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A Cell-less BEM Formulation for 2D and 3D Elastoplastic Problems Using
Particular Integrals

A. Owatsiriwong1, B. Phansri1 and K.H. Park1,2

Abstract: This study deals with the particular
integral formulation for two (2D) and three (3D)
dimensional elastoplastic analyses. The elasto-
static equation is used for the complementary so-
lution. The particular integrals for displacement,
stress and traction rates are derived by introduc-
ing the concept of global shape function to ap-
proximate an initial stress rate term of the inho-
mogeneous equation. The Newton-Raphson al-
gorithm for the plastic multiplier is used to solve
the system equation. The developed program is
integrated with the pre- and post-processor. The
collapse analyses of the smooth flexible strip,
square and circular footings are given by compar-
ing the numerical results of the load-displacement
response with those by other BEM and FEM pro-
grams. The results of evolution of plastic region
and deformed shape with increasing load are also
given to demonstrate the application and accuracy
of the present formulation.

Keyword: BEM, particular integrals, elasto-
plasticity, Newton-Raphson algorithm, collapse
analysis, footing.

1 Introduction

The boundary element method (BEM) has de-
veloped into a powerful numerical method for
solving elastoplastic problems. Since Swedlow
and Cruse (1971) had presented the first elasto-
plastic BEM formulation by incorporating a vol-
ume integral involving plastic strains, the elasto-
plastic BEM formulations have been developed
into two main approaches: the initial stress ap-
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proach [Banerjee et al. (1979), Cathie and Baner-
jee (1980), Banerjee and Raveendra (1986, 1987),
Chopra and Dargush (1994), Gao and Davies
(2002), Wang et al. (2007)] and the initial
strain approach [Kumar and Mukherjee (1977),
Telles and Brebbia (1979), Mukherjee (1982),
Telles (1983), Chandra and Saigal (1991), Bonnet
and Mukherjee (1996), Chandra and Mukherjee
(1996), Poon et al. (1996), Benallal et al. (2002),
Mallardo and Alessandri (2004)]. The large de-
formation algorithms have been also developed
[Okada et al. (1989, 1990), Chandra and Saigal
(1991), Okada and Atluri (1992a,b, 1994)]. How-
ever, these formulations are not a boundary-only
formulation, and the volume cells are necessary
for the body where plasticity is expected to de-
velop. Few attempts have been made to eliminate
this volume integration problem in elastoplastic
analyses by using two methods: the volume inte-
gral conversion method and the particular integral
method.

For conservative systems of body forces, such
as a steady-state temperature, centrifugal accel-
eration, seepage gradient and gravitational poten-
tial, the exact forms of volume integral conver-
sion method can be obtained [Cruse (1975), Rizzo
and Shippy (1977), Cruse et al. (1977), Baner-
jee and Butterfield (1981), Danson (1981)]. How-
ever, for certain situations these body forces can-
not be expressed analytically. In order to over-
come this problem, Nardini and Brebbia (1982)
introduced a radial basis function for free vi-
bration analysis and later called this method the
dual reciprocity method mainly because the re-
sulting volume integral is converted to an equiva-
lent pair of surface integrals giving the appearance
of the use of a double reciprocal theorem [Nar-
dini and Brebbia (1986)]. Recently, Ochiai and
Kobayashi (1999) presented an improved multiple
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reciprocity method for elastoplastic analysis with
2D numerical examples of a thick cylinder and a
perforated plate. Gao (2002) also proposed a tech-
nique, named in the radial integral method, for
elastoplastic problems. In this method, a strongly
singular domain integral in internal stress inte-
gral equations was analytically transformed to the
boundary, whereas other weekly singular domain
integrals were transformed to the boundary by us-
ing the dual reciprocity method with different ra-
dial basis functions. One application of a 3D
flexible square footing was given by comparing
the result of load-settlement response with those
by the cell-integration method. The method has
been also applied to several engineering problems
[Albuquerque and Aliabadi (2008), Tsai (2008),
Dziatkiewicz and Fedelinski (2007), Davies et al.
(2007), Fedelinski and Gorski (2006), Cho et al.
(2004), Wen et al. (2002), Ochiai (2001), Kogl
and Gaul (2000)].

The particular integral method is a classical tech-
nique, obtaining the total solution as the sum of
a complementary solution for the homogeneous
part of the differential equation and a particu-
lar solution for the total governing inhomoge-
neous differential equation. Because of its sim-
plicity and well established mathematical roots,
the method has been recently extended to several
engineering problems [Owatsiriwong and Park
(2008), Park and Banerjee (2002a,b, 2006, 2007),
Park (2002, 2003), Yang et al. (2002)].

There has been some confusion between the
particular integral method and dual reciprocity
method. Polyzos et al. (1994) stated two meth-
ods are formally equivalent, while Power and Pa-
tridge (1994) stated that for the case in which
the non-homogeneous term is a known function,
the particular integral method is numerically more
efficient, but for the case in which the non-
homogeneous term is an unknown function both
methods are numerically equivalent. Although
the fundamental mathematical bases of two meth-
ods are different, some of these confusions have
mainly occurred due to the superficial similarities
of the matrix algebra involved. For more details
on the comparison of both the particular integral
method and volume integral conversion method

the reader may see Yang et al. (2002).

In fact, Henry and Banerjee (1988) presented the
particular integral formulation for elastoplastic
problems in 1988. They showed 2D and 3D nu-
merical examples, such as 3D analyses of a cube,
a notch plate and a perforated plate, and 2D anal-
ysis of a perforated plate, and compared the nu-
merical results of the stress-strain response for
different nonlinear system equation solution al-
gorithms (iterative and variable stiffness). How-
ever, the Newton-Raphson algorithm is now pop-
ular for solving sets of nonlinear equations in
BEM [Chopra and Dargush (1994), Bonnet and
Mukherjee (1996), Poon et al. (1996), Gao and
Davies (2002), Benallal et al. (2002), Mallardo
and Alessandri (2004), Wang et al. (2007)]. It
is necessary to demonstrate the potential of the
method by giving strong benchmark tests and en-
gineering applications and using the advanced so-
lution algorithm.

This study addresses this issue for the particu-
lar integral formulation of 2D and 3D elastoplas-
tic analyses. First the detailed explanation for
the derivation of the formulation and numerical
implementation is given. The solution of the
elastostatic equation is used as the complemen-
tary solution. A global shape function is con-
sidered to approximate the initial stress rate term
of the inhomogeneous equation so that the par-
ticular integrals for displacement, stress and trac-
tion rates are derived for 2D and 3D formula-
tions. The Newton-Raphson algorithm for the
plastic multiplier is used to solve the system equa-
tion. The GiD software package (2007) is used
as the pre- and post-processing tool. For bench-
mark tests, the first three examples, such as a
cube under uniaxial tension, a thick-walled cylin-
der under internal pressure and a thick-walled hol-
low sphere under internal pressure, are given and
the accuracy of the present formulation are shown
by comparing the numerical results with analyti-
cal solutions. Then the collapse analyses of the
smooth flexible strip, square and circular foot-
ings are given to demonstrate the application to
geomechanics problem. Numerical results of the
load-displacement response at typical location are
compared with those by other volume integra-
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tion BEM programs and finite element software
ABAQUS (2004). The results of evolution of
plastic region and deformed shape with increasing
load are given to show the application and accu-
racy of the present formulation.

2 Particular integral formulation

The governing differential equation for incre-
mental elastoplasticity of a homogeneous and
isotropic body can be expressed in terms of in-
cremental displacement u̇i as [Banerjee (1994),
Henry and Banerjee (1988)]

(λ + μ)u̇ j, ji + μ u̇i, j j = σ̇o
i j, j (1)

where λ and μ are Lame’s constants, σ̇o
i j is the

initial stress rate resulting from the non-linearities
present in the plastic domain, a superior dot de-
notes an increment, commas represent differen-
tiation with respect to spatial coordinates, and i,
j=1,2(3) for two(three) dimensions. The incre-
mental initial stress rate is defined as

σ̇o
i j = σ̇ e

i j − σ̇ ep
i j (2)

where σ̇ e
i j = De

i jkl ε̇kl, σ̇ ep
i j = Dep

i jkl ε̇kl, ε̇kl is the
strain rate and De

i jkl, Dep
i jkl are the elastic and

elastoplastic constitutive tensors respectively.

The solution of Eq.1 can be represented as a sum
of complementary function u̇c

i satisfying the ho-
mogeneous equation

(λ + μ)u̇c
j, ji + μ u̇c

i, j j = 0 (3)

and particular integral u̇p
i satisfying the inhomo-

geneous equation

(λ + μ)u̇p
j, ji + μ u̇p

i, j j = σ̇o
i j, j (4)

where superscripts c and p indicate complemen-
tary and particular solutions respectively.

Then the total solutions for displacement rate u̇i,
stress rate σ̇i j , and traction rate ṫi can be obtained
as

u̇i = u̇c
i + u̇p

i (5a)

σ̇i j = σ̇ c
i j + σ̇ p

i j (5b)

ṫi = ṫ c
i + ṫ p

i (5c)

where σ̇ c
i j , ṫ c

i and σ̇ p
i j , ṫ p

i are the complementary
functions and particular integrals for stress and
traction rates, respectively.

2.1 Complementary solutions

The boundary integral equation related to the
complementary functions uc

i and tc
i can be written

as [Banerjee (1994)]

Ci j(ξ )u̇c
i (ξ ) =∫

S
[Gi j(x,ξ )ṫ c

i (x)−Fi j(x,ξ )u̇c
i (x)]dS(x) (6)

where Gi j and Fi j are the fundamental solutions
for elastostatic equation (for details see Banerjee
(1994), pg.96-97) and Ci j(ξ ) = 1, 0 and 1/2 de-
pending on the point ξ being in the interior, out-
side or on a smooth boundary point respectively.

The complementary function for the interior
stress rate σ̇ c

i j can be written by using the stress-
strain relationship as [Banerjee (1994)]

σ̇ c
i j(ξ ) =∫

S

[
Gσ

ki j(x,ξ )ṫ c
k(x)−Fσ

ki j(x,ξ )u̇c
k(x)

]
dS(x) (7)

where Gσ
ki j and Fσ

ki j are the kernel functions for
stresses (for details see Banerjee (1994), pg.100-
101).

2.2 Particular integrals

The standard direct BEM formulation for Eq.1
using the elastostatic fundamental solution of
Eq.3 will unfortunately contain the unknown ini-
tial stress rate σ̇o

i j(x) as integrals within do-
main. However, by using the Galerkin vector
and approximating the initial stress rate term with
known global shape function, an attempt can be
made to convert the volume integral into a surface
integral [Henry and Banerjee (1988)].

By using Galerkin vector Fi [Fung (1965)], the
particular integral for displacement rate u̇p

i can be
expressed as

u̇p
i (x) =

1−ν
μ

Ḟi,kk(x)− 1
2μ

Ḟk,ki(x) (8)

where ν is the Poisson’s ratio.

Substituting of Eq.8 into Eq.4 yields

Ḟi,ll j j =
1

1−ν
σ̇o

i j, j (9)
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Considering the implicit expression of Eq.8 and
Eq.9 to be related by a second order tensor ḣi j,
rather than a vector, one can introduce the follow-
ing relation:

ḣi j,kknn = σ̇o
i j (10)

Substitution of this equation into Eq.9 yields an
expression for the Galerkin vector in terms of this
new function:

Ḟi =
1

1−ν
ḣi j, j (11)

Then substituting this expression into Eq.8 yields
the desired particular integral for displacement
rate

u̇p
i =

1
μ

ḣil,lkk − 1
2μ(1−ν)

ḣlm,ilm (12)

By introducing the global shape function C(x,ξn),
the initial stress rate σ̇o

i j(x) can be approximated
as

σ̇o
ml(x) =

∞

∑
n=1

C(x,ξn)φ̇ml(ξn) (13)

where φ̇ml(ξn) is the unknown fictitious function.

Assuming

ḣml(x) =
∞

∑
n=1

H(x,ξn)φ̇ml(ξn) (14)

and substituting Eq.13 and Eq.14 into Eq.10 one
can obtain

H,kknn = C (15)

Since the global shape function is used to
approximateσ̇o

i j(x), the choice of these functions
has direct effect on the accuracy of the method.
However, the choice of complementary and par-
ticular solutions is somewhat arbitrary because it
is the total solution which provides the uniqueness
of the solution by satisfying the boundary condi-
tions. More elaborate global shape functions may
have better modeling capabilities on their own but
used in the context of particular integrals may not
show any better performance. Because of this

fact, the following simple and efficient function
is chosen here:

C(x,ξn) = A− r (16)

with

H(x,ξn) = (H1A−H2r)r4 (17)

where H1 and H2 are constants, r2 = yiyi,yi = [xi−
(ξn)i] and A is a constant chosen as the largest dis-
tance between x and ξn.

By substituting Eq.16 and Eq.17 into Eq.15, the
coefficients H1 and H2 can be derived as

H1 =
1

8d(d +2)
; H2 =

1
15(d +3)(d +1)

(18)

where d is the dimension, that is d=2 for 2D or
d=3 for 3D analysis.

Then the particular integral for displacement rate
can be derived as

u̇p
i (x) =

∞

∑
n=1

Uiml(x,ξn)φ̇ml(ξn) (19)

where

Uiml(x,ξn)

=
1
μ

δim
∂ 3H

∂xl∂xk∂xk
− 1

2μ(1−ν)
∂ 3H

∂xi∂xl∂xm

= (U1A+U2r)(δlmyi +δil ym)+(U3A+U4r)δimyl

+
U2

r
yiylym

(20)

U1 = − 8H1

2μ(1−ν)
; U2 =

15H2

2μ(1−ν)
(21)

U3 =U1 +
8(2+d)H1

μ
; U4 =U2− 15(3+d)H2

μ
(22)

A particular integral for stress rate can be derived
by substituting Eq.19 and Eq.20 into the strain-
displacement relation and the stress-strain law:

σ̇ p
i j(x) =

∞

∑
n=1

Si jml(x,ξn)φ̇ml(ξn) (23)
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where

Si jml(x,ξn)
=(e2A+ f2r)δ jmδil +(e3A+ f3r)δi jδlm

+(e4A+ f4r)δimδ jl

+
f1

r
(δily jym +δlmyiy j +δ jl yiym)

+
f2

r
(δ jmyiyl +δimy jyl)+

f3

r
δi jylym

+
f5

r3 yiy jylym

(24)

e1 = 2μU1; e2 = μ(U1 +U3);

e3 = e1 +λ{U1(1+d)+U3};

e4 = e2 −1

(25)

f1 = − f5 = 2μU2; f2 = μ(U2 +U4);

f3 = f1 +λ{U2(2+d)+U4};

f4 = f2 +1

(26)

Then a particular integral for traction rate is de-
rived by multiplying the above equation with the
appropriate normals:

ṫ p
i (x) =

∞

∑
n=1

Timl(x,ξn)φ̇ml(ξn) (27)

where

Timl(x,ξn) = Si jml(x,ξn)n j (28)

n j(x) = unit normal at x in the j-th direction.

3 Numerical implementation

3.1 Formulation of the system equation

The boundary integral Eq.6 and stress Eq.7 can be
written in matrix form as [Banerjee (1994)]

[Gi j]{ṫ c
i }− [Fi j]{u̇c

i} = 0 (29)

{
σ̇ c

i j

}
=

[
Gσ

ki j

]
{ṫ c

k}−
[
Fσ

ki j

]
{u̇c

k} (30)

Considering the total solutions of Eq.5 the com-
plementary functions in Eq.29 and Eq.30 can be
eliminated as

[Gi j]{ṫi}− [Fi j]{u̇i} = [Gi j]
{

ṫ p
i

}− [Fi j]
{

u̇p
i

}
(31)

{
σ̇i j

}
=

[
Gσ

ki j

]
{ṫk}−

[
Fσ

ki j

]
{u̇k}−

[
Gσ

ki j

]{
ṫ p
k

}
−

[
Fσ

ki j

]{
u̇p

k

}
+

{
σ̇ p

i j

}
(32)

If a finite number of ξn, N, are chosen, the partic-
ular integrals for displacement, traction and stress
rates can be written as{

u̇p
i

}
= [Uiml]

{
φ̇ml

}
(33){

ṫ p
i

}
= [Timl]

{
φ̇ml

}
(34){

σ̇ p
i j

}
=

[
Si jml

]{
φ̇ml

}
(35)

Considering the fictitious nodal values as{
φ̇ml

}
= [C]−1 {σ̇o

ml} (36)

Eq.31 and Eq.32 becomes

[Gi j]{ṫi}− [Fi j]{u̇i} =
[
Mb

jml

]
{σ̇o

ml} (37)

{
σ̇i j

}
=

[
Gσ

ki j

]
{ṫk}−

[
Fσ

ki j

]
{u̇k}−

[
Mσ

i jml

]
{σ̇o

ml}
(38)

where[
Mb

jml

]
= ([Gi j] [Timl]− [Fi j] [Diml]) [C]−1 (39)

[
Mσ

i jml

]
=([

Gσ
ki j

]
[Tkml]−

[
Fσ

ki j

]
[Dkml]−

[
Si jml

])
[C]−1

(40)

Then the final system of equations can be obtained
as[
Ab

]
{ẋ} =

{
ẏb

}
−

[
Mb

]
{σ̇o} (41)

{σ̇} = {ẏσ}+[Aσ ]{ẋ}− [Mσ ]{σ̇o} (42)

where Ab, Mb, Aσ and Mσ are block–banded ma-
trices, ẋ is a vector of unknown boundary quan-
tities, ẏb and ẏσ are vectors of known boundary
conditions, σ̇ is a vector of stress rate, and σ̇o is a
vector of initial stress rates at the boundary and in-
terior points. Eq.41 and Eq.42 are nonlinear sys-
tem due to the unknown initial stress vector σo.
In this study, the Newton-Raphson algorithm for
the plastic multiplier is employed for elastoplastic
solution.
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3.2 Newton-Raphson algorithm with plastic
multiplier

The detailed explanation for the Newton-Raphson
algorithm and the corresponding computer pro-
gram can be found in the reference [Gao and
Davies (2002)]. Here the brief explanation is
given for completeness.

The elastic stress increment can be decomposed
into the total (or correct) stresses and the initial
stresses via

{σ̇ e} = {σ̇}+{σ̇o} (43)

Using Eq.42 for total stress and the plastic multi-
plier λ̇ [Gao and Davies (2002)],

{
λ̇

}
=

{
∇ fψ

}T {σ̇ e} (44)

Eq.43 can be rewritten as

[
Aλ

]{
λ̇

}
=

{
ẏ f } (45)

where

[
Aλ

]
= [I]

−[
∇ fψ

](
[I]− [Aσ ]

[
Ab

]−1 [
Mb

]
− [Mσ ]

)[
d f ]

(46)

{
ẏ f } =

[
∇ fψ

](
{ẏσ}+[Aσ ]

[
Ab

]−1 {
ẏb

})
(47)

{
∇ fψ

}
=

1
ψ

{
∂ f
∂σ

}
(48)

ψ =
{

∂ f
∂σ

}
[De]

{
∂ f
∂σ

}
+H∗

{
∂hα

∂λ

}
(49)

{
d f } = [De]

{
∂ f
∂σ

}
(50)

f is the yield function, H∗ is the weighted average
of the isotropic and kinematic hardening parame-
ters and hα is the internal variable.

Then the residual of Eq.45, following the i-th iter-
ation, Ri can be written as

{R}i =
{

ẏ f
}i −

[
Aλ

]i {
λ̇

}i
(51)

By using Taylor’s series expansion, the incremen-
tal change of plastic multiplier Δλ̇ can be ob-
tained as
[
Aλ

]i {
Δλ̇

}
= {R}i (52)

Also the corresponding changes in boundary un-
knowns and stress can be obtained as

{Δẋ} = −
[
Ab

]−1 [
Mb

][
d f ]{

Δλ̇
}

(53)

{Δσ̇} =

−
(

[Aσ ]
[
Ab

]−1 [
Mb

]
+[Mσ ]

)[
d f ]{

Δλ̇
}

(54)

Then the variables are updated by

{
λ̇

}i+1
=

{
λ̇
}i

+
{

Δλ̇
}

(55)

{ẋ}i+1 = {ẋ}i +{Δẋ} (56)

{σ̇}i+1 = {σ̇}i +{Δσ̇} (57)

3.3 Calculation sequence

The computation can be summarized as follows:

(1) Solve the elastic problem in the usual man-
ner. Scale the elastic solution such that the
most highly stress node is at yield. Store the
current values of stresses.

(2) Apply small load increment
{

ẏb
}

,{ẏσ}.

(3) Scale stresses for each node.

(4) Initialize iterative variables for each node.

(5) Obtain
{

Δλ̇
}

in Eq.52, and then update{
λ̇

}i+1
,{ẋ}i+1 and {σ̇}i+1 in Eq.55∼Eq.57.

(6) If the solution of Δλ̇ does not converge, go to
step (5) for the next iteration step.

(7) If converge, update unknown variables and
internal variables and go to step (2) for the
next load increment.
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4 Numerical applications

In order to show the validity and accuracy of the
present formulation, six examples of application
are given. The results of the load-displacement
response at typical location are compared with
their analytical solutions and those by other vol-
ume integration BEM programs, such as GPBEST
[Wang et al. (2007), Chatterjee (2002)], BE-
MECH [Gao and Davies (2002)], and finite ele-
ment software ABAQUS (2004). The same mod-
eling meshes are used for comparison of the re-
sults in ABAQUS, BEMECH, and TS (this study).
The results of evolution of plastic region and
the corresponding deformed shape with increas-
ing load are also given. While the present pro-
gram can be used for the different material mod-
els, such as Tresca, von Mises, Mohr-Coulomb
and Drucker-Prager models, the examples con-
sider the von Mises model only.

4.1 Example 1: cube under uniaxial tension

The first example deals with a 10-unit cube sub-
jected to nodal displacement (Fig. 1(a)) [Gao
and Davies (2002)]. The displacement of 30-unit
is prescribed at the top surface, while other sur-
faces are restrained against normal displacement
by using roller boundary condition for symmet-
ric boundary condition about 3 planes (ZX, XY,
YZ). Typical modeling mesh using 54 quadratic
boundary elements for 3D analysis is shown in
Fig. 1(b). In order to show the influence of inte-
rior points to the solution accuracy, two cases are
considered: one with 44 interior points and the
other without interior point. The values of ma-
terial properties used are: E=1.0, ν=0.3, σy=0.8
and H=0.1, where E is the modulus of elasticity,
σy is the Mises equivalent uniaxial yield strength,
and H is the isotropic hardening modulus.

Numerical results for load-displacement response
at the top surface are compared with analytical so-
lution (A.S.), as shown in Fig. 2. Good agree-
ment can be seen for both models where the mesh
including interior points yields better accuracy in
this case. Since the stress field remains constant
(Fig. 3), very small discrepancy of analysis re-
sults is noticed between the models with and with-

(a) Problem statement 

 
(b) 3D modeling mesh 

Figure 1: A cube subjected to uniaxial prescribed
displacement (Example 1)

out interior points. For the problem with complex
stress field, this is not the case.

4.2 Example 2: thick-walled cylinder under in-
ternal pressure

A thick-walled cylinder subjected to internal pres-
sure is analyzed as the second example problem
(Fig. 4). The inner radius a=100.0 and outer ra-
dius b=200.0. The 2D modeling mesh, as shown
in Fig. 4(a), uses 32 quadratic boundary elements
and 161 interior points, while Fig. 4(b) shows 3D
modeling mesh using 96 quadratic boundary el-
ements and 25 interior points. For 2D and 3D
analyses only the positive octant of the cylinder
is modeled, while symmetric constraints are im-
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Figure 2: Load-displacement response (Example 1)
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Figure 5: Load-displacement response (Example 2)



46 Copyright c© 2008 Tech Science Press CMES, vol.31, no.1, pp.37-59, 2008

  
/ up p = 0.54, at first yield / up p = 0.91 

  
/ up p = 0.98 / up p = 1.0, just before collapse 

(a) 2D 
 

  

 
/ up p = 0.54, at first yield / up p = 0.88 

 

 

 

/ up p = 0.96 / up p = 1.0, just before collapse 
(b) 3D  

Figure 6: Evolution of plastic region (Example 2)
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posed.

(a) Problem statement 
 

 
(b) 3D modeling mesh 

Figure 7: A thick-walled hollow sphere subjected
to internal pressure (Example 3)

The analytical solution for the displacement at the
outer surface can be obtained for the von Mises’
yield criterion [Hill (1950), pg. 108∼118]

uo(b) =
2(1−ν2)

E
(

b2

a2 −1
) pob

with

po =

σy√
3

(
1− a2

b2

)
√{

1+(1−2ν)2 a4

3b4

}

for initial yielding

u(b) =
2(1−ν2)√

3Eb
σyc2

after initial yielding where c is the radius of the
plastic boundary and found to be

p =
1√
3

σy

{
1− c2

b2 +�n
c2

a2

}
.

The load-displacement response at the inner and
outer surfaces is compared with the analytical so-
lution and that of BEMECH [Gao and Davies
(2002)], as shown in Fig. 5. Good agreement
can be seen for both 2D and 3D analyses. Fig. 6
shows the evolution of plastic region for both 2D
and 3D meshes. Uniform expansion of the plastic
region with increasing load confirms the accuracy
of the present formulation.

4.3 Example 3: thick-walled hollow sphere un-
der internal pressure

The third example is a thick-walled hollow sphere
subjected to uniform internal pressure (Fig. 7(a)).
The inner radius a=1.0 and outer radius b=2.0.
The typical modeling mesh for 3D analysis using
192 quadratic boundary elements and 511 interior
points is shown in Fig. 7(b). Due to symmetry, a
quarter of sphere is analyzed.

The analytical solutions for the displacement at
the inner and outer surfaces can be obtained
for the von Mises’ criterion [Hill (1950), pg.
98∼101]:

for initial yielding,

uo(a) =
σya
E

{
2(1−2ν)a3

3b3 +
1+ν

3

}
,

uo(b) =
(1−ν)

Eb2 σya3,

with

po =
2
3

σy

(
1− a3

b3

)

after initial yielding,

u(a) =

σya

E

{
(1−ν)

c3

a3−
2
3
(1−2ν)

(
1− c3

b3 +�n
c3

a3

)}
,

u(b) =
(1−ν)

Eb2 σyc3
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where c is found to be

p =
2
3

σy

{
1− c3

b3 +�n
c3

a3

}
.

The load-displacement response at the inner and
outer surfaces is compared with the analytical so-
lution and that of BEMECH [Gao and Davies
(2002)], as shown in Fig. 8. Good agreement can
be seen. Fig. 9 shows the evolution of plastic
region with increasing load. Again, uniform ex-
pansion of the plastic region indicates the validity
of the formulation.

4.4 Example 4: collapse analysis of a flexible
strip footing

The fourth example problem concerns a smooth
flexible strip footing on an elastic-perfectly plas-
tic half space, which has E = 20000, ν=0.49 and
σy = 173.21 (cu = σy/

√
3 = 100), where cu is the

undrained shear strength. The 2D modeling mesh
using 38 quadratic boundary elements and 209 in-
terior points is shown in Fig. 10(a), while the 3D
modeling mesh uses 358 quadratic boundary ele-
ments and 126 interior points (Fig. 10(b)).

The non-dimensionalized load-displacement re-
sponse at the center of the footing is shown in
Fig. 11, together with the result obtained using the
conventional volume integration and the mixed
representation algorithm by GPBEST [Chatterjee
(2002)] and ABAQUS (2004). The exact solution
for the collapse load is well known and the col-
lapse load in terms of undrained shear strength
is (π + 2)cu. The collapse loads obtained from
the present analysis are 5.07 cu and 5.04 cu for
2D and 3D analyses respectively, indicating the
acceptable accuracy of the analysis (discrepancy
below 2% in both cases has been noticed). Fig.
12 shows the development of plastic region and
the corresponding deformed shape (3 times mag-
nified) for different load increment.

4.5 Example 5: collapse analysis of a flexible
square footing

The fifth example problem is the collapse analy-
sis of a smooth flexible square footing on a homo-
geneous soil. The soil is assumed to be elastic-
perfectly plastic obeying von Mises material with

the following properties: E = 1000, ν=0.3 and
σy = 17.321 (cu = σy/

√
3 = 10). Two different

3D modeling meshes, as shown in Fig. 13, are
considered. The modeling mesh with four ele-
ments over footing uses 132 quadratic boundary
elements and 220 interior points, as shown in Fig.
13(a), while 226 quadratic boundary elements and
600 interior points are used for nine elements over
footing in Fig. 13(b).

The non-dimensionalized load-mean displace-
ment response of the footing is shown in Fig. 14,
together with the results by GPBEST [Chatterjee
(2002)], BEMECH [Gao and Davies (2002)], and
ABAQUS (2004). The mean displacement is ob-
tained as um = (ucorner +2ucenter)/3 [Chatterjee
(2002)]. In this case, the exact solution for the
collapse load is not known, but the collapse load
of a rigid circular footing, close to 6 B2cu, can
be considered as a reference value. The collapse
loads obtained from the present analysis are 5.74
B2cu and 5.79 B2cu for four and nine elements
over footing respectively. Fig. 15 shows the evo-
lution of plastic region and the corresponding de-
formed shape (2 times magnified) by the load in-
crement. It can be seen that the plastic region
extends laterally about two times and vertically
slightly more than the footing dimensions.

4.6 Example 6: collapse analysis of a flexible
circular footing

The final example problem is the collapse analy-
sis of a smooth flexible circular footing on a ho-
mogeneous soil. Again, the soil is assumed to be
elastic-perfectly plastic obeying von Mises mate-
rial with the same properties used in the previ-
ous example. Two different 3D modeling meshes
are considered, as shown in Fig. 16. The mod-
eling mesh with five elements over footing uses
104 quadratic boundary elements and 87 interior
points, as shown in Fig. 16(a), while 216 elements
and 470 interior points are used for twelve ele-
ments over footing in Fig. 16(b).

The non-dimensionalized load-displacement re-
sponse at the center of the footing is shown in Fig.
17, together with the results by GPBEST [Chatter-
jee (2002)], BEMECH [Gao and Davies (2002)],
and ABAQUS (2004). The collapse loads ob-
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Figure 8: Load-displacement response (Example 3)

  
/ up p = 0.43, at first yield / up p = 0.79 

  
/ up p = 0.95 / up p = 1.0, just before collapse 

Figure 9: Evolution of plastic region (Example 3)
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Figure 11: Load-displacement response (Example 4)
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/ uq c = 3.07, right after first yield 

/ uq c = 4.32 
 

/ uq c = 4.90 

/ uq c = 5.07, just before collapse 

Figure 12: Evolution of plastic region (2D mesh) & deformed shape (Example 4)
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Figure 14: Load-mean displacement response (Example 5)
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2/ 2.50,uq B c at first yield=

2/ 4.69uq B c =

2/ 5.43uq B c =

2/ 5.79 ,uq B c just before collapse=

Figure 15: Evolution of plastic region & deformed shape (Example 5)
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Figure 17: Load-displacement response (Example 6)
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2/ 2.47,uq B c at first yield=

2/ 4.10uq B c =

2/ 5.24uq B c =

2/ 5.65 ,uq B c just before collapse=

Figure 18: Evolution of plastic region & deformed shape (Example 6)
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tained from the present analysis are 5.73 cu and
5.65 cu for five and twelve elements over footing
respectively, indicating the acceptable accuracy of
the formulation using small number of boundary
elements and interior points. The development
of plastic region and the corresponding deformed
shape (2 times magnified) by the load increment,
as shown in Fig. 18, demonstrates the validity of
the formulation. It is can be seen from Figs. 15
and 18 that the expansion pattern of plastic region
with increasing load is similar in both of square
and circular footings.

5 Conclusions

The application of BEM to 2D and 3D elastoplas-
tic analyses has been described by using particular
integrals. The elastostatic equation is used for the
complementary solution and thus the computer
program for the present formulation can be eas-
ily implemented from any available program for
elastostatic problems by including the Newton-
Raphson iterative scheme. The program is inte-
grated with the pre- and post-processor.

The application and accuracy of the present for-
mulation are evaluated by comparing the results
of several example problems with their analyti-
cal solutions and those by other BEM and FEM
programs. It has been demonstrated that 2D and
3D elastoplasticity can be solved using the well-
known method of particular integrals.
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