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A Highly Accurate MCTM for Direct and Inverse Problems of Biharmonic
Equation in Arbitrary Plane Domains

Chein-Shan Liu1

Abstract: Trefftz method (TM) is one of
widely used meshless numerical methods in el-
liptic type boundary value problems, of which
the approximate solution is expressed as a lin-
ear combination of T-complete bases, and the un-
known coefficients are determined from bound-
ary conditions by solving a linear equations sys-
tem. However, the accuracy of TM is severely
limited by its ill-conditioning. This paper is a con-
tinuation of the work of Liu (2007a). The col-
location TM is modified and applied to the di-
rect and inverse problems of biharmonic equation
in a simply connected plane domain. Due to its
well-conditioning of the resulting linear equations
system, the present modified collocation Trefftz
method (MCTM) can effectively solve the inverse
problems without needing of overspecified data,
iteration, and regularization. So that, the compu-
tational cost of MCTM is saving. Numerical ex-
amples show the effectiveness of the new method
in providing highly accurate numerical solutions
even subjecting to large noise of the given bound-
ary data.

Keyword: Inverse problem, Modified Trefftz
method, Biharmonic equation, Modified colloca-
tion Trefftz method (MCTM)

1 Introduction

Biharmonic equation for its role in the math-
ematical modeling of Stokes flow and Kirch-
hoff’s elastic plate is well known. Lesnic, El-
liott and Ingham (1998) have used the boundary
element method to solve the biharmonic equa-
tion, pointing out that when noise is added on
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the boundary data the numerical solution may be
unstable and highly oscillatory, if a direct ap-
proach is used to solve the resulting linear equa-
tions system. Later, Jin (2004) has employed
the method of fundamental solutions (MFS) to
effectively solve the biharmonic equation under
noise by a regularization technique of L-curve.
Also, there were some authors used the MFS
to solve the biharmonic equation, like as, Kara-
georghis and Fairweather (1987), Smyrlis and
Karageorghis (2003), and Tsangaris, Smyrlis and
Karageorghis (2004). Reutskiy (2005) used the
MFS to solve the eigenproblem of nonhomo-
geneous biharmonic equation, showing a high
precision in simply and multiply connected do-
mains. Melnikov and Melnikov (2001) have used
the Green’s functions method for boundary value
problems of biharmonic equation over regions of
complex configuration in two dimensions.

Tsai, Lin, Young and Atluri (2006) have devel-
oped a practical procedure to locate the source
points when using the MFS for the operators of
Laplacian, Helmholtz, modified Helmholtz, and
biharmonic. The procedure is developed through
some systematic numerical experiments for rela-
tions among the accuracy, condition number, and
source positions in different shapes of compu-
tational domains. Through some numerical ex-
periments, they found that good accuracy can be
achieved when the condition number approaches
the limit of equation solver. The technique of col-
location of TM was also improved by Jin, Cheung
and Zienckiewicz (1993), Jin and Cheung (1999),
Herrera and Diaz (1999), Herrera, Yates and Diaz
(2002), Diaz and Herrera (2005), and Herrera,
Yates and Rubio (2007).

More interestingly, Chen, Wu, Lee and Chen
(2007) have derived an equivalent relation be-
tween the TM and the MFS when applying them
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on the biharmonic equation. Li, Lu, Huang and
Cheng (2007) have given a fairly comprehensive
comparison of the Trefftz, collocation and other
boundary methods. They concluded that the col-
location Trefftz method (CTM) is the simplest
algorithm and provides the most accurate solu-
tion with the best numerical stability. However,
the conventional CTM may have a major draw-
back that the resulting linear equations system is
extremely ill-conditioned. In order to obtain an
accurate solution of the linear equations system
some special techniques, e.g., preconditioner and
truncated SVD, are required.

In order to overcome the difficulties appeared in
the conventional CTM, Liu (2007a) first proposed
a modified Trefftz method for Laplace equation
by taking the characteristic length of problem’s
domain into the complete bases, such that the con-
dition number of the resulting linear equations
system can be greatly reduced. The modified TM
is essentially stable and has the exponential rate of
convergence. In the present paper we will extend
the method of modified TM to the biharmonic
equation.

The inverse boundary value problem of elliptic
type partial differential equations is difficult to
solve, since the solution does not depend contin-
uously on the given data. The errors in measured
data may be enlarged in the numerical solution,
if we do not take this ill-posedness into account.
Therefore, we must treat this type problem with a
suitable numerical algorithm, which compromises
accuracy and stability.

Li (2005) seems the first directly using the ra-
dial basis method to solve the inverse boundary
value problem of biharmonic equation by using
the collocation technique on the given boundary
data. His method does not need iteration and is
thus time-saving. However, due to its inherent
ill-property of the radial basis method, the nu-
merical results as shown by Li (2005) are not
good to avoiding the disturbance of noise, even
for smooth boundary value problem. In this pa-
per we extend the modified Trefftz method pro-
posed by Liu (2007a, 2007b, 2008a) to the bi-
harmonic equation, and leave the unknown co-
efficients determined by partial boundary condi-

tions from the collocation method. The colloca-
tion method is useful in engineering computations
for direct problems, because the algebraic equa-
tions can be easily derived. However, it is sel-
dom used in inverse problems due to inherent ill-
posedness.

Ling and Takeuchi (2008) have combined the
MFS and boundary control technique to solve
the Cauchy problem of Laplace equation. Jin
and Zheng (2006) have applied the MFS to solve
the inverse problem of Helmholtz equation, and
Marin and Lesnic (2005) have applied the MFS
to solve the inverse problem associated with a
two-dimensional biharmonic equation. In order
to tackle of the ill-posedness of MFS and the
inherent ill-posed property of inverse problems,
those authors proposed new numerical schemes
with regularization parameters determined by the
L-curve method. Zeb, Elliott, Ingham and Lesnic
(2002) have discussed an inverse Stokes prob-
lem of biharmonic type by using the overspeci-
fied pressure data to recover other boundary con-
ditions.

Our starting point employs a similar meshless
method of Trefftz type, and a new modification
is required in order to get a non ill-posed linear
equations system. Furthermore, the new method
does not need of any iteration and regularization,
even the input data is noised seriously.

We consider the biharmonic equation:

Δ2u = 0, (x,y) ∈ Ω, (1)

where Ω is an interior domain in the plane.

Typically, two types boundary conditions are im-
posed on the boundary Γ of Ω:

u(ρ ,θ ) = h(θ ), un(ρ ,θ ) = g(θ ), 0 ≤ θ ≤ 2π
(2)

or

u(ρ ,θ ) = h(θ ), Δu(ρ ,θ ) = g(θ ), 0 ≤ θ ≤ 2π ,

(3)

where h(θ ) and g(θ ) are given functions, and
ρ(θ ) is a given function describing the bound-
ary shape of an interior domain Ω. The con-
tour Γ in the polar coordinates is described by
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Γ = {(r,θ )|r = ρ(θ ), 0 ≤ θ ≤ 2π}. Eq. (2) is
a clamped boundary condition, while Eq. (3) is
a simply supported boundary condition. In this
paper we will develop a new meshless numeri-
cal method to solve the above direct problem in
Eqs. (1) and (2) or Eqs. (1) and (3).

Given the data of u and ∂u/∂n or Δu at the
point (x,y) ∈ R

2 with unit outward normal n(x,y)
on the accessible part Γ1 of a noncircular con-
tour, we also consider the inverse boundary value
problem of biharmonic equation to find some un-
known functions on the inaccessible part Γ2 of
Γ = Γ1 ∪Γ2. The present inverse boundary value
problem is given as follows:
Inverse boundary value problem. To seek un-
known functions about u on the unspecified part
Γ2 of the boundary under the following insuffi-
cient boundary conditions:

u(ρ ,θ ) = h(θ ), un(ρ ,θ ) = g(θ ), (ρ ,θ )∈ Γ1.

(4)

The inverse boundary value problem studied here
could be understood in a generalized sense that a
problem is called an inverse boundary value prob-
lem if the available boundary data for a direct
problem is incomplete. For the inverse bound-
ary value problem of Eq. (1), the present study
does not need an overspecified data on Γ1, and
is still recoverable of the unknown boundary con-
ditions very well. In the papers by Zeb, Elliott,
Ingham and Lesnic (1999), Li (2005), and Marin
and Lesnic (2005), the inverse boundary value
problems of biharmonic equation are treated un-
der some overspecified data on Γ. Our inverse
boundary value problem is much more difficult
than that treated by other researchers.

When the contour is circular, Liu (2008b) has ap-
plied the modified Trefftz method to recover the
unknown boundary data of Laplace equation, but
needs to consider a regularization technique to
truncate higher mode components in the given
data. In this paper we extend this interesting
study to arbitrary plane domain for the bihar-
monic equation, without needing of regularization
technique. In Sections 2 and 3 we describe a mod-
ified Trefftz method for biharmonic equation and

numerical method of collocation. Numerical ex-
amples for direct problems are given in Section 4.
In Section 5 we give numerical examples for in-
verse boundary value problems and explain why
the present MCTM is workable. Finally, we draw
conclusions in Section 6.

2 A modified Trefftz method

For the Laplace equation defined in a simply con-
nected domain, Liu (2007a, 2007b, 2007c) has
proposed a modified Trefftz method by supposing
that

u(r,θ ) = a0+
m

∑
k=1

[
ak

(
r

R0

)k

coskθ +bk

(
r

R0

)k

sinkθ

]
, (5)

where

R0 ≥ ρmax = max
θ∈[0,2π]

ρ(θ ) (6)

is a number greater than the characteristic length
of the problem domain we consider, and m is a
positive integer chosen by the user.

For the biharmonic equation it usually expands
the solution of u by

u(r,θ ) = a0 +
m

∑
k=1

[akr
k coskθ +bkrk sinkθ ]+c0r2

+
m

∑
k=1

[ckrk+2 coskθ +dkrk+2 sinkθ ]. (7)

The reader may refer the paper by Li, Lu, Huang
and Cheng (2007) for a review of the Trefftz
method.

However, motivated by Eq. (5) we suggest to use

u(r,θ ) =

a0 +
m

∑
k=1

[
ak

(
r

R0

)k

coskθ +bk

(
r

R0

)k

sinkθ

]

+c0r2

+
m

∑
k=1

[
ck

(
r

R0

)k+2

coskθ +dk

(
r

R0

)k+2

sinkθ

]

(8)
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as a modified Trefftz solution of the biharmonic
equation (1). If R0 = 1 the present method re-
covers to the Trefftz method. As explored by Liu
(2007b), for the Trefftz method the numerical in-
stability is an inherent property, which employs
the power functions of rk and rk+2 in the bases.
It is a main reason to cause the numerical insta-
bility of Eq. (7), because r may be greater than 1
for the problem we consider. When the problem
domain has a larger size with its largest distance
of the boundary points to the origin point being
greater than 1, the powers of rk and and rk+2 are
divergent. It would be clear later that this minor
revision in Eq. (8) indeed provides us an essen-
tially stable numerical method for the biharmonic
equation.

By utilizing the following formula:

un(ρ ,θ ) = η(θ )
[

∂u(ρ ,θ )
∂ρ

− ρ ′

ρ2

∂u(ρ ,θ )
∂θ

]
, (9)

where

η(θ ) =
ρ(θ )√

ρ2(θ )+[ρ ′(θ )]2
, (10)

from Eq. (8) it follows that

un(ρ ,θ ) = 2c0ηρ

+η
m

∑
k=1

γk

[{
kak

ρ
− kbkρ ′

ρ2

}
coskθ

+
{

kbk

ρ
+

kakρ ′

ρ2

}
sinkθ

]

+η
m

∑
k=1

γk+2
[{

(k +2)ck

ρ
− kdkρ ′

ρ2

}
coskθ

+
{

(k +2)dk

ρ
+

kckρ ′

ρ2

}
sinkθ

]
,

(11)

where

γ(θ ) :=
ρ(θ )

R0
. (12)

Similarly, we have

Δu(ρ ,θ ) = 4c0

+4
m

∑
k=1

(k +1)γk+2

ρ2 [ck coskθ +dk sinkθ ] . (13)

By imposing the conditions in Eq. (2) on Eqs. (8)
and (11) we obtain

a0 +c0ρ2 +
m

∑
k=1

[Akak +Bkbk +Ckck +Dkdk]

= h(θ ), (14)

2c0ηρ +
m

∑
k=1

[Ekak +Fkbk +Gkck +Hkdk]

= g(θ ), (15)

where

Ak = γk coskθ , (16)

Bk = γk sinkθ , (17)

Ck = γk+2 coskθ , (18)

Dk = γk+2 sinkθ , (19)

Ek = ηγk
[

k coskθ
ρ

+
kρ ′ sinkθ

ρ2

]
, (20)

Fk = ηγk
[

k sinkθ
ρ

− kρ ′ coskθ
ρ2

]
, (21)

Gk = ηγk+2
[
(k +2)coskθ

ρ
+

kρ ′ sinkθ
ρ2

]
, (22)

Hk = ηγk+2
[
(k +2) sinkθ

ρ
− kρ ′ coskθ

ρ2

]
. (23)

By the same token, when imposing the conditions
in Eq. (3) on Eqs. (8) and (13), Eq. (14) is un-
changed, but Eq. (15) is replaced by

4c0 +
m

∑
k=1

[Mkck +Nkdk] = g(θ ), (24)

where

Mk =
(4k +4)γk+2

ρ2 coskθ , (25)

Nk =
(4k +4)γk+2

ρ2 sinkθ . (26)

3 Collocation method

There are totally 4m + 2 unknown coefficients,
and Eqs. (14) and (15) are imposed at 2m+1 dif-
ferent collocated points (ρ(θi),θi) on the interval
of 0 ≤ θi ≤ 2π :
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a0 +c0ρ2(θi)+
m

∑
k=1

[Ai
kak +Bi

kbk +Ci
kck +Di

kdk]

= h(θi), (27)

2c0η(θi)ρ(θi)+
m

∑
k=1

[Ei
kak +Fi

k bk +Gi
kck +Hi

kdk]

= g(θi), (28)

where for simple notations we use Ai
k = Ak(θi),

etc.

When the index i in Eqs. (27) and (28) runs from
1 to 2m + 1 we obtain a linear equations system
with dimensions n = 4m+2:

⎡
⎢⎢⎢⎢⎢⎣

1 ρ2(θ1) A1
1 B1

1
0 2η(θ1)ρ(θ1) E1

1 F1
1

...
...

...
...

1 ρ2(θ2m+1) A2m+1
1 B2m+1

1
0 2η(θ2m+1)ρ(θ2m+1) E2m+1

1 F2m+1
1

C1
1 D1

1 . . .
G1

1 H1
1 . . .

...
...

...
C2m+1

1 D2m+1
1 . . .

G2m+1
1 H2m+1

1 . . .

A1
m B1

m C1
m D1

m
E1

m F1
m G1

m H1
m

...
...

...
...

A2m+1
m B2m+1

m C2m+1
m D2m+1

m
E2m+1

m F2m+1
m G2m+1

m H2m+1
m

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

c0

a1

b1

c1

d1
...

am

bm

cm

dm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h(θ1)
g(θ1)

...
h(θ2m+1)
g(θ2m+1)

⎤
⎥⎥⎥⎥⎥⎦ . (29)

It can be seen that the idea behind the colloca-
tion method is rather simple, and it has a great

advantage of flexibility to apply on different geo-
metric shapes, and the simplicity for a computer
program.

Eq. (29) is denoted by

Re = b1, (30)

where e = [a0,b0,a1,b1,c1,d1, · · · ,am,bm,cm,dm]T

is the vector of unknown coefficients. The con-
jugate gradient method can be used to solve the
following normal equation:

Ae = b, (31)

where

A := RTR, b := RTb1. (32)

We denote the convergent criterion used in the
conjugate gradient method by ε .

Similarly, for the simply supported boundary con-
dition we have the following linear equations sys-
tem to determine the coefficients:

⎡
⎢⎢⎢⎢⎢⎣

1 ρ2(θ1) A1
1 B1

1
0 4 0 0
...

...
...

...
1 ρ2(θ2m+1) A2m+1

1 B2m+1
1

0 4 0 0

C1
1 D1

1 . . .
M1

1 N1
1 . . .

...
...

...
C2m+1

1 D2m+1
1 . . .

M2m+1
1 N2m+1

1 . . .

A1
m B1

m C1
m D1

m
0 0 M1

m N1
m

...
...

...
...

A2m+1
m B2m+1

m C2m+1
m D2m+1

m

0 0 M2m+1
m N2m+1

m

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

c0

a1

b1

c1

d1
...

am

bm

cm

dm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎣

h(θ1)
g(θ1)

...
h(θ2m+1)
g(θ2m+1)

⎤
⎥⎥⎥⎥⎥⎦ . (33)

Inserting the calculated e =
[a0,c0,a1,b1,c1,d1, · · · ,am,bm,cm,dm]T into
Eq. (8) we have a semi-analytical solution of
u(r,θ ):

u(r,θ ) = e1 +e2r2

+
m

∑
k=1

[(
e4k−1

(
r

R0

)k

+e4k+1

(
r

R0

)k+2
)

coskθ

+

(
e4k

(
r

R0

)k

+e4k+2

(
r

R0

)k+2
)

sinkθ

]
,

(34)

where (e1, . . .,en) are the components of e.

From above solution, it is not difficult to calculate
other quantities about u through some elementary
operations. For later convenience we may call
the present method a modified collocation Trefftz
method (MCTM).

4 Numerical examples for direct problem

Before embarking a numerical study of the new
method, we are concerned with the stability of
MCTM, in the case when the boundary data
are contaminated by random noise, which is in-
vestigated by adding different levels of random
noise on the boundary data. We use the function
RANDOM−NUMBER given in Fortran to gener-
ate the noisy data R(i), which are random num-
bers in [−1,1]. Hence we use the simulated noisy
data given by

ĥ(θi) = h(θi)+ |h(θi)|maxsR(i), (35)

where θi = 2iπ/(2m+1), i = 1, . . .,2m+1, and s
is the level of noise. Similarly, this is done for the
boundary data g(θ ).

4.1 Example 1

We first consider a complex example with the ex-
act solution [Lesnic, Elliott and Ingham (1998);

Marin and Lesnic (2005); Jin (2004)]:

u =
1
2
[xsinxcoshy−xcos xsinhy]. (36)

The domain is Ω = {(x,y)|x2 + y2 ≤ 4}. The ex-
act boundary data can be derived by inserting the
exact solution into Eq. (2) with ρ = 2.

Before applying the MCTM on this example we
attempt to see what advantage can be gained by
the new method. For this we consider the condi-
tion number defined by

Cond(A) = ‖A‖‖A−1‖. (37)

The norm used for A is the Frobenius norm.
Therefore, we have

1
n

Cond(A)≤ λmax(A)
λmin(A)

≤ Cond(A), (38)

where λ is the eigenvalue of A. Conventionally,
λmax(A)/λmin(A) is used to define the condition
number of A. In the present study we use Eq. (37)
to define the condition number of A.

1 2 3 4 5 6 7 8

R0

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9
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1E+13

1E+14

1E+15

1E+16

1E+17

C
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di
ti

on
 N

um
be

r

Figure 1: The condition number with respect to
R0 for Example 1.

In Fig. 1 we plot the condition number of A with
respect to R0, where m = 20 was fixed. When
R0 = 1 our method reduces to the conventional
Trefftz method. It can be seen that the condition
number greatly reduces when R0 ≥ 2 and tends to
a constant value about in the order of 3×103. If
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we fix R0 = 1 the condition number is very large
up to 6.7×1016. Hence, it is hopeless to use the
original Trefftz method to calculate the solution
of this example without resorting to some regular-
ization techniques. Conversely, the new method
indeed can improve the ill-condition of the result-
ing linear equations system by selecting R0 > 2,
and it is naturally expected that the new MCTM
can deal with the direct problems of biharmonic
equation very well.

When there is no noise adding on the boundary
data, i.e. s = 0, the present method gives very high
accurate v = Δu and vn on the boundary with the
maximum absolute erros respectively 1.4×10−8

and 1.1× 10−7. Usually, if the given boundary
data is not polluted by random noise, we suggest
to use very small ε , like as ε = 10−15, in the solu-
tion of unknown coefficients by the conjugate gra-
dient method as described in Section 3. It means
that the given exact data must be fitted as accu-
rately as possible. However, when random noise
is considered, we must relax the above require-
ment by loosely fitting the inexact data to use a
slightly large ε ; for example, ε = 10−4 is used in
the following case.

In this case we fixed m = 20, R0 = 5, and s =
0.01. As shown in Fig. 2(a) by comparing the nu-
merical solution with exact solution of v, and in
Fig. 2(b) the numerical solution with exact solu-
tion of vn, the maximum absolute errors are re-
spectively 0.176 and 0.54. It can be seen that
the noise disturbs the solutions deviating from the
exact ones little. The present method is robust
against the noise. In the above cited papers some
regularization techniques are required in order to
get better numerical results against the noise. Due
to its low condition number the present MCTM
can calculate the biharmonic equation very well
without considering any regularization.

4.2 Example 2

In this example a complex shape is shown in the
inset of Fig. 3:

ρ(θ ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b)
(39)

0.0 0.2 0.4 0.6 0.8 1.0

/(2 )

-4

0

4

8

v

-4

0

4

8

vn

0.0 0.2 0.4 0.6 0.8 1.0

/(2 )

(a)

(b) Exact

Numerical with s=0.01

Figure 2: The comparisons of numerical results
with the exact ones for Example 1.

with a = 4 and b = 1. We consider the following
analytical solution:

u(x,y) = x3 +y3. (40)

The exact boundary data can be derived by using
the exact solution.

Fig. 3 compares the numerical solutions under a
noise level s = 0.01 with exact solutions for v and
vn. The following parameters are used: m = 30
and R0 = 15. It can be seen that the numerical
results are good.

Now we turn to the boundary value problem de-
scribed by Eq. (3). Here we attempt to calculate
un and vn on the boundary. Fig. 4 compares the
numerical solutions under a noise level s = 0.01
with exact solutions for un and vn. The follow-
ing parameters are used: m = 30, R0 = 30 and
ε = 10−6. It can be seen that the numerical results
are excellent to coincide with the exact solutions.
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0.0 0.2 0.4 0.6 0.8 1.0

/(2 )

-55

-45

-35

-25

-15

-5

5

15

25

35

45
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v

-11

0

11

vn

0.0 0.2 0.4 0.6 0.8 1.0

/(2 )

(a)

(b)

Exact

Numerical with s=0.01

Figure 3: Comparing numerical and exact solu-
tions for Example 2 under the clamped boundary
condition.

5 Numerical examples for inverse problem

5.1 Example 3

We revisit Example 2 again. However, now we
consider an inverse problem of biharmonic equa-
tion under incomplete data given by

u(ρ ,θ ) = h(θ ), un(ρ ,θ ) = g(θ ), 0 ≤ θ ≤ 2β π .

(41)

When β = 1 we recover to the direct problem.

In order to test our method we plot the condition
number with respect to β in the range of 0.4 ≤
β ≤ 1 in Fig. 5. When β decreases the condition
number increases fast. It means that the available
information on the inverse problem is decreased
when β decreases.

Under the parameters of m = 20, R0 = 25, β =
0.55, ε = 10−6 and s = 0.01, we solve this in-
verse problem by the method in Section 3, di-
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Figure 4: Comparing numerical and exact solu-
tions for Example 2 under the simply supported
boundary condition.
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Figure 5: The condition number with respect to β
for Example 3.

rectly collocated the incomplete data, whose nu-
merical results along the remaining boundary are
shown in Fig. 6 by the dashed lines. It is almost
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coincident with the exact ones as shown by the
solid lines. Therefore, we can conclude that the
present method can recover the unknown func-
tions, even we do not need to use overspecified
data and regularization technique. Here we solve
the inverse problem by using a same technique as
that for solving the direct problem without wor-
rying about the problem of instability. It is gener-
ally asserted that the inverse problem is inherently
ill-posed and unstable. In the opinion of author,
a good numerical method should be equally well
to handle direct and inverse problems in a unified
manner. Regularization is just a remedy to com-
pensate the shortage and leakage of the ill-posed
method. If the method is essentially stable, it can
handle some difficult inverse problems in a simple
way without resorting on the technique of regular-
ization.
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Figure 6: Comparing numerical and exact so-
lutions of inverse problem in Example 3 for a
smooth noncircular contour.

5.2 Example 4

We revisit Example 1 again. But now we con-
sider an inverse problem on a non-smooth square

boundary described by

ρ(θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
cosθ −π/4 ≤ θ < π/4,

1
sinθ π/4 ≤ θ < 3π/4,

−1
cosθ 3π/4 ≤ θ < 5π/4,

−1
sinθ 5π/4 ≤ θ < 7π/4,

(42)

ρ ′(θ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sinθ
cos2 θ −π/4 ≤ θ < π/4,

−cosθ
sin2 θ π/4 ≤ θ < 3π/4,

− sinθ
cos2 θ 3π/4≤ θ < 5π/4,

cosθ
sin2 θ

5π/4≤ θ < 7π/4.

(43)

Zeb, Elliott, Ingham and Lesnic (1999) have
solved this problem under an overspecified
boundary condition, giving u on the whole bound-
ary, and un and v on the partial boundary of
Γ1 = {−1 ≤ x ≤ 1,y = −1}∪ {x = 1,−1 ≤ y ≤
1}∪{−1 ≤ x ≤ 1,y = 1}. Even the singular value
decomposition technique is used their results are
not good to recover the data of v and vn. In
Figs. 10 and 11 of the above cited paper, the data
of un on Γ2 = {x = −1,−1 ≤ y ≤ 1} were plotted
under different levels of noise.
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Figure 7: Comparing numerical and exact solu-
tions of inverse problem in Example 4 for a non-
smooth contour of square.



74 Copyright c© 2008 Tech Science Press CMES, vol.30, no.2, pp.65-75, 2008

Here we only impose the boundary conditions of
u and un on Γ1, and leave other data unspeci-
fied. Under the following parameters of m = 10,
R0 = 2.7, s = 0.02 and ε = 10−4, we solve this in-
verse problem by the method in Section 3, directly
collocated the incomplete data, whose numerical
results along the remaining boundary are shown
in Fig. 7 by the dashed lines. They are rather close
to the exact ones as shown by the solid lines. This
inverse problem possesses several difficulties, in-
cluding non-smooth boundary, large noise and in-
sufficient boundary conditions. Although we only
used a limited data of u and un on the boundary
Γ1, the present results are much better than that re-
ported by Zeb, Elliott, Ingham and Lesnic (1999),
Marin and Lesnic (2005), and Li (2005) for this
benchmark problem.

6 Conclusions

We have employed a new idea to treat the direct
and inverse problems of biharmonic equation in
arbitrary plane domains by a modified colloca-
tion Trefftz method. The new method can pro-
vide a semi-analytical solution in terms of a mod-
ified T-complete set of bases for biharmonic equa-
tion, which renders a rather compendious numeri-
cal implementation to solve the direct and inverse
problems without needing of any iteration and any
regularization. The new method was found accu-
rate, effective and stable. These points are very
diiferent from other numerical methods for the in-
verse problems. This paper demonstrated that a
good numerical method is not only applicable to
the direct problems but also to the inverse prob-
lems. The conventional method is not applicable
to the inverse problems is due to its ill-conditioned
property. If a generic resolution of ill-condition
can be made available, we no more need a remedy
of the method by the regularization technique.
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