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Analysis of the interaction between two nanovoids using bipolar coordinates

Shuling Hu1 and Shengping Shen1,2

Abstract: The effects of surface energy on the
interaction between two voids of equal size are
investigated. The problem is solved by series ex-
pansion in bipolar coordinates. The results show
that the surface energy significantly affects the
stress concentration around the holes as the size
of the holes shrinks to nanometers, meanwhile
the interaction between the holes also influences
the stress distribution around the holes, which be-
come evident as the holes close to each other. This
problem is of great importance in engineering ap-
plications.
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1 Introduction

At nanometer scale, the size effects become
prominent due to the increasing ratio of surface
area to volume. Using molecular dynamic sim-
ulations, Zhou and Huang (2004) demonstrated
that the effective elastic modulus of a thin free-
standing film can either increase or decrease as
the film thickness decreases depending upon the
crystallographic orientations. Nair et al. (2008)
investigated the indentation response of Ni thin
films of thicknesses in the nano scale using molec-
ular dynamics simulations with embedded atom
method interatomic potentials. The observed
loading curves are dependent on the film thick-
ness. Solano et al. (2008) analyzed the buckling
of hexagonal layers in bulk and nanostructures of
AlN in the framework of atomistic and first prin-
ciples techniques, and investigated the size depen-
dence of their structural and electronic properties.
Pan et al. (2008) presented an analytical method
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for calculating the Quantum-dot-induced elastic
field in anisotropic half-space semiconductor sub-
strates, that is formulated as an Eshelby inclusion
problem in continuum mechanics. Classical elas-
ticity does not take into account the effects of sur-
face energy. Dingreville et al. (2005) developed
a continuum mechanics framework to incorporate
the surface free energy and showed that the over-
all elastic behavior of structural elements (such as
particles, wires, films) is size-dependent. Gurtin
and Murdoch (1975) and Gurtin et al. (1998)
developed the theory of surface elasticity, where
a surface is regarded as a negligibly thin mem-
brane adhered to the bulk without slipping. As
the advent of nanotechnology, the surface elastic
theory, developed by Gurtin and his colleagues,
has found many applications at nanoscale. For
example, Gao et al. (2006) developed the finite
element formula to take into account the surface
effects by using the “surface element”. Sharma
et al. (2003) investigated the deformation around
a spherical nanoinhomogeneity, Wang and Wang
(2006) studied the effects of surface on the stress
field around an elliptical hole, and Yang (2004)
derived the effective modulus of elastic materials
with nanovoids.

Up to now, most of the researches are limited
to a single nanosized void to avoid the interac-
tion effect. However, the interaction between
voids is of great importance in engineering appli-
cation. Ling (1948) and Green (1940) had inves-
tigated the interaction problem between two cir-
cular holes. However, the surface effect has been
neglected in all those investigations and may be
important when the holes are in the nanometer
range. Most recently, Mogilevskaya et al. (2008)
investigate the problem of multiple interacting in-
homogeneities and/or voids with surface effects
based on the complex form of Somigliana’s trac-
tion identity. But, the solving procedure is very
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complicated. In this paper, we investigate the ef-
fects of surface energy on the interaction between
two voids of equal size based on Gurtin’s the-
ory of surface elasticity, which plays an important
role in the mechanical behavior and reliability of
porous materials. This problem is best treated by
using a bipolar coordinate system, and the solving
procedure is much simpler. The detailed introduc-
tion of the bipolar coordinate system can be found
in Cokker and Filon (1931) and Jeffery (1921).

2 Basic equations in bipolar coordinates

According to the theory of surface elasticity
(Gurtin and Murdoch, 1975, 1978; Gurtin, et al.
1998), the surface stress tensor σ s

αβ is related to

the surface energy density Γ
(
εαβ

)
by

σ s
αβ = τ0δαβ +

∂Γ
∂εαβ

(1)

where εαβ is the 2×2 surface strain tensor, δαβ
the Kronecker delta, and τ0 the residual surface
tenson under unstrained conditions. The partial
derivatives are taken at constant surface strain. It
is noted that in equation (1) εαβ is not the surface
strain tensor but the bulk tensor extrapolated to the
surface (Muller and Saul, 2004). Conventional
summation rules apply for all repeated Latin in-
dices (1, 2, 3) and Greek subscripts (1, 2) unless
otherwise noted.

In the bulk, the equilibrium and isotropic consti-
tutive relations are still expressed as

σi j, j = 0 (2)

σi j = 2μεi j +λ εkkδi j (3)

where σi j and εi j are the stress tensor and strain
tensor in the bulk materials, respectively. μ and λ
are the Lame constants.

By assuming the surface adheres perfectly to the
bulk without slipping, according to Gurtin and
Murdoch (1975, 1978) and Gurtin et al. (1998),
the equilibrium equations on the surface can be
written as

σn = divSS (4)

where σ is the stress tensor of the bulk material,
n is the unit vector normal to the surface, S is

the first Piola-Kirchhoff surface stress tensor and
divS represents the surface divergence in its un-
deformed configuration S. Since the surface ten-
sion is small compared to the elastic properties of
the material surface, it is neglected in this paper.
In this case, the components of the surface stress
tensor S are σ s

αβ .Thus, the isotropic constitutive
relationships

σ s
αβ = 2μsδαγεγβ +λ sεγγδαβ (5)

where μs and λ s are the surface Lame constants
for the isotropic surface.
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Figure 1: Two holes of equal size.

Now, we consider two circular holes in an infi-
nite isotropic elastic plate under plane strain con-
dition, as shown in Fig. 1. This problem is best
treated by using a bipolar coordinate system. A
general discussion of stress and strain in bipolar
coordinates can be found in Jeffery (1921) and
Khomasuridze (2007). The bipolar coordinates
(ξ ,η) is defined by the following transformation
(Jeffery, 1921)

x+ iy = −acoth
1
2

i (ξ + iη) (6)

such that the two poles of the coordinates are
located on the x axis at the points (±a,0), and
x = J sinhη , y = J sinξ with a/J = coshη −cosξ .
Let the edges of the holes be denoted by η = ±α ,
respectively, and their centers are located sym-
metrically on the x axis. The radius of the holes
R = a/sinhα , and the center is at tR, with t =
coshα (see Fig. 1).

The biharmonic equation ∇4χ = 0 for the stress
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function χ then transforms to Jeffery (1921)

(
∂ 4

∂ξ 4 +2
∂ 4

∂ξ 2∂η2 +
∂ 4

∂η4 +2
∂ 2

∂ξ 2 −2
∂ 2

∂η2 +1

)
χ
J

= 0 (7)

The general solution, even in both ξ and η , can
be written as

χ1/J =K (coshη −cosξ ) ln(coshη −cosξ )

+
∞

∑
n=1

φn (η)cosnξ
(8)

with

φn (η) = An cosh(n+1)η +Bn cosh(n−1)η (9)

where An and Bn are constants to be determined
from the boundary conditions. It is required that
all the stresses from χ1 vanish at infinity. When
the holes are absent, the stress system in the in-
finite plate is specified by a symmetrical stress
function χ0. The method of solution when two
holes are present is to add χ1 to χ0, thus the re-
quired stress function can be expressed as

χ = χ0 +aσ∞χ1 (10)

where the factor aσ∞ is introduced to render K, An

and Bn dimensionless.

The stresses can be derived from χ as:

σηη

σ∞
={(coshη −cosξ )

∂ 2

∂ξ 2 − sinhη
∂

∂η

− sinξ
∂

∂ξ
+coshη} χ

σ∞J

=− 1
2

K (cosh2η −2coshη cosξ +cos2ξ )

+φ1 (η)+
1
2

∞

∑
n=1

{(n−1)(n−2)φn−1 (η)

−2
(
n2 −1

)
φn (η)coshη

− (n+1)(n+2)φn+1 (η)

−2φ ′
n (η) sinhη}cosnξ +

σηη0

σ∞
(11)

σξξ

σ∞
={(coshη −cos ξ )

∂ 2

∂η2
− sinhη ∂

∂η

− sinξ
∂

∂ξ
+cosξ} χ

σ∞J

=
1
2

K (cosh2η −2coshη cosξ +cos2ξ )

+φ1 (η)− 1
2

φ ′′
1 (η)− 1

2

∞

∑
n=1

{φ ′′
n−1 (η)

−2φ ′′
n (η)coshη +φ ′′

n+1 (η)
+(n−2)φn−1 (η)− (n+2)φn+1 (η)

+2φ ′
n (η) sinhη}cosnξ +

σξξ0

σ∞
(12)

σξη

σ∞
=− (coshη −cosξ )

∂ 2

∂ξ∂η

(
χ

σ∞J

)

=−K sinhη sinξ − 1
2

∞

∑
n=1

{(n−1)φ ′
n−1 (η)

−2nφ ′
n (η)coshη

+(n+1)φ ′
n+1 (η)}sinnξ

+
σξη0

σ∞
(13)

where σηη0, σξξ0 , σξη0 are derived from χ0/J,
that can be written as

σηη0

σ∞
=

∞

∑
n=0

cn cosnξ (14)

σξξ0

σ∞
=

∞

∑
n=0

en cosnξ (15)

σξη0

σ∞
=

∞

∑
n=1

bn sinnξ (16)

at η = ±α . If χ1/J = 0 when ξ ,η = 0, all the
stresses from χ1 vanish at infinity, that means

∞

∑
n=1

(An +Bn) = 0 (17)

For plane strain problems, the strain εξξ is ob-
tained as

εξξ =
1

2μ
[
(1−ν)σξξ −νσηη

]
(18)
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where ν is the Poisson’s ratio, and the surface
stress σ s

ξξ can be given as

σ s
ξξ = Esεξξ (19)

with the surface elastic constants Es = 2μs + λ s.
It is noted again, that in this paper we assume the
surface tension τ0 = 0.

The boundary conditions on the circular holes
(η = ±α) with surface effects are given from Eq.
(4) as

σηη =
σ s

ξξ

a/sinhα
−σξη nη

coshα −cosξ
=

∂σ s
ξξ

a∂ξ

(20)

where the normal vector nη = ∓1 for η = ±α ,
respectively. Substituting Eqs. (18) and (19) into
the first equation of (20), we can obtain

σηη = Dσξξ (21)

with

D = (1−ν) s/(1+νs) (22)

and the dimensionless parameter

s = Es/2μR (23)

s represents the surface effects, the sign of s de-
pends on the sign of the surface elastic constant
Es. If there is no intrinsic surface stress, the sur-
face elastic constant Es = 0, then s=0, the solu-
tion reduces to the classical elasticity. When the
radius of holes is very large, s � 1, the surface
effects can be neglected and the solution also re-
duces to that of the classical elasticity at s = 0. At
the nanoscale, i.e. R falls into 1 ∼ 100nm, s be-
comes noticeable, and the surface effects are sig-
nificant.

By combining Eq. (20), we can obtain

−σξη nη

coshα −cosξ
=

∂σηη

sinhα∂ξ
(24)

Substituting Eqs. (11) and (13) into (24) leads to

ψn−1 (α)−2coshαψn (α)+ψn+1 (α)
= 6Kδ1n−6K coshαδ2n +2Kδ3n +4bn sinhα
−2(n−1)cn−1 +4ncoshαcn−2(n+1)cn+1

(25)

where

ψn (α) = n(n−1) (n−2)φn−1 (α)

−2n
(
n2 −1

)
coshαφn (α)+n(n+1) (n+2)φn+1 (α)

(26)

Eq. (25) may be replaced by

ψ1 (α) = K
(
e−3α −3e−α)−2c1

−4
∞

∑
m=1

bme−mα sinhα (27)

and for n ≥ 2 by

ψn (α)sinhα =
[ψ1 (α)+2c1] sinhnα

+4
n−1

∑
m=1

bm sinh(n−m)α sinhα −2ncn sinhα

−K [sinh(n−3)α −3sinh(n−1)α]+2Kδ2n

(28)

Substituting Eqs. (11) and (12) into (21) leads to

ϕn−1 (α)−2coshαϕn (α)+ϕn+1 (α) =
Den −cn

+(1+D)K

(
δ0n

2
cosh2α −δ1n coshα +

δ2n

2

)

+
1−D

2

[
2φ ′

n (α)sinhα +(n−2)φn−1 (α)

− (n+2)φn+1 (α)
]

(29)

for n ≥ 0, where

ϕn (α) =
D
2

φ ′′
n (α)+

1
2
(n2−1)φn (α) (30)

From Eq. (29), the requirement of the conver-
gence of ϕn (α) leads to

(1−D)
2

∞

∑
m=1

[
2φ ′

m (α)sinhαe−mα

+(m−1)φme−(m+1)α − (m+1)φme−(m−1)α
]

+
∞

∑
m=0

(Dem −cm)e−mα +(1+D)K sinh2 α

= 0 (31)
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From Eqs. (17), (27), (28), (29), (31), the coeffi-
cients K, An and Bn can be determined. Then, the
elastic stress field can be obtained.

3 Numerical results and discussion

Three fundamental cases are considered in this
paper, namely,

(1) Case 1: the plate is subjected to an all-round
tension σ∞, so that we have

χ0 = 1
2 σ∞

(
x2 +y2

)
(32)

or

χ0/aJσ∞ = 1
2 (coshη +cosξ ) (33)

(2) Case 2: the plate is subjected to a longitudinal
tension σ∞,

χ0 = 1
2 σ∞y2 (34)

or

χ0/aJσ∞ =
1
2

sin2 ξ/(coshη −cosξ ) (35)

(3) Case 3: the plate is subjected to a transverse
tension σ∞,

χ0 = 1
2 σ∞x2 (36)

or

χ0/aJσ∞ =
1
2

sinh2 η/(coshη −cosξ ) (37)

The stresses at η = ±α derived from function χ0

are then given by{
σηη
σ∞

= σξξ
σ∞

= 1
σξη
σ∞

= 0
(38)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σηη
σ∞

= (1−coshα cosξ)2

(coshα−cosξ)2

σξξ
σ∞

= sinh2 α sin2 ξ
(coshα−cosξ )2

σξη
σ∞

= − sinhα sin ξ(1−coshα cosξ)
(coshα−cosξ )2

(39)

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σηη
σ∞

= sinh2 α sin2 ξ
(coshα−cosξ )2

σξξ
σ∞

= (1−coshα cosξ)2

(coshα−cosξ)2

σξη
σ∞

= sinhα sinξ(1−coshα cosξ )
(coshα−cosξ )2

(40)

for the three cases, respectively.

Thus, for Case 1, we have

c0 = e0 = 1

cn = en = bn = 0 (∀n ≥ 1)
(41)

For the other two cases, by expanding the expres-
sions (39) and (40) into Fourier series between
ξ = −π and ξ = π as in Ling (1948), we can ob-
tain

c0 = e−α coshα
e0 = e−α sinhα
cn = −en = bn

= 2e−nα sinhα (nsinhα −coshα) (∀n ≥ 1)
(42)

for Case 2, and

c0 = e−α sinhα
e0 = e−α coshα
cn = −en = bn

= −2e−nα sinhα (nsinhα −coshα) (∀n ≥ 1)
(43)

for Case 3.

It is very interesting to examine the hoop stress
along the holes, and define the stress concentra-
tion factor (SCF) as

SCF =
σξξ

σ∞

∣∣∣∣
η=±α

(44)

When the surface effects are included, the SCF
depends on the Poisson’s ratio ν and the surface
elasticity parameter s. In our numerical examples,
we keep ν = 0.26, just to illustrate the effects of
the surface. Due to the symmetry, we only con-
sider the hole at η = α , and 0 ≤ ξ ≤ π . The de-
pendences of the maximum SCF on t are shown
in Figures 2, 3 and 4 for three cases, respectively.
In each case, we take s=0., 0.1, and 0.5. The di-
mensioneless parameter t denotes the distance be-
tween the two holes (see Fig. 1). In the all-round
tension case (Case 1), the maximum stress is at
ξ = π . In the transverse tension case (Case 3), the
maximum stress is at ξ = π for t < 2, and at ξ = 0
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(almost the same as that at ξ = π) for t ≥ 2. In
the longitudinal tension case (Case 2), this point
is less than π/2. It shifts towards ξ = π/2 as t
increases. The limiting case t → ∞ correspond-
ing to a single hole in the plate, i.e. the interac-
tion between the holes is zero. When t = 1, the
two holes become tangential to each other. As s
increases, the maximum stress continuously de-
creases, while the location of the maximum stress
does not chang. For the case of s = 0, our results
are the same as those of the classical case (Ling,
1948).
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Figure 2: The maximum stress concentration as a
function of t in Case 1.
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Figure 3: The maximum stress concentration as a
function of t in Case 2.

The variation of SCF along the holes under an all
round tension (Case 1) for different values of s
is plotted in Fig. 5. The variation of SCF along
the holes under a longitudinal tension (Case 2) for
different values of s (s=0., 0.1, and 0.5) is plotted
in Fig. 6. The variation of SCF along the holes
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Figure 4: The maximum stress concentration as a
function of t in Case 3.

under a transverse tension (Case 3) for different
values of s is plotted in Fig. 7. We only present
the results at t = 1.5. The classical case (with-
out surface effects) corresponds to s = 0. In all
the three cases, for large value of s, the effect of
the surface energy on the SCF around the hole is
significant, and the surface energy makes the dis-
tribution of stress around the hole even. In Case 1,
as s increases, the SCF continuously decreases in
the whole range, while it decreases more quickly
at ξ = π and ξ = 0. In Case 2, as s increases,
the maximum SCF decreases, while the SCF in-
creases at ξ = π and ξ = 0 from negative. In Case
3, as s increases, the maximum SCF decreases
at ξ = π and ξ = 0, while the negative SCF in-
creases around ξ = 0.25π .

ξ π

SC
F

Figure 5: Distribution of SCF around the hole for
t=1.5 under an all round tension.
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ξ π
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F

Figure 6: Distribution of SCF around the hole for
t=1.5 under a longitudinal tension.

ξ π

SC
F

Figure 7: Distribution of SCF around the hole for
t=1.5 under a transverse tension.

4 Conclusion

To summarize, we investigated the effects of sur-
face energy on the interaction of two nanosized
holes in a plate. Three fundamental stress sys-
tems are discussed. Bipolar coordinates are used
in the solution. The results indicate that the sur-
face energy significantly affects the stress concen-
tration around the holes when the size of the holes
shrinks to nanometers, meanwhile the interaction
between the holes also influences the stress distri-
bution around the holes, which become evident as
the holes close to each other. For the complicated
boundary conditions, numerical methods should
be used, especially the multiscale methods, such
as Shen and Atluri (2005, 2004), Chung et al.
(2004), Ma et al. (2005), Liu et al. (2007), Wall-
stedt and Guilkey (2007), Chirputkar and Qian
(2008), Nishidate et al. (2008), and Fitzgerald et
al. (2008).
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