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Algorithm of Dynamic Programming for Optimization of the Global
Matching between Two Contours Defined by Ordered Points

Francisco. P. M. Oliveira1 and João Manuel R. S. Tavares1

Abstract: This paper presents a new assign-
ment algorithm with order restriction. Our opti-
mization algorithm was developed using dynamic
programming. It was implemented and tested to
determine the best global matching that preserves
the order of the points that define two contours to
be matched. In the experimental tests done, we
used the affinity matrix obtained via the method
proposed by Shapiro, based on geometric model-
ing and modal matching.
The proposed algorithm revealed an optimum per-
formance, when compared with classic assign-
ment algorithms: Hungarian Method, Simplex for
Flow Problems and LAPm. Indeed, the quality
of the matching improved when compared with
these three algorithms, due to the disappearance
of crossed matching, which is allowed by the
conventional assignment algorithms. Moreover,
the computational cost of this algorithm is much
lower than the ones of other three, leading to en-
hanced execution times.

Keyword: Image analysis, contours matching,
optimization, dynamic programming.

1 Introduction

The recognition of objects represented in images
is one of the central problems in Computational
Vision. It is a challenging task, mainly due to the
large number of variations of projection of objects
in 2D images, for instance as a result of changes
of camera position, or even due to the deforma-
tions that the objects might have suffered.

To measure the similarity or disparity between
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two objects represented in images, or the same
object represented in different instants, techniques
based on the signal that represents them could be
used. In these techniques, the images are consid-
ered as a 2D signal that represents the gray level
or color, for instance. In many of these methods,
the well developed techniques of signal process-
ing based on Fourier or wavelet transforms are
used. In [Daugman (2003)] a method is presented
based in Gabor wavelets widely used for identify-
ing people by their iris. Fourier or wavelet trans-
forms are also frequently used in applications of
image compression. In [Zhang (2007)] a compar-
ative study is made among some methods based
on wavelet transform for image compression.

A problem tightly related with the one of recog-
nition of objects in images is the problem of
identifying corresponding elements between im-
ages, often defined by groups of points, segments
of straight lines or curves and boundaries. Fre-
quently, these groups of points or segments repre-
sent the external contour of shapes represented in
the input images.

To extract points, segments or boundaries of
shapes represented in images it is necessary to di-
vide the input image into regions. This process is
usually called segmentation. Many segmentation
techniques exist, such as, methods based on tem-
plates matching; statistical modeling; deformable
templates; deformable models; level set methods,
[Wang, Lim, Khoo and M. Wang (2007)] and
physical principles, [Gonçalves, Tavares and Na-
tal (2008)]. For a review of these methods see,
for example, [Zhang (2001)] and [Tavares et al
(2007)].

Different segmentation methods are applied to
distinct situations to solve the image processing
issue. As examples of application of these tech-
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niques, see for instance, [Zhang et al (2008)] and
[Tavares et al (2007)].

The problem of finding correspondences among
characteristic points of an object in two different
instants, or between two objects, represented in
images, originated the emergence of many pro-
posals, in the sense of reaching the best global
correspondence among the referred points. To
determine the matches, the following techniques
can be used: spatial intensity gradient informa-
tion, [Lucas and Kanade (1981)]; modal match-
ing, [Shapiro and Brady (1992); Sclaroff and
Pentland (1995)]; shape context, [Belongie, Ma-
lik and Puzicha (2002)]; curvature information,
[Oliveira and Tavares (2007); Oliveira (2008)];
or distance to the center of the objects, [Oliveira
(2008)].

When the similarity among characteristic points
is quantified in a cost matrix, traducing the
match affinities, the matching problem can be
interpreted as an optimization problem. Usu-
ally, assignment algorithms are used to deter-
mine the best global matching. Such algorithms
are frequently based in: simulated annealing,
[Starink and Backer (1995)]; linear or integer pro-
gramming, [Bastos (2003), Bastos and Tavares
(2004, 2006)]; bipartite graph matching, [Field-
ing and Kam (2000)]; convex optimization, [Ma-
ciel (2001)]; dynamic programming, [Scott and
Nowak (2006)]; etc.

The optimization of correspondences between
two closed contours defined by a set of ordered
points is constrained by an important rule that
should not be discarded: the relative order of the
points to be matched should be preserved to guar-
antee the coherence of the matching obtained,
avoiding, like this, crossed matching.

This problem of finding the global matching of
minimum cost preserving the order of the points
of the input shapes contours is not trivial, because
there are different ordinations that define the same
contour. The solution described in this paper is
based on dynamic programming and is able to
solve this problem in a simple and fast way.

To experiment and compare the developed new
dynamic programming algorithm with other as-

signment algorithms, it was integrated in a com-
putational platform, already developed, [Tavares
(2000); Tavares, Barbosa and Padilha (2000,
2002)]. The results of the comparison with the
Hungarian Method, Simplex for Flow Problems
and LAPm are presented and discussed further in
this paper. The cost matrices used for the com-
parison were obtained using the modal matching
methodology proposed by Shapiro, which was al-
ready integrated in the referred platform, [Shapiro
and Brady (1992); Tavares (2000); Tavares, Bar-
bosa and Padilha (2000, 2002); Bastos (2003);
Bastos and Tavares (2004, 2006); Tavares and
Bastos (2005)]. However, another cost matrices
could be used.

In this paper, after enumerating some previous
works developed to find the best global matching
between objects, the problem of searching for the
best correspondence between two sets of ordered
points that preserves the order defined is consid-
ered. Afterwards, comparative results between
the developed algorithm and the classic assign-
ment algorithms already referred are presented.
The last section is dedicated to final conclusions
and future work perspectives.

2 Previous work

This work comes in the sequence of the work
presented in [Tavares (2000); Tavares, Barbosa
and Padilha (2000)], in which methodologies
for matching characteristic points of two ob-
jects in images were implemented, using physi-
cal modeling and geometric modeling, comple-
mented with modal matching, [Shapiro and Brady
(1992), Sclaroff and Pentland (1995)]. Thus,
those methodologies were used to determine the
matching between characteristics points from two
shapes represented in images, through the con-
struction of an affinity matrix. Afterwards, this
cost matrix was used to search for the desired cor-
respondences. The solution presented to establish
the matching had a pure local nature, in the sense
that two points were only matched if, for each
one of them, the other point was the nearest in
cost terms. This way, frequently happened that
some points were not corresponded and some-
times crossed matching occurred, see Fig. 1.
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Figure 1: Matching found between two contours
(“heart5” and “heart6”) using a local approach.
These contours are defined by 81 and 83 points,
respectively.

In [Bastos (2003)], the work previously done in
[Tavares (2000); Tavares, Barbosa and Padilha
(2000)] was complemented through the imple-
mentation of three global optimizations methods,
aiming the determination of the desired matching.
Thus, the problem of searching for the best global
matching between two contours was formulated
as a classic assignment problem and three algo-
rithms traditionally employed to solve these kind
of problems were used, [Dell’ Amico and Tooth
(2000)]: the usual Hungarian Method, [Hillier
and Lieberman (1995)]; the Simplex for Flow
Problems, [Löbel (2000)], and the LAPm, [Vol-
genant (1996)]. When those assignment algo-
rithms were applied on the affinity matrices estab-
lished using physical or geometric modeling, the
experimental results obtained improved consider-
ably in comparison with the ones obtained using
the previous methodology based on pure local as-
pects, [Bastos (2003); Bastos and Tavares (2004,
2006); Tavares and Bastos (2005)].

As already referred, when the assignment algo-
rithms were applied to match contours defined by
ordered point sets, it was verified that sometimes
the matching found appeared without sense, that
is, the order of the points was not considered and,
therefore, crossed matches were present, see Fig.
2. Thus, the work here presented had as main
aim to develop an assignment algorithm that must
preserve the predefined order of the points to be
matched.

Figure 2: Matching found between the contours
of Fig. 1 using global optimization.

3 Definition of the problem

Let us begin by defining what means, in this work,
relative order and absolute order of the points
that define a contour. In Fig. 3, the sequence of
points shown can be defined as: 1, 3, 4, 6, 7, 9.
This sequence is monotonous increasing. Consid-
ering the same figure, it can also be defined the
sequence: 4, 6, 7, 9, 1, 3. However, the former is
not monotonous.

Considering Fig. 3 as a closed contour, it can be
observed that the above two sequences define the
same contour. Their difference is only the ini-
tial point considered. In this paper, we will say
that the first sequence preserves the absolute or-
der, because it is monotonous increasing, and that
the second one only preserves the relative order.

7

41
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9
6

Figure 3: Sequence: 1, 3, 4, 6, 7, 9 placed on a
circumference. The points of the circumference
can also be defined, for instance, by the sequence:
4, 6, 7, 9, 1, 3.

To illustrate our solution for the problem of
matching the points of two contours preserving
their relative order, let us begin to analyze the two
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following examples:

a. Suppose that we have two contours, both de-
fined by 4 points and numerated from 1 to 4,
and consider the following matchings (given
by column):

f =
(

1 2 3 4
1 2 3 4

)
and g =

(
1 2 3 4
3 4 1 2

)
.

When we observe the second line, which cor-
responds to the second contour, we can con-
clude that the matching f satisfies the absolute
order but the matching g does not. However,
the relative order is correct in both, because af-
ter point 1 comes point 2, after point 2 comes
point 3 and so forth (considering the sequence
of points disposed in circle).

b. Suppose now that we have two contours, one
defined by 4 points and other defined by 7
points, respectively. Observe the next match-
ings:

h =
(

1 2 3 4
1 2 5 7

)
, t =

(
1 2 3 4
2 4 6 1

)

and

p =
(

1 2 3 4
6 7 4 5

)
,

all of them preserve the relative order, but only
matching h preserves the absolute order.

When the input contours are defined by equal
number of points, the matching can be easily ac-
complished. In fact, it is enough to observe that
if point i of contour 1 is matched with point j of
contour 2, then point i + 1 (i + 1 means the point
that follows point i in de sequence of points dis-
posed in circle) of contour 1 has to be matched
with point j +1 of contour 2, and so forth. There-
fore, considering that both contours are defined by
n points each one; there are just n hypotheses of
global matching that preserve the relative order:
(

1 2 3 . . . n
1 2 3 . . . n

)
,

(
1 2 3 . . . n
2 3 4 . . . 1

)
,

(
1 2 3 . . . n
3 4 5 . . . 2

)
, . . .,

(
1 2 3 . . . n
n 1 2 . . . n−1

)

Thus, it is enough to determine the cost of each
one of the n global matchings and then choose the
one that originated the minimum cost.

For contours defined by different number of
points, we will present, afterwards, a new for-
mulation based on dynamic programming, which
finds the best global matching maintaining the ab-
solute order of the matched points.

4 Formulation as a dynamic programming
problem

4.1 General formulation

Let us begin this section considering a straight-
forward example. Let us suppose that we have
contour 1 and contour 2 defined, respectively, by
4 and 6 points and the following cost matrix of the
matches between them:

C =

⎡
⎢⎢⎣

1 0 1 4 5 1
0 3 1 5 2 1
6 1 2 4 0 8
3 2 7 5 4 1

⎤
⎥⎥⎦ ,

where ci j represents the cost to match point i of
contour 1 with point j of contour 2.

To avoid crossed matches, we require that the ab-
solute order of the matched points must be pre-
served. Thus, we impose the monotony of the
matching sequence, that is, if point i of contour
1 is matched with point j of contour 2, then point
i + 1 of contour 1 has to be matched with a point
j + k of contour 2, where k is an integer and
not less than one. Hence, we have, for instance,
among others, the following valid matchings:
(

1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
1 3 4 5

)
,

(
1 2 3 4
2 3 4 6

)
,

(
1 2 3 4
3 4 5 6

)
,

with the associated global costs: 11, 10, 6 and 7,
respectively.

In total, for the imposed hypotheses, we have ex-
actly 15 possible global matchings, because to
count the global matching hypotheses is equiva-
lent to count how many subsets of 4 different ele-
ments we can get from the 6 elements of contour
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2. Therefore, the number of global matchings that
preserve the absolute order is, in this example,
given by:

C6
4 =

6!
(6−4)!2!

= 15.

In general, if a contour is defined by n points
and the other by m points, with n ≤ m, there are
exactly Cm

n (combinations of n elements in a set
of melements) matching hypotheses maintaining
the absolute order. Considering the relative order,
there are exactly mCm

n hypotheses, as we will ex-
plain later.

Using a usual notation in dynamic programming,
[Norman (1975) and Winston (1994)], for the pre-
vious example, we will define 4 stages. In stage
1, the match of smaller cost for point 1 of con-
tour 1, under the matching hypotheses is chosen.
In stage 2, the best match for point 2 of contour
1 is selected, under the matching hypotheses de-
rived from the match of point 1 in stage 1, and so
forth. It is fundamental to refer that the definition
of a match between two points in a certain stage
will affect the hypotheses of matching in the sub-
sequent stages.

For better understanding of the former approach,
let us observe the following. In the example in
study, point 1 of contour 1 can just be matched
with points 1, 2 or 3 of contour 2, but, for instance,
if point 1 of contour 1 is matched with point 3 of
contour 2, then point 2 of contour 1 has only one
matching hypothesis: with point 4 of contour 2.
Thus, and according to the matching already done
in the previous stages, for a certain stage kfrom
the example in study, point k of contour 1 will be
matched with only a point of the following groups
of points of contour 2:

{k} , {k, k +1} or {k, k +1, k +2} .

To indicate how many points of contour 2 are
available to be matched with a certain point of
contour 1, we will define the state variable s. For
the referred example, we have s ∈ {1,2,3}. If in
a certain stage k we have s = 1, then point k of
contour 1 has only one matching hypothesis (with
point k of contour 2); if s = 2, then point k of con-

tour 1 has two matching hypotheses (with points
k or k +1of contour 2), and so on.

Let us now define the function of minimum cost
fk (s), where s is the state variable already de-
fined, k represents the stage and fk (s) represents
the minimum cost to match points 1, 2, 3,. . . , k of
contour 1, when point k of contour 1 has s match-
ing hypotheses of choice.

To better elucidate our approach, we will apply
this formulation on the example in study. Thus,
we will build, successively, an optimal matching
that preserves the absolute order of the points in-
volved. For such, on the left we indicate the min-
imum costs for each stage and for each state, and
on the right we define the matching established:

f1 (1) = c11 = 1

(
1
1

)

f1 (2) = min{c11, c12} = 0

(
1
2

)

f1 (3) = min{c11, c12, c13} = 0

(
1
2

)

f2 (1) = c22 + f1 (1) = 3+1 = 4

(
1 2
1 2

)

f2 (2) = min
{

c22 + f1 (1) , c23 + f1 (2)
}

= 1

(
1 2
2 3

)
. . .

f4 (3) = min{...} = 2

(
1 2 3 4
2 3 5 6

)

As in total there are 4 stages, if the intension is
just to calculate the minimum cost, in the fourth
stage it would not be necessary to calculate f4 (1)
and f4 (2) but, because it is necessary to keep rel-
ative information for the matching, such calcula-
tions have to be done. For the example in study,
the minimum cost to match the 4 points of con-
tour 1 with 4 points of contour 2, preserving the
absolute order of the points, is equal to 2 and the
associated matching is the last one.

In general, for a cost matrix C of dimension n×m,
with n ≤ m, k ≤ n and s ∈ {1, 2, ..., m−n+1},
fk (s) represents the minimum cost to match the
points 1, 2, . . . , k of contour 1, when point k
of contour 1 has s matching hypotheses. With
this formulation, we guarantee that the best global
matching that preserves the absolute order is
reached.



6 Copyright c© 2008 Tech Science Press CMES, vol.31, no.1, pp.1-11, 2008

To obtain the best global matching while main-
taining the relative order, it is necessary to rear-
range the points of contour 2 (point 2 becomes
point 1; point 3 becomes point 2 and so forth).
Continuously, the matching of minimum cost that
preserves this new absolute order and the respec-
tive cost are calculated. The rearrangement pro-
cess and consecutive calculus are repeated again,
and so forth.

With the described approach, each new absolute
order corresponds to a relative order, relatively to
the initial arrangement. Thus, all of the possible
relative arrangements of contour 2 are built, and
thus all the matchings that preserve the relative
order and respective minimum costs are obtained.

In the example in study, it is necessary to solve
6 problems of global matching that preserve
the new successive absolute arrangements of the
points of contour 2. After applying this formula-
tion, the matching of minimum cost that preserves
the relative order of the points still is the previ-
ously presented.

4.2 Algorithm and implementation

Before we present our new algorithm, let us ob-
serve the example described in the previous sec-
tion. In that example, we have, for instance:

f3 (3) =
min{c33 + f2 (1) , c34 + f2 (2) , c35 + f2 (3)} .

It seems that to calculate f3 (3) we have to cal-
culate three values and later compare them to
choose the lower one. However, such procedure
is not necessary, because the values c33 + f2 (1)
and c34 + f2 (2) were already calculated and c34 +
f2 (2) ≤ c33 + f2 (1). According to this, it is
enough to calculate c35 + f2 (3) and compare it
with c34 + f2 (2). Thus, in each stage, only one
sum operation and one comparison operation for
each state is done, if s > 1. If s = 1, then only one
sum is necessary.

The presented algorithm starts from the hypothe-
sis that it is not known a priori any matches that
should be considered. For that reason, it deter-
mines all the possible global matchings that pre-
serve the new successive absolute orders and then

it chooses the one of minimum cost. The chosen
matching is the one of lower cost that maintains
the relative order of the points.

Our new algorithm can be described as follows:

Algorithm:

1. Read the dimension of contours to be matched
and the costs matrix C. Define the value of n
and m so that n ≤ m. If necessary (n > m),
make the transpose of matrix C.

2. Repeat m times:

i. To k = 1,2, ...,n and s = 1,2, ...,m− n +
1, calculate the values of fk (s), taking
in consideration what was referred be-
fore, avoiding repeated calculations al-
ready made. Keep the values of fk (s) in
a table of n rows and m−n + 1 columns,
that is, the used table must have so many
rows as stages and so many columns as
states, (Tab. 1).

ii. Determine and keep the minimum cost,
which is the value kept in the position
(n, m−n+1) of the values table. (In the
previous example, it is the value kept in
position (4, 3) of Tab. 1).

iii. Define and keep the global matching of
minimum cost, which is made by making
a search in the built table. Notice that the
selection of a certain cell (i, j) means that
the pointi of contour 1 is matched with
point i+ j−1 of contour 2. (See the cells
used to define the matching in the example
in study, Tab. 1.)

iv. Rearrange the columns of the matrix C, so
that, column 2 becomes column 1, column
3 becomes column 2 and so forth.

3. Seek the minimum cost between the m kept
values and the respective matching.

If one match is known a priori, then the algorithm
does not need to determine all the possible global
matchings as in the presented case. For instance,
let us suppose that it is known that point i of con-
tour 1 should be matched to point j of contour 2.
Then, the points of both contours are rearranged:
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point i of contour 1 becomes point 1, point i + 1
becomes point 2 and so forth. The same is made
in contour 2. Now, it is enough to solve only one
problem to search for the best global matching
that preserves the new absolute order, instead of
m problems that the algorithm will have to solve
if any match was known a priori.

Table 1: Minimum costs kept by the algorithm for
the example in study. The values are relative to
the first problem (initial order). The marked cells
are used to define the matching.

State (s)
Stage (k) 1 2 3

1 f1 (1) = 1 f1 (2) = 0 f1 (3) = 0
2 f2 (1) = 4 f2 (2) = 1 f2 (3) = 1
3 f3 (1) = 6 f3 (2) = 5 f3 (3) = 1
4 f4 (1) = 11 f4 (2) = 9 f4 (3) = 2

4.3 Computational cost

Considering a contour defined by n points and
another one defined by m points, with n ≤ m,
for each global matching that preserves the abso-
lute order there are n stages and m−n + 1 states.
For each stage, only one sum for state is effec-
tuated. For each state larger than 1 (one) only
one comparison is effectuated. Thus, we have in
total n× (m−n+1) sums and n× (m−n) com-
parisons, considering only the fundamental oper-
ations involved.

To obtain the best global matching preserving
the relative order, we have to solve m problems;
therefore, there are m×n× (m−n+1) sums and
m×n× (m−n) comparisons. To choose the best
global matching from among all the global ones,
we have more m−1 comparisons.

From the explained, we can conclude that execu-
tion time will increase when the number of points
that define the contours increases and decreases
when the difference among the number of points
of the two contours decreases.

5 Dynamic programming with restriction of
order versus Hungarian Method, Simplex
for Flow Problems and LAPm

5.1 Test conditions

Before presenting some of the experimental re-
sults obtained, it is important to refer that this
comparison was accomplished after the imple-
mentation of our new algorithm of dynamic pro-
gramming in the computational platform for im-
age processing and analysis already referred,
[Tavares (2000), Tavares, Barbosa and Padilha
(2002)]. To compare the two optimization meth-
ods – assignment algorithms without order re-
striction (AAWOR) and the dynamic program-
ming algorithm with order restriction (DPAWOR)
– one employed affinity matrices obtained us-
ing the methodology integrated in the same plat-
form, based on geometric modeling and modal
matching, proposed by Shapiro, [Shapiro and
Brady (1992); Tavares (2000); Tavares, Bar-
bosa and Padilha (2002); Bastos (2003); Bastos
and Tavares (2004, 2006); Tavares and Bastos
(2005)].

To compare the optimization algorithms based on
the Hungarian Method, Simplex for Flow Prob-
lems and LAPm with the new optimization algo-
rithm based on dynamic programming, it is neces-
sary that the process to determine the cost matrix
associated to the points that define both contours
be exactly the same. Thus, in all of the experimen-
tal tests done, the configuration defined by default
in the computational platform used for the build-
ing process of the affinity matrices was adopted.

In the definition of the Simplex for Flow Prob-
lems algorithm integrated in the computational
platform adopted, the default configuration was
also used, because it is, in general, the fastest,
Fig. 4. To get the time required by each one of the
optimization algorithms considered, a function al-
ready available for that proposed in the same plat-
form was used.

5.2 Results

The quality of the matchings obtained using AA-
WOR and DPAWOR algorithms, in most of the
contours tested, were exactly the same and ex-
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Figure 4: Configuration defined by default in the
computational platform for the optimization algo-
rithm based on the Simplex.

cellent. The differences appeared when AAWOR
presented crossed matches, what obviously did
not happen with DPAWOR.

To illustrate the differences of the matches found
by the two types of algorithms considered in some
experimental cases, observe Figs. 2, 5, 6, 7, 8, 9
and 10. In those, the contours were aligned by
applying the rigid transformation estimated. In
some of the cases presented there are small dif-
ferences in the positions of the contours, because
the angle of rotation of a contour in relation to the
other one is obtained based on the matches found.
Thus, bad matches can originate an erroneous ro-
tation angle.

Figure 5: Matching found between the contours
of Fig. 1 using the algorithm based on dynamic
programming.

In Tab. 2, we present the computational times re-
quired to determine the matching of several pairs
of ordered contours and the respective matching
costs. Some of the matching results indicated
are not illustrated in this paper because they were
equal for the two types of algorithms in compar-

(a) (b )
Figure 6: Contours “foot13” and “foot14”, de-
fined by 233 and 253 points, respectively, and
(a) matching found using AAWOR, (b) matching
found using DPAWOR.

 (a)   (b) 

Figure 7: Contours “rib1” and “rib2”, both de-
fined by 46 points, and (a) matching found using
AAWOR, (b) matching found using DPAWOR.

ison, or present almost imperceptive differences.
It is important to refer that the cost of the global
matching relies on the elements of the cost ma-
trix and that this one depends on the contours
and the values of the parameters considered in
the Shapiro’s matching methodology. The time
indicated is an average time, because small vari-
ations were observed. In several situations, the
execution time was very low and for that reason
the computational platform indicated an execu-
tion time of 0 (zero) seconds. Thus, in those situ-
ations we indicate in Tab. 2 a time “<0.01”.

6 Conclusions and future work perspectives

Relatively to the matchings found, the AAWOR
algorithms always present, obviously, a solution
of minimum cost, because they are driven by the
same restriction. Besides, only in very singular
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 (a)   (b) (a)   (b) 
Figure 8: Contours “heartB3” and “heartB2”, de-
fined by 389 and 139 points, respectively, and (a)
matching found using AAWOR, (b) matching found
using DPAWOR.

Figure 9: Contours “heartB3” and “heartB4”, de-
fined by 389 and 417 points, respectively, and (a)
matching found using AAWOR, (b) matching found
using DPAWOR.

Table 2: Comparison between AAWOR and DPAWOR algorithms. (The experimental tests were accom-
plished using a PC Pentium III, at 1GHz with 256MB of RAM and Microsoft Windows XP.)

N. of points and “contour name” Global cost of the matching Execution time [s]
Contour 1 Contour 2 Hung./Simp./LAPm Dynamic Hungarian Simplex LAPm Dynamic

28, “heart1” 28, “heart1a” 0.00266 0.00266 4.286 0.02 0.01 <0.01
36, “heartA1” 36, “heartA2” 0.98965 1.1468 >60 0.04 2.352 <0.01

46, “rib1” 46, “rib2” 3.63974 4.06635 >60 0.06 2.774 <0.01
86, “airplane12” 57, “airplane2” 1.74522 1.74522 >60 0.20 1.332 0.01

81, “heart5” 84, “heart6” 5.79033 6.70609 >60 0.20 2.426 <0.01
233, “foot13” 67, “foot2” 6.0508 6.11264 >60 1.332 15.983 0.25
233, “foot13” 253, “foot14” 50.5486 57.9803 >60 2.013 >60 0.15

389, “heartB3” 139, “heartB2” 24.8986 25.7363 >60 5.418 >60 3.796
389, “heartB3” 417, “heartB4” 12.3774 13.833 >60 9.864 >60 1.192

(a)   (b) 

Figure 10: Contours “heartA1” and “heartA2”,
both defined by 36 points, and (a) matching found
using AAWOR; (b) matching found using DPA-
WOR.

situations more than one matching of minimum
cost exists. Thus, the matchings obtained by the
three assignment algorithms were always equal.

The comparison between the results obtained us-
ing AAWOR algorithms and DPAWOR algorithm
allows us to conclude the following:

- Whenever the AAWOR reached a good match-
ing without crossed matches, the DPAWOR
reached the same matching; therefore the global
cost of the matching was exactly the same for
the two types of algorithms.

- When the AAWOR reached a matching with
some crossed matches, the DPAWOR reached
an identical matching but without crossed
matches. Obviously, the cost associated was
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superior because the restriction of the order
forced some crossed matches to be substituted
by matches of larger costs but more coherent.

- In the situations where the matching obtained
by AAWOR were in the major part without
sense, so were the matching obtained using
DPAWOR. It is important to refer that those bad
matchings were not due to the optimization al-
gorithms used but to the methodology adopted
in the construction of the cost matrix. Thus, no
example of this situation was presented in this
paper.

The execution time of the DPAWOR algorithm
was always inferior to the execution time of all
the AAWOR algorithms, independently of the
contours have been defined by equal or different
number of points, or if that number is high or
low. Although the tests were executed in a slow
computer, when compared with the more modern
ones, there were situations in which the compu-
tational platform indicated execution times of 0
(zero) seconds for DPAWOR, what means a very
low computational time.

It can be verified that the execution times of the
DPAWOR algorithm varied in agreement with
what was anticipated in section 4.3. In other
words, the time increased when the number of
points that define the contours increased, and it
decreased when the difference between the num-
ber of points that define the two contours de-
creased.

Finally, as perspectives of future work, we hope
to apply our DPAWOR algorithm to establish the
matching of characteristic points of objects repre-
sented in images using several methodologies for
the definition of the matching cost matrix, where
the order of the points or other characteristics of
the shape or image should be considered and pre-
served.
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