
Copyright c© 2008 Tech Science Press CMES, vol.31, no.2, pp.71-83, 2008

A Novel Time Integration Method for Solving A Large System of
Non-Linear Algebraic Equations

Chein-Shan Liu1 and Satya N. Atluri2

Abstract: Iterative algorithms for solving a
nonlinear system of algebraic equations of the
type: Fi(x j) = 0, i, j = 1, . . . ,n date back to
the seminal work of Issac Newton. Nowadays
a Newton-like algorithm is still the most popu-
lar one due to its easy numerical implementa-
tion. However, this type of algorithm is sensitive
to the initial guess of the solution and is expen-
sive in the computations of the Jacobian matrix
∂Fi/∂x j and its inverse at each iterative step. In
a time-integration of a system of nonlinear Ordi-
nary Differential Equations (ODEs) of the type
Bi jẋ j + Fi = 0 where Bi j are nonlinear functions
of x j , the methods which involve an inverse of
the Jacobain matrix Bi j = ∂Fi/∂x j are called “Im-
plicit”, while those that do not involve an inverse
of ∂Fi/∂x j are called “Explicit”. In this paper a
natural system of explicit ODEs is derived from
the given system of nonlinear algebraic equations
(NAEs), by introducing a fictitious time, such that
it is a mathematically equivalent system in the
n + 1-dimensional space as the original algebraic
equations system is in the n-dimensional space.
The iterative equations are obtained by apply-
ing numerical integrations on the resultant ODEs,
which do not need the information of ∂Fi/∂x j

and its inverse. The computational cost is thus
greatly reduced. Numerical examples given con-
firm that this fictitious time integration method
(FTIM) is highly efficient to find the true solutions
with residual errors being much smaller. Also, the
FTIM is used to study the attracting sets of fixed
points, when multiple roots exist.
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1 Introduction

Numerical solution of algebraic equations is one
of the main aspects of computational mathemat-
ics. In many practical nonlinear engineering prob-
lems, the methods such as the finite element
method, boundary element method, finite volume
method, the meshless method, etc., eventually
lead to a system of nonlinear algebraic equations
(NAEs). Many numerical methods used in com-
putational mechanics, as demonstrated by Zhu,
Zhang and Atluri (1998), Atluri and Zhu (1998a),
Atluri (2002), Atluri and Shen (2002), and Atluri,
Liu and Han (2006) lead to the solution of a sys-
tem of linear algebraic equations for a linear prob-
lem, and of an NAEs system for a nonlinear prob-
lem. Collocation methods, as those used by Liu
(2007a, 2007b, 2007c, 2008a) for the modified
Trefftz method of Laplace equation also need to
solve a large system of algebraic equations.

Over the past forty years two important contri-
butions have been made towards the numerical
solutions of NAEs. One of the methods has
been called the “predictor-corrector” or “pseudo-
arclength continuation” method. This method has
its historical roots in the embedding and incre-
mental loading methods which have been success-
fully used for several decades by engineers to im-
prove the convergence properties when an ade-
quate starting value for an iterative method is not
available. Another is the so-called simplical or
piecewise linear method. The monographs by All-
gower and Georg (1990) and Deuflhard (2004) are
devoted to the continuation methods for solving
NAEs.
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In this paper we introduce a novel continuation
method, by embedding the NAEs into a system
of nonautonomous first order ODEs (FOODEs).
To motivate the present approach, we consider a
single NAE:

F(x) = 0. (1)

In the above equation, we only have an indepen-
dent variable x. We transform it into a FOODE by
introducing a time-like or fictitious variable t into
the following transformation of variable from x to
y:

y(t) = (1+ t)x. (2)

Here, t is a variable which is independent of x;
hence, ẏ = dy/dt = x. If ν �= 0, Eq. (1) is equiva-
lent to

0 = −νF(x). (3)

Adding the equation ẏ = x to Eq. (3) we obtain:

ẏ = x−νF(x). (4)

By using Eq. (2) we can derive

ẏ =
y

1+ t
−νF

(
y

1+ t

)
. (5)

This is a FOODE for y(t). The initial condition
for the above equation is y(0) = x, which is how-
ever an unknown and requires a guess.

We demonstrate the above idea by a simple alge-
braic equation:

F(x) = x−1 = 0, (6)

which has the solution x = 1.

From Eqs. (5) and (6) it follows that

ẏ =
1−ν
1+ t

y+ν . (7)

Suppose that y(0) = y0, then the solution of
Eq. (7) can be written as

y(t) =
y0 −1

(1+ t)ν−1 +1+ t. (8)

If we choose ν > 1, the above y(t) approaches
1 + t with a power of (1 + t)1−ν. At this moment

of convergence, by x = y/(1 + t) we can get the
solution x = 1 of Eq. (6). We note that x = 1 is
also the asymptotic of the following FOODE:

ẋ = − ν
1+ t

(x−1) = − ν
1+ t

F(x), (9)

where ẋ = dx/dt. The solution of Eq. (9) is

x(t) =
x0 −1

(1+ t)ν +1, (10)

where x(t = 0) = x0. The solution x = 1 is recov-
ered very fast from x(t) in Eq. (10), when ν > 0
is a large number.

Multiplying Eq. (5) by an integrating factor of
1/(1+ t) we can obtain

d
dt

(
y

1+ t

)
= − ν

1+ t
F

(
y

1+ t

)
. (11)

Further using y/(1+ t) = x, leads to

ẋ = − ν
1+ t

F(x). (12)

The roots of F(x) = 0 are fixed points of the
above equation. We should stress that the factor
−ν/(1+ t) before F(x) is important.

We may employ a forward Euler scheme on
Eq. (12) by starting from a chosen initial condi-
tion x0:

xk+1 = xk − hν
1+ tk

F(xk), (13)

where h is a time stepsize and xk = x(tk) is the
value of x at the k-th discrete time tk.

Suppose that tk = k is an integer time with a time
increment h = 1, then we have

xk+1 = xk − ν
1+k

F(xk). (14)

This bears certain similarity with the famous
Newton method for Eq. (1):

xk+1 = xk − F(xk)
F ′(xk)

. (15)

But it can be seen that when there exists a dan-
ger in the Newton method of dividing by a zero
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F ′(xk), the algorithm in Eq. (14) is always work-
able. If the function F is bounded, the algo-
rithm (14) guarantees that the solution can be ap-
proached.

Now we turn to the discussions of the following
algebraic equations:

Fi(x1, . . . ,xn) = 0, i = 1, . . .,n. (16)

The Newton method for these equations is given
by

xk+1 = xk − [B(xk)]−1F(xk), (17)

where we use x := (x1, . . . ,xn)T and F :=
(F1, . . .,Fn)T to represent the vectors, and B is an
n × n matrix with its i j-th component given by
∂Fi/∂x j.

The Newton method has a great advantage that
it is quadratically convergent. However, it still
has some drawbacks of not being easy to guess
the initial point, the computational burden of
[B(xk)]−1, and F being required to be differen-
tiable. Some quasi-Newton methods are thus de-
veloped to overcome these defects of the Newton
method; see the discussions by Broyden (1965),
Dennis (1971), Dennis and More (1974, 1977),
and Spedicato and Huang (1997).

Davidenko (1953) was the first who developed a
new idea of homotopy method to solve Eq. (16)
by numerically integrating

ẋ(t) = −H−1
x Ht(x, t), (18)

x(0) = a, (19)

where H is a homotopic vector function, for ex-
ample, H = (1−t)(x−a)+tF(x), and Hx and Ht

are respectively the partial derivatives of H with
respect to x and t. This theory is later refined
by Kellogg, Li and Yorke (1976), Chow, Mallet-
Paret and Yorke (1978), Li and Yorke (1980), and
Li (1997). At the same time, Hirsch and Smale
(1979) also derived a continuous Newton method
governed by the following differential equation:

ẋ(t) = −B−1(x)F(x), (20)

x(0) = a. (21)

It can be seen that the ODEs in Eqs. (18) and (20)
are difficult to calculate, because they all include

an inverse matrix. Below we will develop a new
ODEs system, which is equivalent to the original
equation (16).

2 A fictitious time integration approach

2.1 Transformation into an ODEs system

First we propose the following variable transfor-
mation:

yi(t) = (1+ t)xi, i = 1, . . . ,n, (22)

and multiply Eq. (16) by a coefficient −ν �= 0:

0 = −νFi(x1, . . . ,xn). (23)

Using Eq. (22) we have

0 = −νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
. (24)

Recalling that ẏi = xi by Eq. (22), and adding it on
both the sides of the above equation we obtain

ẏi = xi −νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
. (25)

Then, by using xi = yi/(1 + t), we can change
Eq. (16) into an ODEs system:

ẏi =
yi

1+ t
−νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
. (26)

Finally, multiplying each equation by the integrat-
ing factor 1/(1 + t) and using Eq. (22) again we
obtain

ẋi =
−ν
1+ t

Fi(x1, . . . ,xn), i = 1, . . . ,n. (27)

It can be seen that this ODEs system is nonau-
tonomous and is much simpler than those in
Eqs. (18) and (20).

Furthermore, in terms of a logarithmic time scale

τ = ln(1+ t), (28)

Eq. (27) can be recast into a more elegant form:

dxi

dτ
= −νFi(x1, . . .,xn), i = 1, . . .,n. (29)

The above idea was first proposed by Liu (2008b)
to treat an inverse Sturm-Liouville problem by
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transforming an ODE into a PDE. Then, Liu and
his coworkers [Liu (2008c, 2008d); Liu, Chang,
Chang and Chen (2008)] extended this idea to de-
velop new method for estimating parameters in
the inverse vibration problems.

Eq. (22) is not the unique way to transform the
algebraic equations (16) into the ODEs. We can
adopt

yi(t) = q(t)xi, i = 1, . . . ,n, (30)

and a similar derivation leads to

ẋi =
−ν
q(t)

Fi(x1, . . .,xn), i = 1, . . .,n. (31)

The requirements on q(t) are that they be differ-
entiable and q(0) = 1. A special case is q(t) = 1
and ν = −1, and then we have

ẋi = Fi(x1, . . . ,xn). (32)

Deuflhard (2004) has called the above equation a
pseudo-transient continuation method. However,
this equation is hard to work and usually leads to
wrong solutions of Fi = 0.

From Eq. (29) we can understand that the so-
called steady state must be considered in the log-
arithmic time scale τ = ln(1 + t), because this
equation is no more a nonautonomous one as
Eq. (27) is. In the logarithmic time scale, if
the motion of xi approaches a steady state, i.e.,
dxi/dτ = 0, then the roots are reached. In this pa-
per we focus on using Eq. (27) as our tool to com-
pute the roots of algebraic equations. This is the
most simple choice of q(t) = 1+t to meet the just
mentioned requirements of q(t). However, other
choices are possible if they can provide better be-
havior than the present one.

2.2 GPS for differential equations system

As was done in Eq. (14), we may employ the Eu-
ler method for Eq. (27), and using h = 1, to obtain
an iterative method to calculate the solutions of
algebraic equations:

xk+1
i = xk

i −
ν

1+k
Fi(xk

1, . . . ,x
k
n), i = 1, . . . ,n. (33)

However, we find that this method is not so good,
because sometimes h = 1 may be too large to
cause over-flow of the values of xi.

Therefore we develop a more stable group pre-
serving scheme (GPS) given as follows. Upon let-
ting x = (x1, . . . ,xn)T, and letting f denote a vector
with its i-th component being the right-hand side
of Eq. (27) we can write Eq. (27) a vector form:

ẋ = f(x, t) =
−ν
1+ t

F(x), x ∈ R
n, t > 0, (34)

where n is the number of algebraic equations.

A GPS can preserve the internal symmetry group
of the considered ODEs system. Although we
do not know previously the symmetry group of
differential equations system, Liu (2001) has em-
bedded it into an augmented differential equations
system, which concerns with not only the evolu-
tion of state variables themselves but also the evo-
lution of the magnitude of the state variables vec-
tor. We note that

‖x‖=
√

xTx =
√

x ·x, (35)

where the dot between two n-dimensional vectors
denotes their inner product. Taking the derivatives
of both the sides of Eq. (35) with respect to t, we
have

d‖x‖
dt

=
ẋTx√
xTx

. (36)

Then, by using Eqs. (34) and (35) we can derive

d‖x‖
dt

=
fTx
‖x‖ . (37)

It is interesting that Eqs. (34) and (37) can be
combined together into a simple matrix equation:

d
dt

[
x

‖x‖
]

=

⎡
⎣ 0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦[

x
‖x‖

]
. (38)

It is obvious that the first row in Eq. (38) is the
same as the original equation (34), but the in-
clusion of the second row in Eq. (38) gives us
a Minkowskian structure of the augmented state
variables of X := (xT,‖x‖)T, which satisfies the
cone condition:

XTgX = 0, (39)
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where

g =
[

In 0n×1

01×n −1

]
(40)

is a Minkowski metric, and In is the identity ma-
trix of order n. In terms of (x,‖x‖), Eq. (39) be-
comes

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0. (41)

It follows from the definition given in Eq. (35),
and thus Eq. (39) is a natural result.

Consequently, we have an n+1-dimensional aug-
mented differential equations system:

Ẋ = AX (42)

with a constraint (39), where

A :=

⎡
⎣ 0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦ , (43)

satisfying

ATg+gA = 0, (44)

is a Lie algebra so(n,1) of the proper or-
thochronous Lorentz group SOo(n,1). This fact
prompts us to devise the GPS, whose discretized
mapping G must exactly preserve the following
properties:

GTgG = g, (45)

det G = 1, (46)

G0
0 > 0, (47)

where G0
0 is the 00-th component of G.

Although the dimension of the new system is
raised by one more, it has been shown that the
new system permits a GPS given as follows [Liu
(2001)]:

Xk+1 = G(k)Xk, (48)

where Xk denotes the numerical value of X at tk,
and G(k)∈ SOo(n,1) is the group value of G at tk.
If G(k) satisfies the properties in Eqs. (45)-(47),
then Xk satisfies the cone condition in Eq. (39).

The Lie group can be generated from A ∈ so(n,1)
by an exponential mapping,

G(k) = exp[hA(k)]

=

⎡
⎢⎣

In + (ak−1)
‖fk‖2 fkfT

k
bkfk
‖fk‖

bkfTk
‖fk‖ ak

⎤
⎥⎦ ,

(49)

where

ak := cosh

(
h‖fk‖
‖xk‖

)
, (50)

bk := sinh

(
h‖fk‖
‖xk‖

)
. (51)

Substituting Eq. (49) for G(k) into Eq. (48), we
obtain

xk+1 = xk +ηkfk, (52)

‖xk+1‖ = ak‖xk‖+
bk

‖fk‖ fk ·xk, (53)

where

ηk :=
bk‖xk‖‖fk‖+(ak −1)fk ·xk

‖fk‖2 . (54)

The group properties are preserved in this scheme
for all h > 0, and is called a group-preserving
scheme.

2.3 Runge-Kutta method

We have derived a GPS in the last section, which
is however a first-order numerical integration
scheme. In order to increase the accuracy in the
integration of Eq. (34) sometimes we may employ
the fourth-order Runge-Kutta method (RK4) by
the following process:

xk+1 = xk +
h
6
(f1 +2f2 +2f3 + f4), (55)

where

f1 = f(xk, tk),
f2 = f(xk +h/2f1, tk +h/2),
f3 = f(xk +h/2f2, tk +h/2),
f4 = f(xn +hf3, tk +h).
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2.4 Numerical procedure

Starting from an initial value of x(0) which can be
guessed in a rather free way, we employ the above
GPS or RK4 to integrate Eq. (34) from t = 0 to a
selected final time t f . In the numerical integration
process we check the convergence of xi at the k-
and k +1-steps by

n

∑
i=1

(xk+1
i −xk

i )
2 ≤ ε2, (56)

where ε is a given convergent criterion. If at a
time t0 ≤ t f the above criterion is satisfied, then
the solution of xi is obtained. In practice, if a suit-
able t f is selected we find that the numerical so-
lution is also approached very well to the true so-
lution, even the above convergent criterion is not
satisfied before the time t < t f . A suitable coef-
ficient ν introduced in Eq. (27) can increase the
stability of numerical integration, and speeds up
the rate of convergence.

In particular we would emphasize that the present
method is a new fictitious time integration method
(FTIM), which can calculate the solution very sta-
bly and effectively. Below we give numerical ex-
amples to display some advantages of the present
FTIM.

3 Numerical tests of FTIM by examples

In this section we will apply the new method of
FTIM on both single, as well as multiple nonlin-
ear algebraic equations, and sometimes compare
it with the Newton method (NM).

Before embarking the numerical tests we use the
following case to compare the FTIM and continu-
ous Newton method:

x2 −1 = 0. (57)

Of course, it has two roots x = −1 and x = 1.

From Eq. (20) we have

ẋ = −x2 −1
2x

. (58)

Similarly, from Eq. (12) we have

ẋ = −ν(x2 −1)
1+ t

. (59)

While the integral of the first equation (58) leads
to

x2 = 1+(x2
0 −1)e−t , (60)

the integral of the second equation (59) leads to

x−1
x+1

=
x0 −1
x0 +1

(1+ t)−2ν, (61)

where x0 is an initial condition.

It is obvious that Eq. (60) quickly approaches x2 =
1 when t increases. However, because x2 is not
a monotonic function, it cannot take the inverse
of Eq. (60) to find x. Therefore, by applying a
numerical integration method on Eq. (58) we need
to decide which one of

x = ±
√

1+(x2
0 −1)e−t (62)

is selected.

Conversely, from Eq. (61) we have

x → 1, t → ∞, if ν > 0, (63)

x →−1, t → ∞, if ν < 0. (64)

The above convergence speed is dependent on the
value of ν . If we choose ν > 0 the FTIM will
lead to a unique solution x = 1, no matter what x0

is selected; on the other hand, if we choose ν < 0
the FTIM will lead to a unique solution x = −1,
no matter what x0 is selected. The convergence
speed of FTIM is 2ν power of t, which is slower
than the exponential convergence of Eq. (62), but
its advantage is that we have a unique solution:
x = 1 if ν > 0, and x = −1 if ν < 0. But the
continuous NM cannot find these two solutions.

3.1 Example 1

We first consider a simple algebraic equation:

F(x) = x3 −3x2 +2x = 0. (65)

The roots are 0, 1 and 2.

First we investigate the behavior in first 20 steps
by tracing the paths in the plane of (xk,xk+1). As
shown in Fig. 1(a), starting from x =−0.5 the NM
tends to the first root of x = 0 very fast, while the
FTIM with ν = 1.5 tends to the third root x = 2
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with an approximation value of 1.9996. It is in-
teresting that when ν = 1.6 the FTIM tends to the
second root of x = 1 exactly, and when ν = 1.7
the FTIM tends to the first root of x = 0 with a
numerical value of −4.1×10−7.

(a)

(b)

NM

FTIM

FTIM

NM

FTIM

Figure 1: Comparing the iteration paths of Exam-
ple 1 by FTIM and NM.

Next we start from x = 0.55. When the FTIM with
ν = −2.5 tends to x = 1 with a high accuracy of
0.999999992 and with ν = 2 tends to x = 0 with a
value of 3.1×10−7 as shown in Fig. 1(a), the NM

goes through a large range in the plane as shown
seperately in Fig. 1(b), and then tends to the third
root of x = 2.

The above demonstration indicates that the solu-
tion by FTIM with a suitable choice of ν can be
very accurate even only through a few iterations.
Between two roots with a same starting point the
FTIM under different sign of ν tend to different
roots almost exactly.

3.2 Example 2

Then we consider a system of two algebraic equa-
tions in two-variables [Hirsch and Smale (1979)]:

F1(x,y) =x3 −3xy2 +a1(2x2 +xy)+b1y2

+c1x+a2y

=0,

(66)

F2(x,y) =3x2y−y3 −a1(4xy−y2)+b2x2 +c2

=0.

(67)

The parameters used in this test are listed in Table
1. For these problems the initial guesses are re-
spectively (x,y) = (5,5), (x,y) = (0.25,0.1) and
(x,y) = (−1,−1).

For problem 1 there are other solutions given by
(x,y) = (50.46504,−37.2634179), and (x,y) =
(36.045402,36.80750808). For the former solu-
tion the parameters we use are given by (ν ,h,ε)=
(0.1,0.0001,10−10), and the initial point is
(50,−30). Through 1341 iterations the result is
obtained. For the latter solution the parameters
are given by (ν ,h,ε) = (0.01,0.01,10−10), and
the initial point is (40,20). Through 1474 itera-
tions, the result is obtained.

For a vision of the convergent paths we also plot-
ted the orbits of (x,y) for the above three prob-
lems in Figs. 2(a), 2(b) and 2(c), respectively. In
Fig. 2(a) the left-side corresponds to the first root,
while the right-side is for the second root. It can
be seen that the first fixed point is a node, while
the second one is a focus; similarly, the third fixed
point is a focus. There appears a zig-zag of the
path for problem 2; however, it spends only 52 it-
erations to reach a highly accurate solution of the
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Table
1:

T
he

param
eters

and
results

for
E

xam
ple

2

Problem
1

Problem
2

Problem
3

(a
1 ,b

1 ,c
1 ,a

2 ,b
2 ,c

2 )
(25

,1
,2

,3
,4

,5)
(25

,−
1
,−

2
,−

3
,−

4
,−

5)
(200

,1
,2

,3
,1

,2)
(ν

,h
,ε)

(0
.1

,0
.01

,10 −
10)

(1
,0

.06
,10 −

11)
(0

.02
,0

.0001
,10 −

10)
N

o.of
Iterations

792
44

1274
(x,y)

(−
50

.3970755
,−

0
.8042426)

(0
.134212

,0
.811128)

(−
400

.0952897
,−

0
.2000316)

(F
1 ,F

2 )
(8

.45×
10 −

7,6
.67×

10 −
9)

(−
7
.77×

10 −
11,−

6
.07×

10 −
10)

(4
.26×

10 −
5,1

.06×
10 −

8)

(a)

(b)

(c)

Figure 2: Two-dimensional solution orbits of Ex-
ample 2 for three different problems.

roots with errors in the order of 10−10. The third
problem is hard to solve because there appears a
much large coefficient a1 = 200 than others. As
reported by Hsu (1988), he could not calculate the
third problem by using the homotopic algorithm
with a Gordon-Shampine integrator, the Li-Yorke
algorithm with Euler predictor and Newton cor-
rector, and the Li-Yorke algorithm with Euler pre-
dictor and quasi-Newton corrector.

Hirsch and Smale (1979) used the continuous
Newton algorithm to calculate the above three
problems. For the first problem they obtained
(x,y) = (36.0454,36.8056). However, insert-
ing it into F1 and F2 we find that (F1,F2) =
(13.315,3.675), which indicates that the result
obtained by Hirsch and Smale (1979) is not
an accurate root of Eqs. (66) and (67). For
the second problem Hirsch and Smale (1979)
obtained (x,y) = (39.0207,38.2417). Insert-
ing it into F1 and F2 we find that (F1,F2) =
(−0.339,−0.117), which indicates that the result
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obtained by Hirsch and Smale (1979) is not ac-
curate. Finally, we check the third problem, of
which Hirsch and Smale (1979) obtained (x,y) =
(0.5115,197.936). Inserting it into F1 and F2 we
find that (F1,F2) = (7.477,26.964), which indi-
cates again that the result obtained by Hirsch and
Smale (1979) is not an accurate root of Eqs. (66)
and (67).

For problem 1 we have found three roots as shown
above. It is interesting to investigate the attract-
ing set of each fixed point in the plane of ini-
tial conditions of (x(0),y(0)). Starting from any
initial condition in the domain of −60 < x(0) <
60, − 40 < y(0) < 40 we apply the FTIM un-
der a converegnt criterion of ε = 10−7, and with
ν = 0.01 and h = 0.001 to find its terminal lo-
cation, and determines which attracting set it be-
longs by a small disk with a ceneter on each fixed
point. The most points in the left-side of Fig. 3
as shown by the diamonds are attracted by the
fixed point (−50.3971,−0.8042). At the right-
side there are two fixed points (50.465,−37.263)
and (36.045,36.808). The solid circular points as
shown in Fig. 3 are the attracting set of the for-
mer one, while the square points are the attracting
set of the latter one. This result reveals that the
dynamics of the FTIM is rather simple, and it is
convenient for us to choose suitable initial con-
ditions to find the different roots. As we know
the dynamics of Newton method is very complex,
which usually makes the selection of initial con-
dition being sensitive and difficult.

3.3 Example 3

Then we study the following system of two alge-
braic equations [Spedicato and Hunag (1997)]:

F1(x,y) = x−y2 = 0, (68)

F2(x,y) = (y−1)2(y−2)2 +(x−y2)2 = 0. (69)

The two real roots are (x,y) = (1,1) and (x,y) =
(4,2).

In this test of the FTIM we study the attracting
sets of these two fixed points. All nodes of a reg-
ular grid of 50 by 50 points with side length 5
in the region of [0,5]× [0,5] are classified accor-
ing to which fixed point is tended. In Fig. 4 the

x (0)

y(
0)

Figure 3: The attracting sets for three different
fixed points of problem 1 in Example 2.

square points are those attracted by the the fixed
point (x,y) = (1,1), while the triangular points
are those attracted by the the fixed point (x,y) =
(4,2). Under the convergent criterion ε = 10−4,
some points in the blank part of Fig. 4 are not con-
vergent to any of the above fixed points.

x (0)

y(
0)

Figure 4: The attracting sets for two different
fixed points of Example 3.
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3.4 Example 4

We consider a system of three algebraic equations
in three-variables:

F1(x,y, z) = x+y+ z−3 = 0, (70)

F2(x,y, z) = xy+2y2 +4z2 −7 = 0, (71)

F3(x,y, z) = x8 +y4 + z9 −3 = 0. (72)

Obviously x = y = z = 1 is the solution.

For this case we use a large ν = 10 to speed
up the rate of convergence. In order to in-
crease the accuracy we employ the RK4 method
by using a small time stepsize h = 0.01, and
a stringent convergent criterion with ε = 10−9

is used. Starting from an initial value of
(x,y, z) = (0.5,0.6,0.6), through 1264 iterations
the orbit converges to the solution (x,y, z) =
(1.000000037,1.00000004,0.999999955), which
is very near the true solution. The present method
converges much faster than the above mentioned
homotopic methods with the computational time
smaller than 0.1 sec by using a PC586.

Because we do not use the steady-state concept
in our formulation of the ODEs in Eq. (34), the
final time spent by the present approach is not too
long. For example, in this case the final time is
t f = 1264×0.01 = 12.64.

3.5 Example 5

Now we consider a test example given by Roose,
Kulla, Lomb and Meressoo (1990):

Fi = 3xi(xi+1 −2xi +xi−1)+
1
4
(xi+1 −xi−1)2,

(73)

x0 = 0, xn+1 = 20. (74)

Initial value is fixed to be xi = 10, i = 1, . . .,n as
that used by Spedicato and Huang (1997).

For this case we use a large ν = −100 to speed
up the rate of convergence, which needs 2381 it-
erations with a time stepsize h = 0.0002 for the
RK4 method. When the convergent criterion is
given by 10−15, the residual error (∑n

i=1 F2
i )1/2 of

numerical solution is about 1.72×10−13. This is
equivalent to spending a time of 2381×0.0002 =
0.4762 that the dynamical system of Eq. (34)

reaches the fixed point, which is recorded in Table
2.

As compared with the methods reported by Spedi-
cato and Huang (1997) for the Newton-like meth-
ods, the present approach is more accurate and
time saving, where the computational time is
smaller than 0.1 sec by using a PC586. For n = 50
the numerical solutions are plotted in Fig. 5(a),
where the error of each Fk is shown in Fig. 5(b).
The residual error is about 5.83×10−12.

k

xk

Er
ro

r o
f 
F

k

k

(a)

(b)

Figure 5: For Example 5 with n = 50 the numeri-
cal solutions are plotted.

3.6 Example 6

In this example we apply the FTIM to solve the
following boundary value problem [Liu (2006)]:

u′′ =
3
2

u2, (75)

u(0) = 4, u(1) = 1. (76)

The exact solution is

u(x) =
4

(1+x)2 . (77)
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Table 2: The numerical solutions of Example 5 with n = 10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

3.083 5.383 7.395 9.240 10.969 12.612 14.186 15.705 17.176 18.606

By introducing a finite difference discretization of
u at the grid points we can obtain

Fi =
1

(Δx)2 (ui+1−2ui +ui−1)− 3
2

u2
i , (78)

u0 = 4, un+1 = 1, (79)

where Δx = 1/(n+1) is the grid length.

Under the following parameters n = 49, h =
0.001, ν = −0.3 and ε = 10−10 we compute the
roots of the above system, and compare them with
the exact solutions in Fig. 6(a), which can be seen
that the error as shown in Fig. 6(b) is very small
in the order of 10−4.

x

u

x

(a)

(b)

Numerical

Exact

Figure 6: Applying the FTIM to a boundary value
problem: (a) comparing numerical and exact so-
lutions, and (b) displaying the numerical error.

3.7 Example 7

In this example we apply the FTIM to solve the
following boundary value problem of nonlinear
elliptic equation [Atluri and Zhu (1998a, 1998b);
Zhu, Zhang and Atluri (1998, 1999)]:

Δu(x,y)+ω2u(x,y)+εu3(x,y) = p(x,y). (80)

The exact solution is

u(x,y) =
−5
6

(x3 +y3)+3(x2y+xy2). (81)

The exact p can be obtained by inserting the above
u into Eq. (80).

By introducing a finite difference discretization of
u at the grid points we can obtain

Fi, j =
1

(Δx)2 (ui+1, j −2ui, j +ui−1, j)

+
1

(Δy)2 (ui, j+1 −2ui, j +ui, j−1)

+ω2ui, j +εu3
i, j − pi, j , (82)

where Δx = 1/(n + 1) and Δy = 1/(n + 1) are
grid lengths. The boundary constraints can be ob-
tained from the exact solution in Eq. (81).

Under the following parameters n = 29×29, h =
0.0005, ν = −2, ε = 10−5, ω = 1 and ε = 0.001
we compute the roots of the above system, and
compare them with the exact solutions. Starting
from an initial value of ui, j = −0.1, the FTIM
converges within 5488 steps. At the point y0 =
0.75 the error of u was plotted with respect to x in
Fig. 7 by the dashed line, of which the maximum
error is about 5.4×10−6. At the point x0 = 0.5 the
error of u was plotted with respect to y in Fig. 7
by the solid line, of which the maximum error is
about 4.4×10−6. For this highly nonlinear prob-
lem the FTIM is effective and gives very small
error of the numerical solution.

4 Conclusions

Since the work of Newton, iterative algorithms
were developed by many researchers, extending
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x y

Error of u(x , y0)

Error of u(x 0, y)

Figure 7: Applying the FTIM to a nonlinear el-
liptic boundary value problem, the errors are very
small.

to continuous type by introducing an extra ad hoc
artificial time. However, those ODEs are not in-
timately related to the original algebraic equa-
tions. The present paper very simply transforms
the original nonlinear algebraic equations into an
evolutionary system of equations by introducing a
fictitious time, and had adding a coefficient to en-
hance the stability of numerical integration of the
resulting ODEs and to speed up the convergence
to the true roots. The main idea presented here
is that the resulting system of ODEs is mathe-
matically equivalent to the original equations, and
no approximation is made. Hence, the present
FTIM can work very effectively and accurately
for the solution of nonlinear algebraic equations.
Because no inverse of a matrix is required, the
present method is very time efficient. Seven nu-
merical examples were worked out, including the
analysis of attracting sets and convergent paths.
Some are compared with exact solutions revealing
that high accuracy can be achieved by the FTIM.
The new method is also applicable to the solutions
of boundary value problems of elliptic type equa-
tion by discretizing them into high-dimensional
nonlinear algebraic equations, revealing a high
performance than other solvers.
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