from occurring. Filtering techniques have
become quite popular in topology optimization
[Wang; Lim, Khoo and Wang (2008)]. To tackle
checkerboarding, a scheme similar to the filtering
method is incorporated in the optimization algo-
rithms based on the meshless discretization. In
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this scheme, we modify the design sensitivity of
any specific node depending on a weighted aver-
age of the node sensitivities in a connected neigh-
borhood. The principle works by modifying the
nodal sensitivities as follows
∩

∂C
∂ρi

=
1

ρi

m
∑

f=1
Ĥ f

m

∑
f=1

Ĥ f ρ f
∂C
∂ρ f

(53)

Here, the convolution operator (weight factor) is
written as

Ĥ f = rmin−dist (n, f ){ f ∈ M|dist (n, f ) ≤ rmin} ,

n = 1, . . .,m (54)

and the operator dist(n, f ) is defined as the dis-
tance between node n and node f . The convolu-
tion operator Ĥ f is zero outside the filter area, and
decays linearly with the distance from node f .

5 Numerical examples

In this section, the examples concern two as-
pects of the problems with several subcases. The
first aspect examines the results of the “material-
axes orientation” optimization problem. The
second aspect of examples examines the effect
of topology optimization after finding the opti-
mized “material-axes orientation”. We present
several numerical examples (cantilever and MBB-
beams). All the examples are treated here as being
dimensionless.

Example 1:

As shown in Fig. 4, the first example is that of a
short cantilever beam. The material is orthotropic,
with Young’s moduli E1 = 30, E2 = 5, Poisson’s
ratios μ12 = 0·25 and the shear moduli G12 = 2.
The design domain is clamped along the left end
and a concentrated vertical load P is acting at the
point A, B and C respectively of the free (right)
end of the beam.

The design domain Ω is discretized by the MLPG
Mixed Collocation Method using uniformly dis-
tributed nodes.

Example 2:

The second example is that of a so-called MBB
beam (Fig.7(a)) in which the right half-domain is
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Figure 4: Cantilever beam

modeled as Fig.7(b). This is an orthotropic beam
with Young’s moduli E1 = 30, E2 = 5, Poisson’s
ratios μ12 = 0.25 and the shear moduli G12 = 2.
The design domain is discretized into 60 x 20 uni-
formly distributed nodes in the half-domain. The
left bottom is assumed to be fixed, and the right
one is assumed to be on a roller.

In the Fig.7(b), At , Bt , Ct and Ab, Bb, Cb are the 3
points at top and bottom of the MBB beam, re-
spectively, where the concentrated vertical load
P is alternatively applied. The corresponding
variations of the relative compliance vs the fixed
material-orientation for various locations of the
point of application of the load are displayed in
Fig.8 and Fig.9. When the concentrated vertical
load P is applied at the middle of the top of the
MBB beam, fig.10 gives the curves of the rela-
tive compliance vs the fixed material-orientation
for various L/H ratio case.

Figs.5-6 in example 1, and Figs.8-10 in example
2 illustrate that the load lactation and L/H ratio
influence the compliance variation significantly.
From these figures, it can be seen that the com-
pliance has different extremums, which can be
searched using the optimaization method in the
section 3.

Example 3:

The example is the same cantilever beam as in
Fig.4. The optimized material-orientation vs load
position with L/H=1 is shown in fig.11. The opti-
mized material-orientation vs the L/H ratio under
a concentrated vertical load P applied at the mid-
dle of the right end is shown in fig.12.

As a comparison, the considered problem was
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Figure 5: The relative compliance vs the fixed material-orientation for various locations of the point of
application of the load (L/H=1)

Figure 6: The relative compliance vs the fixed material-orientation for various L/H ratio cases (the load is
applied at point A)
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Figure 7(a): MBB beam Figure 7(b): MBB beam (right half-domain)

Figure 8: The relative compliance vs the fixed material-orientation for various locations of the point of
application of the load (top)
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Figure 9: The relative compliance vs the fixed material-orientation for various locations of the point of
application of the load (bottom)

Figure 10: The relative compliance vs the fixed material-orientation for various L/H ratio cases
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y 

 

H 

P 

A 

x 

y 

L 

Figure 11(a): Cantilever beam model
Figure 11(b): The optimized orientation angle vs
load position

 

L 

H

P 

Figure 12(a): Cantilever beam model Figure 12(b): The optimized orientation angle vs the
L/H ratio

also calculated by using finite element method
(FEM). The results of the MLPG method are in
good agreement with the solutions of the finite el-
ement method.

Example 4:

In this example of topology optimization, a can-
tilever beam as in fig. 4 is used. The design do-
main is discretized using 40 x 40 uniformly dis-
tributed. To compare the results of isotropic and
orthotropic material cantilever beam, we choose
an orthotropic material with orientation at 4 an-
gles θ = 0˚, 45˚, 90˚ and the optimized angle, re-
spectively.

Example 5:

In this example, a cantilever beam as in fig.

4 is used with L/H=1.5. The design domain
is discretized using 60×40 uniformly distributed
nodes. To compare the results of isotropic and
orthotropic material cantilever beam, results from
topology design associated with an orthotropic
material oriented at θ = 0˚, ±60˚, 90˚C and the
optimized angle, respectively are presented.

The results shown in Fig.13 and fig.14 display
topological similarities between the isotropic ma-
terial and the orthotropic one, with material axes
of θ =0˚ and θ =90˚. We see that for orthotropic
cases, the bending-tension coupling (i.e., Q16 =
Q26 = 0) does not exist. However, the topologi-
cal layouts are very different for other orthotropic
material orientations since bending-tension cou-
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MLPG                                                                    FEM  

(a)  Isotropic material 

                                                              

                                          
MLPG                                                                    FEM  

 (b)   Orthotropic material (� = 0° )                                    

                                 
MLPG                                                                    FEM  

 (c) Orthotropic material (� = 45° ) 
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MLPG                                                                    FEM  

 (d) Orthotropic material (� = 90° )   

                                       
MLPG                                                                    FEM  

 (e)   Orthotropic material (the optimized angle )   

Figure 13: Comparison of topology optimization results

pling are significant enough to change the layouts.
It is also shown that the result obtained by the
MLPG method is identical to that of the finite el-
ement method. Furthermore, the MLPG can pro-
vide much better results in comparison with the
finite element method at θ = ±60˚.

Example 6:

This example is also that of an orthotropic can-
tilever beam with Young’s moduli E1 = 30, E2 =
5, Poisson’s ratios μ12 = 0·25 and the shear mod-
uli G12 = 2. The beam has the rectangular ‘design
domain’ (L=2H) as shown in Fig. 15. The load P
is applied at the middle of the right end.

The design domain is discretized using 40×20
uniformly distributed nodes. For the considered
beam, optimized material directions (orientation
angles) in minimum compliance design are shown
in Fig.16.

Fig. 17 gives a comparison of the topology op-
timization results for isotropic and orthotropic
material cantilever beam after the optimized or-
thotropic material directions are obtained.

Example 7:

Optimized material directions (orientation angles)
in minimum compliance design of orthotropic
MBB beam as in Fig.7 when using continuous
angles as design variables. The problem is then
solved using MLPG method. This MBB beam
is discretized using 60 x 20 uniformly distributed
nodes. The distribution of the optimized material
directions is shown in fig.18 and topology opti-
mization results in Fig.19.

Our displays of layouts for orthotropic planes re-
veal a very important effect of material directions
for topology optimization results.
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MLPG                                                                    FEM 

(a) Isotropic material 

                                 
MLPG                                                                    FEM 

 (b) Orthotropic material (� = -60°)    

                         
MLPG                                                                    FEM 

(c) Orthotropic material (� = 60°)    
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MLPG                                                                    FEM 

(d) Orthotropic material (� = 90°)  

                       
MLPG                                                                    FEM 

 (e) Orthotropic material (the optimized angle)    
Figure 14: Comparison of topology optimization results
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H 

P 

Figure 15: Cantilever beam (L=2H)

Figure 16: The distribution of orthotropic orien-
tation

6 Conclusions

The structural design of an anisotropic solid in-
volves an adaptation of the combined stages of
the material-orientation optimization along with
the topology optimization. Here we consider the
optimization problem which minimizes the mean
compliance of the structure. In the first stage, the
material-orientation is the design variable with-
out constraints (size optimization) and a sequen-
tial quadratic programming algorithm in which is
a gradient based technique is used for efficient de-
sign. In the second stage, it is shown that dif-
ferent orientations of the same orthotropic ma-
terial influence the optimal results of the global
structure. The topology optimization problem is
treated as the material distribution problem. The
nodal values are used as the design variables, and
the problem becomes one of finding the optimal
values of the relative nodal volume fractions. In
this paper, design domains are discretized by us-
ing the MLPG mixed collocation method, and a
node with zero relative nodal volume fraction rep-
resents a void and a node with a relative nodal
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(a) Isotropic material 

 

(b) Orthotropic material with the optimized orientation 

Figure 17: Comparison of topology optimization
results

Figure 18: The distribution of orthotropic orien-
tation

volume fraction of 1 represents a solid node. The
goal is to find a distribution of relative nodal vol-
ume fractions that minimizes a compliance ob-
jective function, subject to volume constraints.
To solve such a topology optimization problem,
the popular optimality criteria (OC) based on the
Lagrange method is employed with an iterative
heuristic scheme for updating the design vari-
ables. In this paper, one of the significant findings
is that of the topology optimized design for an or-
thotropic material results in a significantly differ-
ent layout as compared to the isotropic material.
This means that the solution space for the topol-
ogy optimization problems is extended. So we

   
(a) Isotropic material 

   
(b) Orthotropic material with the optimized orientation 

Figure 19: Comparison of topology optimization
results

have a considerably more flexible topology layout
for an anisotropic solid, than when an isotropic
material is used. The present method provides
a physical insight into how the anisotropic mate-
rial design variables interact to affect the topology
properties of the structure.

We provide several numerical examples to
demonstrate the versatility of the present method.
For validation purposes, in some specific cases,
the same topology optimization problem is solved
using the finite element method, and the layouts
can be compared with each other. The numeri-
cal instability problems related to a finite element
mesh do not exist in the MLPG method. It need
not cost extra CPU-time to deal with such numer-
ical instabilities. The filtering technique is highly
suitable for the present MLPG method.
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