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Numerical Computation of Space Derivatives by the
Complex-Variable-Differentiation Method in the Convolution Quadrature

Method Based BEM Formulation
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Abstract: This paper is concerned with the nu-
merical computation of space derivatives of a
time-domain (TD-) Boundary Element Method
(BEM) formulation for the analysis of scalar wave
propagation problems. In the present formula-
tion, the Convolution Quadrature Method (CQM)
is adopted, i.e., the basic integral equation of the
TD-BEM is numerically substituted by a quadra-
ture formula, whose weights are computed us-
ing the Laplace transform of the fundamental so-
lution and a linear multi-step method. In or-
der to numerically compute space derivatives,
the present work properly transforms the quadra-
ture weights of the CQM-BEM, adopting the so-
called Complex-Variable-Differentiation Method
(CVDM). Numerical examples are presented at
the end of the paper illustrating the accuracy and
potentialities of the proposed formulation.
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1 Introduction

This work presents an application of the
Complex-Variable-Differentiation Method
(CVDM) for the numerical computation of space
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derivatives in a time-domain (TD-) Boundary
Element Method (BEM) formulation for the anal-
ysis of scalar wave propagation problems. The
CVDM is based on the previous work of Lyness
and Moler (1967) and it consists of computing the
derivatives of a real variable function by writing
this function in terms of its analytic extension to
the complex variable plane [Churchill and Brown
(1989)].

There are several situations in which an accurate
numerical computation of space derivatives is of
great importance, considering wave propagation
problems, as for instance: (i) calculation of inter-
nal fluxes or pressure gradients in acoustic fluids;
(ii) evaluation of stress/strain fields taking into
account dynamic problems; (iii) calculation of
magnetic/electric fields considering electromag-
netic wave propagation phenomena, etc. The
Finite Difference Method is commonly applied
to compute these derivatives, however, the accu-
racy of this methodology is step-size dependent
and usually provides very inaccurate results con-
sidering a BEM context. Some important fields
where the calculation of derivatives is necessary
are, for example, inverse problems (see the works
by Huang and Shih (2007), Liu, Liu and Hong
(2007), Shiozawa, Kubo, Sakagami and Takagi
(2006), Marin, Power, Bowtell, Sanchez, Becker,
Glover and Jones (2008) and Mera, Elliott and In-
gham (2006)), stability analysis (Ling and Atluri
(2006)), topology optimization (as in the recent
works by Wang, Lim, Khoo and Wang (2007,
2008)), etc.

One of the advantages of the CVDM is its facil-
ity to compute numerical derivatives only taking
the imaginary part of the formed complex num-
ber. Thus, concerning implementation aspects,
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basically one just has to convert real variables to
complex variables in an existing software code.
The use of such a methodology in the present TD-
BEM formulation is motivated by the successful
results obtained by Gao, Liu and Chen (2002) and
Gao and He (2005) in BEM elastoplastic analysis
and identification problems (material properties
and unknown geometries). Moreover, the CVDM
was successfully implemented by Soares Jr, Car-
rer, Telles and Mansur (2002), for the numerical
computation of internal stresses and velocities in
an elastodynamic TD-BEM formulation. As it has
been highlighted in this work, all the difficulties
related to analytically computing space and time
derivatives (as for instance, the derivatives of the
finite part of the integral) could be avoided by
adopting the CVDM.

In the present work, the CVDM is applied to
a TD-BEM formulation that employs the Con-
volution Quadrature Method (CQM) developed
by Lubich (1988). In the CQM, the fundamen-
tal solution in the Laplace transformed-domain
is considered and a numerical approximation of
the basic integral equations of the TD-BEM is
worked out by a quadrature formula based on
a linear multi-step method. The main advan-
tage of the CQM is that it can be applied to
problems where the TD fundamental solution is
not suitable or else is not available at all. The
CQM was firstly applied to scalar wave prop-
agation problems, considering the BEM, in the
work of Abreu, Carrer and Mansur (2003); this
formulation is denoted here as CQM-BEM. The
CQM has already been employed successfully in
many other works, considering different physi-
cal problems: Schanz and Antes (1997), Gaul
and Schanz (1999), Schanz (2001) and Schanz,
Antes and Rüberg (2005) applied the CQM to
(poro/visco-) elastodynamic BEM analyses. Ap-
plication of the CQM to plane frame dynamic
modelling was performed by Antes, Schanz and
Alvermann (2004). A method based on Duhamel
integrals, in combination with the CQM, for the
analysis of one-dimensional wave propagation in
a layered medium was presented by Moser, Antes
and Beer (2005), which was extended to plane
strain elastodynamic BEM-FEM (-Finite Element

Method) coupling later [Moser, Antes and Beer
(2005)]. All the BEM formulations mentioned so
far do not consider initial conditions; in a recent
work of Abreu, Mansur and Carrer (2006), a nu-
merical technique was presented in order to con-
sider non-null initial conditions in a CQM-BEM
context.

At the end of the paper numerical examples
demonstrate that the CVDM is appropriate for
computing space derivatives of wave propagation
problems in a CQM based BEM.

2 The Convolution Quadrature Method ap-
plied to the BEM

The scalar wave equation is written as [Morse and
Feshbach (1953)]:

∇2u(X , t)− 1
c2

∂ 2u(X , t)
∂ t2 = 0 (1)

where u(X , t) represents the 2D potential, t and
X stand for time and space coordinates, respec-
tively, and c is the wave propagation velocity. The
boundary conditions are given by:

u(X , t) = u(X , t) X ∈ Γu (2)

p(X , t) =
∂u(X , t)

∂n
= p(X , t) X ∈ Γp (3)

In the above expressions, ∂u(X , t)/∂n represents
the flux and Γ = Γu ∪Γp stands for the boundary
of a domain Ω. The basic time-domain integral
equation, which corresponds to the scalar wave
propagation problem (Eq. (1)) with null initial
conditions (i.e., u(X ,0) = 0 and ∂u(X ,0)/∂ t =
0 in X ∈ Ω ∪ Γ), is written as [Mansur (1983),
Mansur and Carrer (1993), Dominguez (1993)]:

c(ξ )u(ξ , t) =
∫

Γ

∫ t+

0
u∗(X , t;ξ ,τ)p(X ,τ)dτdΓ

−
∫

Γ

∫ t+

0
p∗(X , t;ξ ,τ)u(X ,τ)dτdΓ

(4)

where c(ξ ) is a geometrical coefficient and
u∗(X , t;ξ ,τ) is the fundamental solution repre-
senting the effect, at a field point X , at time
t, due to an impulsive source applied at time
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τ , at a source point ξ . In the same equation,
p∗(X , t;ξ ,τ) = ∂u∗(X , t;ξ ,τ)/∂n.

Considering the CQM, the discretized version of
Eq. (4), for each source point ξi, is written as
[Abreu, Carrer and Mansur (2003)]:

c(ξi)u(ξi, tn) =
J

∑
j=1

n

∑
k=0

g j
n−k(ξi,Δt)p j

k

−
J

∑
j=1

n

∑
k=0

h j
n−k(ξi,Δt)u j

k

(5)

where J is the number of elements Γ j used to ap-
proximate the boundary ( j = 1,2, . . .,J), Δt is the
time-step interval (tn = nΔt for n = 0,1,2, . . .,NT ,
where NT is the total number of time sampling).
The nodal values p j

k and u j
k are given by:

p j
k = p j(kΔt) and u j

k = u j(kΔt) (6)

The quadrature weights gn and hn in Eq. (5) are
computed by the following expressions (where
s = γ(z)/Δt):

g j
n(ξi,Δt)

=
1

2π i

∫
Γ j

(∫
Cρ

û∗(r, s)z−n−1dz

)
ΦΦΦ j(X)dΓ, (7)

h j
n(ξi,Δt)

=
1

2π i

∫
Γ j

(∫
Cρ

p̂∗(r, s)z−n−1dz

)
ΦΦΦ j(X)dΓ, (8)

where r = |X −ξi| represents the distance be-
tween the source and field points. The quadrature
weights gn and hn represent, respectively, the co-
efficients of the power series in which û∗(r, s) and
p̂∗(r, s) are developed. These coefficients are de-
termined by the Cauchy’s integral formula, Cρ is
the contour employed to perform the integration
given by |z|= ρ , where ρ is the radius of a circle
in the domain of analyticity of û∗(r, s). Usually,
the inner integrals in Eq. (7) and (8) are numer-
ically determined. Thus, expressions (7) and (8),
after a polar coordinate transformation, can be ap-
proximated by a trapezoidal rule as indicated be-

low:

g j
n(ξi,Δt)

=
ρ−n

L

L−1

∑
l=0

∫
Γ j

û∗(r, sl)ΦΦΦ j(X)dΓe−inl2π/L, (9)

h j
n(ξi,Δt)

=
ρ−n

L

L−1

∑
l=0

∫
Γ j

p̂∗(r, sl)ΦΦΦ j(X)dΓe−inl2π/L, (10)

In the above expressions, ΦΦΦ j(X) represents the in-
terpolation functions employed in the boundary
discretization and sl = γ(ρeil2π/L)/Δt. In expres-
sions (7) and (9), û∗(r, s) is the Laplace transform
of the fundamental solution u∗(r, t). In expres-
sions (8) and (10), p̂∗(r, s) is the Laplace trans-
form of p∗(r, t).

The fundamental solution û∗(r, s) and its nor-
mal derivative are given by [Morse and Feshbach
(1953)]:

û∗(r, s) = 2K0(sr) (11)

and

p̂∗(r, s) =
∂ û∗(r, s)

∂ r
∂ r
∂n

= −2SK1(sr)
∂ r
∂n

(12)

where K0(sr) is the modified Bessel function of
order zero and second type and K1(sr) is the mod-
ified Bessel function of first order and second type
[Abramowitz and Stegun (1984)].

The function γ , used in Eqs. (7) to (10), is the quo-
tient of the characteristic polynomials generated
by a linear multi-step method. When u∗(r, s) in
Eq. (9) (or p∗(r, s) in Eq. (10)) is computed with
an error ε , the choice of L = NT and ρNT =

√
ε

produces an error of order O
√

ε in g j
n(r,Δt) (or in

h j
n(r,Δt)) [Lubich (1988)].

Note that, in the computation of the integration
weights by means of either the formula (9) or (10),
there are two parameters, L and ε , influencing the
accuracy of the solution. These parameters must
be chosen carefully in order to reach good results.
Theoretically ρ represents the radius of a circle
Cρ in the domain of analyticity of the function
û(s), and this circle is the integration path around
the singularity z = 0 of the Cauchy’s integration
formula (see Eqs. (7)-(8)). Values for the radius
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ρ can be calculated from different values of ε :
when ε is small, values for ρ become very small,
and consequently it results in a loss of accuracy
of the numerical integration due to the approxi-
mation introduced by the trapezoidal rule. The
influence of ρ was numerically studied and, after
some numerical tests, the authors were led to the
value of the parameter ε = 10−4 as the best choice
for this kind of problem; the analysis leading to
this conclusion can be found in Abreu, Mansur
and Carrer (2006).

Equation (5) can be rewritten in matrix notation
as follows:

Cun =
n

∑
k=0

Gn−kpk −
n

∑
k=0

Hn−kuk (13)

where C is a diagonal matrix that contains the co-
efficients c(ξi), G and H are the final boundary el-
ement influence matrices and n and k correspond
to the discrete times tn = nΔt and tk = kΔt, re-
spectively. After imposing boundary conditions,
Eq. (13) reads:

A0yn = fn +
n−1

∑
k=0

fk (14)

where vector fk previous time contributions are
accounted for, as follows:

fk = Gn−kpk −Hn−kuk (15)

In expression (14), the unknowns and the contri-
butions of prescribed boundary conditions at time
tn = nΔt are stored, respectively, in vectors yn and
fn.

A deeper discussion about the general CQM for-
mulation can found in [Lubich (1988)]; for a more
detailed discussion concerning the CQM-BEM
applied to the scalar wave equation see Abreu,
Carrer and Mansur (2003).

3 Space derivatives

The numerical procedure employed in this work
for the computation of space derivatives is based
on the CVDM and is derived from the earlier work
of Lyness and Moler (1967). In this procedure,

the real valued function f (x) must have an ana-
lytic extension to the complex plane (to avoid con-
flict in the notation, this extension will be identi-
fied with the same symbol f ). In the usual com-
plex notation, the function f can be expressed as
f (z) = u(x,y)+ iv(x,y), where z = x+ iy; u and v
are real functions of real arguments x and y and i
stands for the imaginary unit. As f is an analytic
function, the Cauchy-Reimann conditions:

∂u
∂x

=
∂v
∂y

and
∂u
∂y

= −∂v
∂x

(16)

are valid and the complex derivative of f is calcu-
lated as [Churchill and Brown (1989)]:

d f
dz

(z) = −i
∂u
∂y

+
∂v
∂y

(17)

As f is an analytic extension of a real valued
function, v and its partial derivative with respect
to x vanish when y = 0, i.e., v(x,0) = 0 and
∂v(x,0)/∂x = 0. It therefore follows by Eq. (16)
that ∂u(x,0)/∂y = 0. Then, by Eq. (17):

d f
dz

(x) =
∂v(x,0)

∂y
≈ lim

Δ→0

v(x,0+Δ)−v(x,0)
Δ

= lim
Δ→0

v(x,Δ)
Δ

= lim
Δ→0

Im f (x+ iΔ)
Δ

(18)

where the symbol Im represents the imaginary
part of the function. Finally, Eq. (18) can be ap-
proximated for a small enough real value Δ, as
follows:

d f
dz

(x) ≈ Im f (x+ iΔ)
Δ

(19)

From Eq. (19) it is possible to compute the first
derivative of f without producing cancellation er-
rors (that is the case when finite difference tech-
niques are applied). In the works of Gao, Liu and
Chen (2002), Gao and He (2005) and Soares Jr,
Carrer, Telles and Mansur (2002), it is shown that
Eq. (19) becomes very accurate, even when Δ is a
very small quantity.

4 The CVDM applied to the CQM-BEM

In order to compute space derivatives at interior
points using the CVDM, Eq. (19) is applied to the
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function u. If ξi = (ξx,ξy), the partial derivative
of u with respect to ξx reads:

∂u
∂ξx

(ξi)≈ Imu(ξx + iΔ,ξy)
Δ

(20)

From Eq. (5) c(ξi) = S for interior points), defin-
ing ξix = (ξx + iΔ,ξy), and introducing 1

Δ Im[·] into
the sums, the numerical space derivative with re-
spects to ξx of the potential u(ξi, tn) is computed
as:

∂u
∂ξx

(ξi, tn)≈
J

∑
j=1

n

∑
k=0

1
Δ

Im
[
g j

n−k(ξix,Δt)
]

p j
k

−
J

∑
j=1

n

∑
k=0

1
Δ

Im
[
h j

n−k(ξix,Δt)
]

u j
k

(21)

Equation (21) shows that the new quadrature
weights are the derivatives of the original weights
gn and hn computed using the CVDM. The
weights can be obtained in an efficient way by the
Fast Fourier Transform (FFT) algorithm [Cooley
and Tukey (1965); Brigham (1974)]:

g j
n(ξix,Δt) =

ρ−n

L

∫
Γ j

Û∗(r,n)ΦΦΦ j(X)dΓ (22)

h j
n(ξix,Δt) =

ρ−n

L

∫
Γ j

P̂∗(r,n)ΦΦΦ j(X)dΓ (23)

where Û∗(r, ·) and P̂∗(r, ·) are the FFT transforms
of vectors û∗(r,S) and p̂∗(r,S), respectively, and
S is the vector (s0, s1, . . . , sL−1). Note that, if the
Gauss quadrature formula is applied to the inte-
grals of Eqs. (22)-(23), one has to call the FFT
routine once for each Gauss point. The integra-
tion on the element can be performed before the
FFT in order to reduce the number of times that
the FFT routine is used.

In order to calculate the space derivatives of the
potential function using Eqs. (21), (22) and (23),
the original codes of the CQM-BEM need to un-
dergo two main modifications:

I) All the variables declared of real type that be-
come complex by reason of the imaginary incre-
ment, must be declared of complex type,

II) The ‘real’ and ‘imaginary’ parts of vectors
û∗(r,S) and p̂∗(r,S), and all intermediary calcu-
lations derived from S must be stored separately.

The vector V is obtained by mean of V = VR+VI ,
where VR and VI are complex vectors such as
FFT(VR) is a real vector and FFT(VI) is pure
imaginary. All calculations must be done in such
a way that the floating-point representation error
of the ‘real’ parts does not affect the accuracy of
the ‘imaginary’ parts.

Note that item II is required as the original CQM-
BEM code already employs complex arithmetic.
For Δ = 0 all ‘imaginary’ parts are null. For pos-
itive values of Δ the significant information about
the perturbation corresponds to the ‘imaginary’
parts of the vectors and must be stored separately.
These ‘imaginary’ parts are tiny for Δ 	 1 and
can also be smaller than the absolute errors of the
‘real’ parts, so they have to be stored separately in
order to preserve that information. From the com-
putational point of view, the storage of ‘real’ and
‘imaginary’ parts duplicates the memory require-
ment. However, since the FFT transform of these
vectors is pure real or pure imaginary, only half of
the coefficients must be actually stored [Brigham
(1974)].

One difficulty arises in the implementation of
item II: in the CQM-BEM code some transcen-
dental functions (the Bessel functions and its
derivatives) are present. These functions are non-
linear, therefore the ‘real’ and ‘imaginary’ parts
of the function value cannot be obtained indepen-
dently from the ‘real’ and ‘imaginary’ parts of the
argument [Amos (1995)]. However, these func-
tions can be linearized by truncating the Taylor’s
series expanded around the ‘real’ part of the com-
plex argument. As the CVDM employs very small
values for Δ, the error due to this approximation is
negligible. For example, if W = WR + WI is the
argument of the Bessel functions K0,1:

V = K0,1(WR +WI)
≈ K0,1(WR)+K′

0,1(WR)WI
(24)

thus,

VR ≈ K0,1(WR) and VI ≈ K′
0,1(WR)WI (25)

where

K′
0(x) = −K1(x) and

K′
1(x) = K0(x)+

1
x

K1(x)
(26)
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Consider, for example, the following pseudo-code
corresponding to the original code for obtaining
Û∗(r, ·):
Data: Gauss coordinate η , Source point ξi, Vector
S
Calculate:

i. X = X(η)

ii. r = |X −ξi|
iii. W = Sr

iv. V = K0(W)

v. û∗ = 2V

vi. Û∗ = FFT(û∗)

Note that S is the inverse Fourier transform of a
real vector. In fact, since sl = γ(ρeil2π/L)/Δt and
the polynomial γ(z) of order p is generated from
γ(z) = ∑p

n=1
1
n(1− z)n [see Lubich (1988)], sl can

be written as:

sl =
1
Δt

p

∑
n=1

1
n

(
1−ρeil2π/L

)n

=
1
Δt

p

∑
n=1

1
n

n

∑
j=0

(
n
j

)
(−ρ) jeil j2π/L

=
1
L

p

∑
j=0

L
Δt

(−ρ) j
p

∑
n=max(i, j)

1
n

(
n
j

)
eil j2π/L

(27)

Consequently, the vector S is the inverse Fourier
transform of the real vector (d1, . . .,dL) given by:

d j =
L
Δt

(−ρ) j
p

∑
n=max(i, j)

1
n

(
n
j

)
(28)

Thus, SR = S and SI = 0.

The pseudo-code corresponding to the implemen-
tation of the CVDM considering the item II is
given by:
Data: Gauss coordinate η , Source point ξix, Vec-
tor S (= SR)
Calculate:

i. X = X(η)

ii. r = |X −ξix|

iii. WR = SRe(r) and WI = iSIm(r)

iv. VR = K0(WR) and VI = K′
0(WR)WI

v. û∗ = 2VI

vi. Û∗ = FFT(û∗)

Note that at point v the ‘real’ part of û∗ was aban-
doned since only the imaginary part of gn is rele-
vant.

5 Examples

In order to verify the accuracy of the proposed
methodology, numerical results are presented
next. The dimensionless parameter β = cΔt/l is
adopted here to estimate the time-step length em-
ployed in the analyses (l is the smallest boundary
element length). In all the following examples,
the wave propagation velocity is given by c = 1.

The methodology proposed by the present work
is referred by CVDM-CQM-BEM (L = NT , ε =
10−4 and Δ = 10−10 have been adopted and the
function γ(z) was taken as the second order poly-
nomial function). In the following sub-sections,
some results are compared with those related to
the standard TD-BEM formulation. When the
CVDM is applied to the TD-BEM, this technique
is referred here as CVDM-TD-BEM.

5.1 One-dimensional rod under a Heaviside-
type forcing function

This example consists of a one-dimensional like
rod, fixed at x = a, with free-end boundary con-
dition at x = 0 (see Fig. 1). At the boundary
x = 0 and at time t = 0 a Heaviside-type forc-
ing function is applied, as indicated by: p(0, t) =
(P/E)H(t,0), where P/E = 1 and E is the longi-
tudinal elasticity modulus. The boundary element
mesh adopted is composed of 24 linear elements
and the numerical results are computed at the in-
terior point A(a/2,0).

Three different approaches are compared:

FD: this implementation corresponds to the clas-
sic Finite Differences procedure.

CVDM-1: complex variable approach that just
declares double complex the original variables of
real double precision type (Item I of Section 4).
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a

p(t) = p/EH(t - 0)

pa

y

p  = 0

p  = 0

x
A

/2

Figure 1: One-dimensional rod: geometry and
boundary conditions.

CVDM-2: complex variable approach that de-
clares the variables as double complex and stores
the ‘real’ and ‘imaginary’ parts separately (Items
I and II of Section 4).

The error Er(Δ) = |ure f−unum(Δ)|
ure f

max
is adopted to com-

pare the accuracy of the implementations, where
ure f is a reference value obtained after analytic
differentiation of the boundary equation and in-
tegration on the same mesh, and unum(Δ) corre-
sponds to the numerical result obtained using one
of the numerical approaches, i.e., FD, CVDM-1
or CVDM-2.

Figure 2 shows the errors of the space derivative
calculated at point A for a fixed time ct/a = 6.0
and for different values of the step-size increment
Δ.
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Figure 2: Errors of the calculated space deriva-
tive of example 5.1 using the FD and the CVDM
approaches. Solid circles: machine precision.

As it can be seen in Fig. 2, the error of the
FD approximation is in agreement with the the-
oretic O(Δ) behavior for large increments and like
O(1/Δ) for small ones due to the cancellation er-
rors. The error of the CVDM-1 approach presents
a higher order behavior for large increments but
is similarly affected by the cancellation errors for
small values of Δ. The behavior of the CVDM-2
error for small values of Δ is quite different than
the FD or the CVDM-1 errors: it becomes stable
and seems not to be affected by the cancellation
errors. Further, for Δ less than 1.0e-8 the numeri-
cal result matches exactly the reference value, and
is indicated in Fig. 2 by the solid circles (as the
zero value is out of range in the logarithmic scale,
the machine precision is plotted instead of the real
error and indicated by solid circles symbols).

The potential space derivative (∂u/∂x) time-
history at interior point A obtained with the ap-
propriated CVDM-CQM-BEM (i.e., the CVDM-
2 implementation) with β = 0.6 (Δt = 0.6) is pre-
sented in Fig. 3.

The results are compared, in the same figure, with
the 1D analytical answer [Graff (1975)] and with
the CVDM-TD-BEM formulation, for β = 0.6
(Δt = 0.6). As one can observe, the proposed for-
mulation gives accurate results.
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Figure 3: Numerical space derivatives (∂u/∂x) at
point A for the one-dimensional rod.



130 Copyright c© 2008 Tech Science Press CMES, vol.30, no.3, pp.123-132, 2008

5.2 Circular cavity under a Heaviside-type
forcing function

This second example consists of a circular cavity
of radius R submitted to an internal pressure ap-
plied at t = 0 and kept constant from this time on-
wards. A sketch of the model is presented in Fig.
4. The adopted boundary element mesh is com-
posed of 24 linear elements, the point B(2R,0)
being where the responses are calculated.

p=H (t-0)

RR

p

y

x
B

Figure 4: Circular cavity: geometry and boundary
conditions.

Figure 5 shows the errors of the space derivative
calculated at point B for a fixed time ct/a = 2.0
and for different values of the step-size increment
Δ.

As can it be seen in Fig. 5, the error graphs for this
example is similar to that of example 5.1. Again,
the CVDM-2 has the best performance presenting
negligible errors when the increment Δ is less than
1.0e-8.

The results obtained by the appropriated CVDM-
CQM-BEM (i.e., the CVDM-2 implementation)
are depicted in Fig. 6 and they are, once again,
in good agreement with those provided by the
CVDM-TD-BEM.

As it can be noticed (Figs. 3 and 6), both
BEM formulations present typical numerical os-
cillations around the discontinuities of the space
derivative.
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Figure 5: Errors of the calculated space deriva-
tive of example 5.2 using the FD and the CVDM
approaches. Solid circles: machine precision.
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ct/R

Figure 6: Numerical space derivatives (∂u/∂x) at
point B for the circular cavity.

6 Conclusions

In the present work, a formulation that com-
putes numerical space derivatives by means
of the Complex-Variable-Differentiation Method
was implemented on a Convolution Quadrature
Method based BEM formulation. The CQM-
BEM uses a complex fundamental solution to
solve scalar wave propagation problem.

The CVDM has been applied, until now, to com-
pute numerically derivatives of real functions.
These real functions have to be calculated by a
computer code that employs real arithmetic.

In this work, the CVDM is successfully extended
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to the case of CQM-BEM codes that employ
complex arithmetic. The proposed approach is
based on storing separately the ‘real’ and ‘imagi-
nary’ parts of the complex variables and lineariza-
tion of nonlinear functions. Two examples were
solved showing that for small size of the incre-
ment the proposed approach is much more ac-
curate than the Finite Difference or the classic
Complex-Variable-Differentiation Methods.
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