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An Orphan-cell-free Overset Method Based on Meshless MLS
Approximation for Coupled Analysis of Overlapping Finite Element

Substructures
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Abstract: A new orphan-cell-free overset
method is proposed to carry out the coupled anal-
ysis of overlapping finite element substructures.
In the proposed overset method, the meshless
MLS (Moving Least Squares) approximation
is used to obtain the boundary data for the
overlapped interface, whereas the Lagrange
interpolation scheme has been commonly used
in the conventional overset methods. The mesh-
less character of MLS approximation makes it
possible to overcome the problem of orphan-cell,
which is often encountered in the conventional
overset methods. Further, a new connectivity
matrix solution procedure is developed to reduce
the computational time in the coupled analysis as
a part of the new overset method.
To justify the validity of the proposed method,
the patch tests and the convergence tests are
carried out for various overlapping models. The
efficiency of the connectivity matrix solution
procedure over the conventional iterative solving
procedure is investigated, and the flexibility of
the present overset method in dealing with the
overlapping substructures is examined through
the several overlapping models, including the
case with the orphan-cell.
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1 Introduction

Nowadays, geometric shapes of structural sys-
tems have become more complicated due to the
ever-increasing design requirements. As a result,
the importance of geometric modeling has been
emphasized more than ever for the efficient struc-
tural design and analysis, and considerable re-
search efforts have been devoted to increase the
modeling flexibility in the structural design and
analysis.

These efforts include the automatic mesh-
generation techniques [Li, Teng and Wan (2001);
Chung, Choi and Kim (2003); Liu, Sun and Wang
(2006)] and the coupled analysis methods [Amin-
pour, Ransom and McCleary (1995); Park and Fe-
lippa (2000); Aminpour, Pageau and Shin (2001);
Cho, et al. (2005); Vodička, Mantič and París
(2007)]. Whereas the objectives of both meth-
ods are the same, the coupled structural analysis
methods are based on a different concept from the
automatic mesh-generation. While the automatic
mesh-generation has focused on how to generate
geometrically compatible finite element system,
the coupled analysis method has focused on how
to analyze the integrated system composed of ge-
ometrically incompatible finite element substruc-
tures.

Regarding the collaborative engineering, the con-
cept inside the coupled analysis has a practical at-
tractiveness. In real practice, the complex struc-
tural systems are usually modeled collaboratively
in the form of substructures by several engineers,
and there may be a geometric incompatibility be-
tween the substructures. Therefore, if it is pos-
sible to directly utilize the independently mod-
eled finite element substructures for analyzing the
integrated whole model with no regard to their
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geometric incompatibilities, it could reduce the
labor-intensive re-modeling procedure of the inte-
grated system. This is the concept behind the cou-
pled analysis method. Based on the idea, afore-
mentioned various coupled analysis methods have
been proposed to analyze the integrated system
composed of independently modeled finite ele-
ment substructures.

However, since these methods have been devel-
oped only to handle the nodal incompatibilities on
the interfaces between the finite element substruc-
tures, these are not appropriate in dealing with the
system composed of overlapping finite element
substructures.

Traditionally overset method has been developed
in the field of computational fluid dynamics to
avoid the difficulties in generating a geometrically
compatible grid system for a highly complex geo-
metric domain as shown Fig.1 [Steger and Benek
(1987); Cho, Kwon and Lee (1999); Lee, Park,
Cho and Kwon (2000)]. In overset methods, after
generating the grid system for each simple model,
the set of whole grid systems is utilized to solve
the complex problem for the complicated model
with no regard to the overlapping between each
grid system. Therefore, this concept is also very
attractive in solid and structural engineering prob-
lems and it may be a good candidate to elimi-
nate the tedious re-modeling procedure for the re-
gions of overlapping. However, traditional over-
set method has a problem of interpolation arising
from the existence of the so-called ‘orphan-cell’,
because all of the previously developed overset
methods rely on the mesh-dependent interpola-
tion techniques such as the Lagrange interpolation
scheme.

Due to the aforementioned reasons, a novel over-
set method, based on the meshless MLS (mov-
ing least squares) approximation [Lancaster and
Salkauskas (1981); Atluri, Cho and Kim (1999);
Nie, Atluri and Zuo (2006); Cho (2007)], is pro-
posed in this paper, in order to eliminate the draw-
backs of previous overset methods as well as to
utilize the advantageous nature of overset method
in handling the integrated system composed of
overlapping finite element substructures.

Figure 1: Examples of overset grid systems in the
field of computational fluid dynamics.

2 Orphan-cell-free Overset Method

2.1 Schwarz Alternating Scheme

Originally, Schwarz alternating method was in-
vented as an iterative method to solve the prob-
lem defined on the union of two overlapping
sub-domains, and it evolved into the Schwarz-
Neumann alternating method to obtain the so-
lution for intersection of overlapping domains
[Schwarz (1869); Lions (1987); Wang and Atluri
(1996); Han and Atluri (2002); Wijesinghe and
Hadjiconstantinou (2004)]. Most of overset meth-
ods are basically based on the Schwarz alternating
method to handle the union of overlapping sub-
domains.

For a linear elliptic problem, the Schwarz alter-
nating procedure for union of overlapping sub-
domains can be described as follows.

Let us consider the linear elliptic equation in the
domain Ω.

Lu = f in Ω (1)

u = u on ∂Ωe and

δnu = s on ∂Ωn
(2)

where L is the linear elliptic operator and δn is the
Neumann operator for the natural boundary con-
dition. u is unknown, and f is a given function.
∂Ωe and ∂Ωn are the essential and natural bound-
aries of domain Ω, respectively, and u and s are
the prescribed values along the essential and nat-
ural boundaries.

Further, the domain Ω is supposed to be com-
posed of overlapping sub-domains Ω1 and Ω2

(i.e., Ω = Ω1 ∪Ω2), as shown in Fig. 2. In Fig.
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2, ∂Ωα denotes the boundary of each sub-domain
Ωα , and Γα(1 ≤ α ≤ 2) is the overlapped inter-
face, which is the part of boundary of each sub-
domain Ωα , contained in the interior of the entire
domain Ω.

Then the Schwarz alternating procedure for this
problem can be summarized as follows.

[Initialization step]
Set the value of u(0)

2 on Γ1 as zero.

[Iteration step]
Do k=0

i) For the sub-domain Ω1, obtain u(k+1)
1 by

solving Eq. (3) with the boundary conditions
(4).

Lu(k+1)
1 = f in Ω1 (3)

⎧⎪⎨
⎪⎩

u(k+1)
1 = u(k)

2 on Γ1

u(k+1)
1 = u on ∂Ωe

1 = ∂Ωe ∩∂Ω1

δnu(k+1)
1 = s on ∂Ωn

1 = ∂Ωn ∩∂Ω1

(4)

ii) For the sub-domain Ω2, obtain u(k+1)
2 by

solving Eq. (5) with the boundary conditions
(6).

Lu(k+1)
2 = f in Ω2 (5)

⎧⎪⎨
⎪⎩

u(k+1)
2 = u(k+1)

1 on Γ2

u(k+1)
2 = u on ∂Ωe

2 = ∂Ωe ∩∂Ω2

δnu(k+1)
2 = s on ∂Ωn

2 = ∂Ωn ∩∂Ω2

(6)

iii) Construct the solution over the entire domain
by combining the solutions u(k+1)

1 and u(k+1)
2

of each sub-domain.

u(k+1) =

{
u(k+1)

1

u(k+1)
2

}
(7)

iv) If the relative error norm (8) is smaller than
the tolerance εtol , then terminate the itera-
tion.

e(k+1) =

∥∥u(k+1)−u(k)
∥∥∥∥u(k+1)

∥∥ ≤ εtol (8)

If not, set k = k +1

Continue
The Schwarz alternating procedure can be also
rewritten in discretized form, after its finite ele-
ment approximation. For this purpose, consider a
finite element system composed of two overlap-
ping substructures as shown in Fig. 3, and sup-
pose that the nodal variables for each sub-domain
are decomposed into Uα , UΓα , and U∂Ωe

α (1 ≤
α ≤ 2) as shown in Fig. 4. Then, the Schwarz al-
ternating procedure for this overlapping finite el-
ement model can be written as follows.

[Initialization step]
Assign the essential boundary conditions to each
sub-domain by using the essential boundary
condition given for the global domain.{

U∂Ωe
1
= U∂Ωe

1
for ∂Ωe ∩∂Ω1

U∂Ωe
2
= U∂Ωe

2
for ∂Ωe ∩∂Ω2

(9)

Set the value of U(1)
Γ1

on Γ1 as zero.

[Iteration step]
Do k=0

i) For the sub-domain Ω1, obtain U(k+1)
1 such

that

[
K11 K1Γ1

]{ U1

UΓ1

}(k+1)

= F1 (10)

U(k+1)
Γ1

= Λ
(

U(k)
2 ,U(k)

Γ2
,U∂Ωe

2

)
for k ≥ 1

(11)

ii) For the sub-domain Ω2, obtain U(k+1)
2 such

that

[
K22 K2Γ2

]{ U2

UΓ2

}(k+1)

= F2 (12)

U(k+1)
Γ2

= Λ
(

U(k+1)
1 ,U(k+1)

Γ1
,U∂Ωe

1

)
(13)

iii) Construct the solution over the entire do-
main.

U(k+1) =

⎧⎪⎪⎨
⎪⎪⎩

U1

UΓ1

U2

UΓ2

⎫⎪⎪⎬
⎪⎪⎭

(k+1)

(14)
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iv) If the relative error norm is smaller than the
tolerance εtol , then terminate the iteration.

e(k+1) =

∥∥U(k+1)−U(k)
∥∥∥∥U(k+1)

∥∥ ≤ εtol (15)

If not, set k = k +1

Continue

where Λ(·) represents an interpolation procedure,
and the superscript denotes the iteration number.
In the above, the essential and natural boundary
conditions of Eq. (2) are already taken into ac-
count in constructing the stiffness matrices and
load vectors of each sub-domain.

It is noted that the result of the previous step ob-
tained in the neighboring sub-domain is utilized
to interpolate the essential boundary values on
the overlapped interface Γα (1 ≤ α ≤ 2) for the
next step. In numerical calculation, it occurs fre-
quently that the nodal points on the overlapped
interface Γα of the sub-domain Ωα may not co-
incide with the nodal points of the other sub-
domain, as shown in Fig. 3. Thus, it becomes
difficult to directly use the results of the previous
step as the essential boundary value on Γα for the
next step, and it becomes inevitable to utilize an
interpolation scheme Λ(·). Customarily, the La-
grange interpolation scheme has been widely uti-
lized in the context of the overset method. How-
ever, the Lagrange interpolation scheme has a
problem because of its mesh-dependent charac-
ter. For example, let us assume that there is a
boundary cell (so-called ‘orphan-cell’) in the sub-
domain A, which is not contained in the other sub-
domain B as shown in Fig. 5. Then, it is impos-
sible to interpolate the value at the nodal point of
interest C by using the solution of the sub-domain
B through the Lagrange interpolation scheme.

To overcome this drawback, this work employs
the MLS (moving least squares) approximation
instead of the Lagrange interpolation scheme. It
is noted that the meshless feature of MLS scheme
makes it possible to interpolate the value at the
point of interest with no regard to the existence of
orphan-cell. In the next section, the MLS method
is briefly reviewed.

eΩ∂

nΩ∂

Ω

2Γ 2Ω 2Ω∂

n
n Ω∂Ω∂=Ω∂ �22

e
e Ω∂Ω∂=Ω∂ �22

1Ω 1Γ1Ω∂

e
e Ω∂Ω∂=Ω∂ �11

n
n Ω∂Ω∂=Ω∂ �11

Figure 2: Analysis domain with two overlapping
sub-domains.

eΩ∂
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Figure 3: Finite element model composed of two
overlapping finite element substructures.
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Figure 4: Decomposition of nodal variables of
each sub-domain.
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Figure 5: Overset grid with orphan-cell.

2.2 Moving Least Squares Approximation

In the present overset method, the MLS (moving
least squares) approximation is employed to inter-
polate the required essential boundary values on
the overlapped interface Γα(1 ≤ α ≤ 2) from the
result of the previous step obtained in the neigh-
boring sub-domain.

The MLS method is one of the most popu-
lar meshless approximation schemes (along with
RKPM [Liu, Jun and Chang (1995)], PUM
[Babuska and Melenk (1997)], etc.) which do
not need any well-defined mesh for data approx-
imation. The required smoothness of approxima-
tion function can be easily achieved by the MLS
method [Atluri (2005)].

Due to these reasons, the moving least squares
technique may be a good candidate to approxi-
mate the required essential boundary values on
the overlapped interface Γα(1 ≤ α ≤ 2) from the
result of the previous step obtained in the neigh-
boring sub-domain with no regard to the existence
of orphan-cell.

Consider the overlapped interface Γα for the sub-
domain Ωα , and suppose that the nodal values at
the points xI (1 ≤ I ≤ N) in the neighboring sub-
domain Ωβ (β �= α) are given as uI . Then, to ap-
proximate the values of variable along the over-
lapped interface Γα for the sub-domain Ωα , the
approximate form (16) is defined as follows [Lan-
caster and Salkauskas (1981)].

For all x ∈ Γα ,

uh(x) = pT (x)a(x) =
m

∑
i=1

pi(x)ai(x) (16)

where p(x) is a complete monomial basis of or-
der m, and a(x) is a vector containing coefficients
ai(x) (1 ≤ i ≤ m). The basis p(x) is selected to
contain constant ‘1’, and to be linearly indepen-
dent over some set of m among the given N points
in Ωβ . The coefficients vector a(x) is determined
by minimizing a weighted discrete L2 error norm
as follows.

a(x) = ARG
b∈Rm

[J(b)]

= ARG
b∈Rm

{[
Pb−Vβ

]T W(x)
[
Pb−Vβ

]}
=
[
PT W(x)P

]−1 [
PT W(x)

]
Vβ

(17a)

where

P =

⎡
⎢⎢⎢⎣

pT (x1)
pT (x2)

...
pT (xN)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

p1(x1) · · · pm(x1)
p1(x2) · · · pm(x2)

...
p1(xN) · · · pm(xN)

⎤
⎥⎥⎥⎦

(17b)

Vβ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2

...
uN

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (17c)

W(x) =

⎡
⎢⎢⎢⎢⎣

W1(x) 0 · · · 0

0 W2(x) · · · ...
...

...
. . . 0

0 · · · 0 WN(x)

⎤
⎥⎥⎥⎥⎦ (17d)

The N × m matrix P consists of basis, and the
vector Vβ denotes the vector of given values
uI at nodes I (1 ≤ I ≤ N) in the sub-domain
Ωβ . The N × N diagonal matrix W(x) is com-
posed of weight functions. The weight function
WI(x) is associated with the position xI of node I.
The weight function WI(x) is selected to be non-
negative for all x, and the region of non-zero val-
ues is called the support. In computations, various
kinds of weight functions can be adopted for MLS
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approximation procedure. The required condition
for the continuity of the approximation function
can be easily satisfied by changing the weight
function in the MLS approximation. In this work,
the cubic spline weight function with a circular
support is used.

WI(x) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3 −4

(
dI
RI

)2
+4

(
dI
RI

)3

for 0 ≤ dI
RI

≤ 1
2

4
3 −4

(
dI
RI

)
+4

(
dI
RI

)2
− 4

3

(
dI
RI

)3

for 1
2 ≤ dI

RI
≤ 1

0 for dI
RI

≥ 1

(18)

where RI denotes the radius of support of weight
function (range of influence) and dI denotes the
distance between the point of interest x in Γα and
nodal point xI in Ωβ .

Substituting a(x) obtained by Eq. (17) into Eq.
(16) yields a relation which may be written in the
form of a linear combination of nodal shape func-
tions similar to that used in finite element method.

uh(x) = ΦΦΦT (x)Vβ =
N

∑
I=1

uIφI(x) (19)

where,

ΦΦΦT (x) = pT (x)[PTW(x)P]−1PT W(x)

φI(x) =
m

∑
k=1

pk(x)
[
[PT W(x)P]−1PT W(x)

]
kI

(20)

Additionally, Eq. (19) may be rewritten as Eq.
(21) in terms of the decomposed nodal variables
Uβ , UΓβ , and U∂Ωe

β
for the neighboring sub-

domain Ωβ defined in Fig. 4.

For x ∈ Γα ,

uh(x) = ΦΦΦT
β (x)Uβ +ΦΦΦT

Γβ
(x)UΓβ +ΦΦΦT

∂Ωe
β
(x)U∂Ωe

β

(21)

2.3 Connectivity Matrix Solution Procedure

Since the overset methods are based on the itera-
tive Schwarz alternating scheme, an iterative solv-
ing technique has been conventionally used in the

overset methods. In the case of iterative solving
scheme, the converged solution may be changed
according to the convergence criteria and its tol-
erance [Varga (2000)]. Furthermore, it is not com-
petitive to the direct solution scheme for the prob-
lems encountered in practical situations. There-
fore, to reduce the solution time for the practical-
sized problems, a new direct solution procedure is
developed for a part of new overset method by us-
ing the concept of so-called ‘connectivity matrix’.

As mentioned in the section 2.1, applying the
Schwarz alternating procedure to the overlapping
finite element system yields the set of equations,
which are the same as Eqs. (10)-(13). And as the
iteration number k goes to infinity, the solution
for the iterative Eqs. (10)-(13) converges, and the
converged solution satisfies the following equa-
tions in the limit.

[
K11 K1Γ1

]{U1

UΓ1

}
= F1 (22)

[
K22 K2Γ2

]{U2

UΓ2

}
= F2 (23)

UΓ1 = Λ
(

U2,UΓ2,U∂Ωe
2

)
(24)

UΓ2 = Λ
(

U1,UΓ1,U∂Ωe
1

)
(25)

Eq. (24) and Eq. (25), which are related to the
interpolation of the nodal values in the overlapped
interfaces, can be represented explicitly as shown
below.

UΓ1 = C(1)
2 U2 +C(1)

Γ2
UΓ2 +C(1)

∂Ωe
2
U∂Ωe

2
(26)

UΓ2 = C(2)
1 U1 +C(2)

Γ1
UΓ1 +C(2)

∂Ωe
1
U∂Ωe

1
(27)

Further, Eqs. (26) and (27) can be rewritten by the
so-called ‘connectivity matrix’ between the sub-
domains as shown in Eq. (28).

[
0 −C(1)

2 I −C(1)
Γ2

−C(2)
1 0 −C(2)

Γ1
I

]
︸ ︷︷ ︸

Connectivity Matrix

⎧⎪⎪⎨
⎪⎪⎩

U1

U2

UΓ1

UΓ2

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎨
⎩C(1)

∂Ωe
2
U∂Ωe

2

C(2)
∂Ωe

1
U∂Ωe

1

⎫⎬
⎭ (28)
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The connectivity matrix plays a role of constraint
which connects the overlapping sub-domains.

In case of the MLS approximation, the nodal
points in the neighboring sub-domain, which in-
fluence the point of interest in the overlapped in-
terface, are detected, and then the nodal shape
functions are calculated. After that, the explicit
form of connectivity matrix is constructed by us-
ing Eq. (21). It is noted that the number of nodal
points, which influence the point of interest to be
interpolated, should be no less than the order of
monomial basis ‘m’ in order to prevent the singu-
larity in the MLS approximation. Therefore, an
automated selection procedure for the size of sup-
port (range of influence) is recommended in prac-
tical situations. This procedure is sketched in Fig.
6.

Finally, combining Eqs. (22), (23) and (28) yields
Eq. (29).⎡
⎢⎢⎢⎣

K11 0 K1Γ1 0
0 K22 0 K2Γ2

0 −C(1)
2 I −C(1)

Γ2

−C(2)
1 0 −C(2)

Γ1
I

⎤
⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

U1

U2

UΓ1

UΓ2

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1

F2

C(1)
∂Ωe

2
U∂Ωe

2

C(2)
∂Ωe

1
U∂Ωe

1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (29)

It is noted that solving Eq. (29) gives the con-
verged solution for the Schwarz alternating pro-
cedure with no iteration. Also, the solution is not
dependent on the convergence criteria.

In this work, a special direct solver is developed,
since the system matrix has a special form, which
looks like an arrow, as shown in Fig. 7. To in-
crease the computing efficiency, the system ma-
trix is stored separately into three parts (e.g., di-
agonal part, right part, and bottom part), and the
operations for the other parts are excluded.

To investigate the efficiency of the proposed con-
nectivity matrix solution procedure, the solution
time is compared with that required in the conven-
tional SOR-type iterative scheme. For the prob-
lem with 280 degrees of freedom, the proposed
connectivity matrix solution procedure required

 

Figure 6: Constructing the connectivity matrix
through the MLS approximation.

1

1

2

2

3 3 3

Figure 7: Separate Storage for the system matrix
of the integrated whole model.

only 0.34 sec, whereas it took 55.8 sec in the
SOR-type iterative scheme with the error toler-
ance 10−7. In Fig. 8, the solution times are pre-
sented up to the problem with six thousand de-
grees of freedom. The results show that the pro-
posed connectivity matrix solution procedure is
much more efficient than the conventional itera-
tive solution procedure as the number of total de-
grees of freedom is increased.

From the results, it is identified that one can
greatly reduce the computational time, required
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Figure 8: Comparison of computational time of
the connectivity matrix solution procedure with
that of the iterative solution procedure.

in the coupled analysis of independently modeled
overlapping finite element substructures, through
the connectivity matrix solution procedure.

3 Numerical examples

To investigate the performance and the potential
of the proposed overset method, several numeri-
cal examples are worked out. In all of the numeri-
cal examples, the bilinear quadrilateral element is
utilized, and the second order monomial basis is
used for the MLS approximation.

3.1 Patch Test

The patch tests are carried out to prove the va-
lidity of the currently proposed overset method
in this section. For the patch tests, two models
in Fig. 9 are considered. The first model con-
sists of two overlapping finite element substruc-
tures of which nodal points are compatible with
each other. The second model has nodal incom-
patibility in the overlapping region of two finite
element substructures.

Young’s modulus and Poisson’s ratio are E=1 and
ν=0.3, respectively, and the support size is se-
lected as 2.1 times the nodal distance. As pre-
sented in table 1, one can identify that the pro-
posed overset method gives a quite acceptable so-
lution in a practical sense.

P
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X

Y

0 5 10 15 20

0

2

4

6

P

Node (A)
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Y
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6

(a) Model I 
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6

(b) Model II 

Figure 9: Models for the patch tests.

Table 1: Displacements of node A from the patch
tests.

Node A u v
Exact 20 -1.5
Model I 19.9999999 -1.5
Model II 20.0000324 -1.50005183

3.2 Beam Type Problem

To investigate the convergence character of the
proposed overset method, a cantilevered beam
type problem is analyzed. The beam of length
L=20 with thickness h=2 in Fig. 10 is assumed
in the plane stress state. Young’s modulus and
Poisson’s ratio are E = 1 × 107 and ν=0.3, re-
spectively. The shear force P=2000 is applied
to the right-hand side of the beam, and the fixed
essential boundary condition is enforced on the
left-hand side of the beam. The substructures are
discretized by the different size of mesh, and 2.1
times the nodal distance is chosen as the support
size of the weight function. The exact displace-
ments are given as follows.

u =
P

6EI
×(

y− h
2

)
[3x(x−2l)+(ν +2) (h−y)y] (30a)
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v =
P

6EI[
x2 (3l−x)−3ν (x−l)

(
y−h

2

)2

+(4+5ν)
h2

4
x

]
(30b)

where I denotes the area moment of inertia of the
beam cross-section. The corresponding stresses
are as follows.

σxx =
P
I

(x−L)
(

y− h
2

)
(31a)

σyy = 0 (31b)

σxy =
Py
2I

(
h
2
−y

)
(31c)

For the convergence test, meshes in each sub-
domain are refined, and the results are presented
in Fig. 11 and table 2. The convergence rate for
the L2 error norm is 2. From the results, it is ob-
served that the convergence rate according to the
mesh refinement is similar to that of the conven-
tional finite element method. In Fig. 12, the de-
formed shape obtained by the coupled analysis of
whole model is presented.

Table 2: Error norms for each mesh division.

Case
Mesh Size

L2 NormΩ1 Ω2

1 0.5 0.4 6.35 × 10−4

2 0.25 0.2 1.63 × 10−4

3 0.125 0.1 4.12 × 10−5

4 0.0625 0.05 1.03 × 10−5

5 0.03125 0.025 2.57 × 10−6

X

Y

0 5 10 15 20
0

2 P

 

Substructure                 Substructure   Ω1 Ω2

Figure 10: Beam type overlapping model with
nodal incompatibility.

Figure 11: Convergence rate for L2 error norm.
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Figure 12: Deformed shape obtained by the cou-
pled analysis of whole model.

3.3 Infinite Plate with Circular Hole

The second model for the convergence test is an
infinite plate with a circular hole under the uni-
form traction p = 100. By using the symme-
try of the model, only a quarter of the model is
considered in the analysis as shown in Fig. 13.
The essential boundary condition is enforced on
both of the left-hand side and the bottom side.
As a natural boundary condition, the exact trac-
tion obtained from the exact solution is applied
to the right-hand side and the upper side of the
model. For Young’s modulus and Poisson’s ratio,
E = 3× 103 and ν = 0.3 are used, respectively.
For this problem, the exact solutions are given as
follows.

u =
1+ν

E
p

(
1

1+ν r cosθ + 2
1+ν

a2

r cosθ
+1

2
a2

r cos3θ − 1
2

a4

r3 cos3θ

)
(32a)

v =
1+ν

E
p

(
−ν
1+ν r sinθ − 1−ν

1+ν
a2

r sinθ
+1

2
a2

r sin3θ − 1
2

a4

r3 sin3θ

)
(32b)
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σxx =

p

(
1− a2

r2

(
3
2

cos2θ +cos4θ
)

+
3
2

a4

r4 cos4θ
)

(32c)

σxy =

p

(
−a2

r2

(
1
2

sin2θ + sin4θ
)

+
3
2

a4

r4 sin4θ
)

(32d)

σyy =

p

(
−a2

r2

(
1
2

cos2θ −cos 4θ
)
− 3

2
a4

r4 cos4θ
)

(32e)

The L2 error norms are presented in table 3, and
the convergence rate is plotted in Fig. 14. In table
3, mesh division (nr ×nθ ) for the sub-domain Ω1

denotes that the sub-domain Ω1 is divided by nr-
elements in the radial direction and nθ -elements
in the circumferential direction, respectively. For
the sub-domain Ω2, the size of element is denoted.
Similar to the case of the beam type problem, the
convergence rate for the L2 error norm is 2 as
shown in Fig. 14.

In Fig. 15, the maximum value of σ xx near
the hole is presented according to the mesh re-
finement. One can observe that the maximum
stress value approaches the exact stress value
(σmax=300). From the numerical results, it is val-
idated that the proposed overset method has a rea-
sonable convergence rate.

Table 3: Error norms for each mesh refinement.

Case
Mesh division Mesh size

L2 normΩ1 Ω2

1 3×4 1 1.32 × 10−3

2 6×8 0.5 3.70 × 10−4

3 12×16 0.25 1.00 × 10−4

4 24×32 0.125 2.58 × 10−5

5 48×64 0.0625 6.40 × 10−6

6 96×128 0.0315 1.54 × 10−6

3.4 Practical Tunnel model

A practical tunnel model is analyzed by using the
proposed overset method in this section. The tun-
nel model is modeled by two overlapping finite
element substructures as shown in Fig. 16, where
the inside substructure has a finer mesh system
when compared with the outside substructures.
Using the symmetry of the model, the essential
boundary condition is enforced on both of the left-
hand side and the bottom side of the model, and

2Ω

a

1Ω
r

X

Y

0 1 2 3 4 5
0

1

2

3

4

5

 
Figure 13: A quarter of the plate with a circular
hole made of two overlapping finite element sub-
structures.

Figure 14: Convergence rate for L2 error norm.
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Figure 15: Maximum value of σxx near the hole.

Table 4: The number of nodes and the number of
elements for each model.

Case No. of nodes No. of elements
FEM I 336 300
FEM II 1271 1200
FEM III 4941 4800
Overset Ω1 Ω2 Ω1 Ω2

Model 651 441 600 400

Table 5: Comparison of deflections at point A.
FEM I FEM II FEM III Overset Method

Point A -17.4423 -17.5252 -17.5462 -17.5492

the distributed load p=1000 is applied to the upper
side of the model. Young’s modulus and Poisson’s
ratio are E = 1×104 and ν = 0.3, respectively.

In order to assess the performance of the pro-
posed overset method, the finite element analy-
ses are also carried out for the models with com-
patible mesh geometry as shown in Fig. 17. In
table 4, the number of nodes and the number of
elements for each model are presented. The de-
flections of point A obtained by each method are
compared with each other in table 5. The compar-
ison shows that the current overset method gives
a reliable solution. Moreover, it is known that the
proposed overset method makes it possible to im-
prove the numerical solution by simply substitut-
ing the fine mesh substructure for the region of
stress concentration without considering the over-
lapping between the finite element substructures.

X
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0

50

100

150

A

overset model

 
Figure 16: Tunnel model composed of two finite
element substructures.
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FEM II model

Figure 17: Finite element model with compatible
mesh geometry.

3.5 Model with Orphan-Cell

In real practice, the orphan-cell is often produced
unintentionally during the modeling procedures.
Therefore, it is essential to eliminate the problem
of orphan-cell for more practical applications of
overset method, since the previous overset meth-
ods, which rely on the mesh-dependent interpola-
tion techniques, have been plagued by the prob-
lem of orphan-cell.

Due to this reason, the applicability of the pro-
posed overset method, which uses the mesh-
independent MLS approximation, is investigated
for the three models with orphan-cells presented
in Fig. 18. The first model is an infinite plate
with a circular hole, and in the model there is an
orphan-cell near the overlapping region as shown
in Fig. 18a. The second model is a beam type
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Figure 18: Various models with orphan-cell com-
posed of two finite element substructures.

model composed of two overlapping substruc-
tures with orphan-cells as presented in Fig. 18b.
In the final model in Fig. 18c, two finite ele-
ment substructures are located at a distance with
no overlapping.

In Fig. 19, the analysis results for each model
are presented according to the support size of the
MLS weight function (i.e., the size of domain
of influence). In the results, it is observed that
the magnitudes of errors in the numerical solu-
tions, obtained by the proposed overset method,
are relatively small (less than 0.5% for all cases),
whereas it is highly difficult to obtain a reasonable
solution for the model with orphan-cell by using
the previously developed overset methods. Addi-
tionally, it is shown that the smallest support size,
which does not induce the singularity, gives an ac-
ceptable result for the model with orphan-cell.

From the results, it is confirmed that the coupled
analysis of the overlapping model with orphan-
cell can be carried out with no difficulty through
the proposed overset method.
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Figure 19: Relative error norm according to the
support size of weight function (the range of in-
fluence).

4 Conclusions

In this work, a novel overset method is proposed
for coupled analysis of independently modeled
overlapping finite element substructures. To inter-
polate the boundary data for the overlapped inter-
face from the neighboring sub-domain, the MLS
(moving least squares) approximation is used
instead of the Lagrange interpolation method,
which has been conventionally used in the previ-
ous overset methods. And as a result, a problem of
interpolation, induced by the existence of orphan-
cell in the traditional overset methods, is greatly
alleviated.

Further, the connectivity matrix is derived from
the limit conditions for the converged solution of
the Schwarz alternating procedure. And by us-
ing the connectivity matrix, a novel direct solving
procedure is developed. Through the connectivity
matrix solution procedure, the computing time is
greatly reduced when compared with the conven-
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tional iterative solving procedure. Additionally,
the converged solution can be obtained with no it-
eration, and the need for convergence criteria is
completely eliminated.

To investigate the validity and performance of the
proposed method, various numerical examples are
worked out, including the patch tests, the con-
vergence tests, and the models with orphan-cell.
From the numerical examples, it is confirmed that
the proposed overset method passes the patch test
in a practical sense, and gives a reasonable con-
vergence rate. Moreover, the flexibility in deal-
ing with the overlapping model with orphan-cell
is demonstrated. Additionally, it is known that the
proposed method is also useful in improving the
numerical solution by substituting the fine mesh
substructures for the region of stress concentra-
tion with no regard to the overlapping of substruc-
tures. From the results, it is identified that the
proposed orphan-cell-free overset method is ef-
ficient in performing the coupled analysis of in-
dependently modeled overlapping finite element
substructures. Further, it is confirmed that it has a
great potential in practical situations such as col-
laborative engineering procedures.
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