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A Meshless Local Natural Neighbour Interpolation Method Applied to
Structural Dynamic Analysis

Y. H. Liu1,2, S. S. Chen1, J. Li1 and Z. Z. Cen1

Abstract: A novel meshless method for struc-
tural dynamic analysis is presented and discussed
in this paper. It is called meshless local natural
neighbour interpolation (MLNNI) method, which
uses a meshless spatial approximation based only
on nodes. The MLNNI is derived from the gen-
eralized meshless local Petrov-Galerkin (MLPG)
method as a special case. Local weak forms
are developed using weighted residual method lo-
cally from the dynamic partial differential equa-
tion. In the construction of trial functions, the nat-
ural neighbour interpolation (NNI) is employed
to simplify the treatment of the essential bound-
ary conditions. The domain integration is eval-
uated over included Delaunay triangles in each
polygonal subdomain. The validity and strength
of the proposed method for free and forced vibra-
tion analyses are demonstrated throughout differ-
ent numerical applications. It is proven from the
results that the proposed method is quite easy to
implement, very accurate and highly efficient for
both free vibration analysis and forced vibration
analysis.

Keyword: Meshless method, MLPG, Natural
neighbour interpolation, Free/forced vibration
analysis, Newmark method

1 Introduction

Structural dynamic analysis is one of the main
required tasks for an engineer to accomplish in
the engineering design. These dynamic problems
are classically described by a linear partial differ-
ential equation associated with a set of bound-

1 Department of Engineering Mechanics, School of
Aerospace, Tsinghua University, Beijing 100084, P. R.
China

2 Corresponding author. Tel: +86-10-62773751; fax: +86-
10-62781824; Email: yhliu@mail.tsinghua.edu.cn

ary conditions and initial conditions. Analyti-
cal solutions to these boundary value and initial
value problems are usually very limited. In addi-
tion, their derivations generally need simplifica-
tions and the resultant accuracy is therefore sac-
rificed. Therefore, the dynamic analysis of solids
and structures can practically be treated only by
numerical methods. Among the various numeri-
cal methods, the finite element method (FEM) has
been successfully used in most cases. However in
the case of complex geometries the generation of
highly distorted meshes is common. The distor-
tion of meshes causes low quality shape functions
which can affect the performance of the method.

In recent years, more and more attention is paid
to the development and application of meshless
methods. In principle, meshless methods rely
only on a group of scattered nodes in the prob-
lem domain, which can not only alleviate the bur-
densome to generate mesh, but also describe more
accurately the irregular geometries. Some mesh-
less methods are based on the global weak forms,
such as the smooth particle hydrodynamics (SPH)
by Gingold and Moraghan (1977), the element-
free Galerkin (EFG) method by Belytschko et al.
(1994) and the reproducing kernel particle method
(RKPM) by Liu et al. (1995). They still re-
quire a mesh of background cells for integration
in computing the system matrices, and so they are
“meshless” only in terms of the interpolation of
the field or boundary variables. Pursuit of truly
meshless methods therefore continues. The mesh-
less local Petrov-Galerkin (MLPG) method orig-
inated by Atluri and Zhu (1998) starts from a lo-
cal weak form and satisfies governing equation
node-by-node in a local way of making weighted
residual zero over a subdomain. Integration of the
weak form is performed in local subdomains with
simple geometrical shapes and therefore no ele-
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ments or background cells are required either for
interpolation purposes or for integration purposes.
By now, the MLPG method has been success-
fully applied in analyzing 3D problems in elasto-
statics [Han and Atluri (2004)], nonlinear prob-
lems with large deformations and rotations [Han,
Rajendran and Atluri (2005)], high-speed im-
pact, penetration and perforation problems [Han
et al. (2006)], magnetic diffusion [Johnson and
Owen (2007)], limit analysis [Chen, Liu and Cen
(2008)], etc. Furthermore, the MLPG method en-
ables us to construct various meshless approaches
easily by different choices and combinations of
the trial and test functions [Atluri, Kim and Cho
(1999)]. Up to now, many meshless approaches
have been developed based on the concept of
MLPG [De and Bathe (2000), Liu and Gu (2001),
Barry (2004), Xiao (2004), Li, Wang and Lam
(2004), Cai and Zhu (2004), Wang, Zhou and
Shan (2005)]. Among these, the meshless local
natural neighbour interpolation (MLNNI) method
[Cai and Zhu (2004)] shows great promise since
it can not only maintain prominent features of the
MLPG method but also employ the advantage of
easy imposition of essential boundary conditions
of the natural neighbour interpolation (NNI).

The NNI is a multivariable interpolation scheme
based on Voronoi diagram of scattered nodes.
This interpolation scheme has been successfully
applied in natural element method [Sukumar,
Moran and Belytschko (1998)] and natural neigh-
bour Galerkin method [Sukumar, Moran, Se-
menov and Belikov (2001)]. The NNI function
passes exactly through the nodal values and the
essential boundary conditions can be directly im-
posed on the nodes. The NNI also exhibits other
distinct and attractive features, such as optimum
spatial adjacency, desirable smoothness and well-
defined approximation without uncertain user-
defined parameters. Furthermore, the computa-
tion of the shape functions with this method is
very simple and needs much less numerical effort
than in the moving least squares approximation
[Most (2007)]. Consequently, the NNI appears to
be a good choice for constructing trial functions
in the MLNNI.

In this paper, attention will be devoted to the

MLNNI formulations for free and forced vibra-
tion analyses of two-dimensional solids and struc-
tures. Local weak forms are developed using
weighted residual method locally from the dy-
namic partial differential equation. The natural
neighbour interpolation is employed to construct
meshless shape functions for a set of randomly
distributed nodes, and the three-node triangular
FEM shape functions are used as test functions.
The Delaunay tessellation is used to construct the
local subdomains, which have polygonal shapes
and are coincident with the supports of nodal test
functions. The shape functions formed satisfy
the delta function property, so the imposition of
the essential boundary conditions is easy. Fre-
quencies and eigenmodes of free vibration are ob-
tained by solving an eigenvalue equation and the
forced vibration system equation is solved numer-
ically by the Newmark method as a time stepping
method. Finally, several numerical problems are
studied to demonstrate the validity and accuracy
of the proposed method.

2 Natural Neighbour Interpolation

In order to reduce the computational cost and sim-
plify the imposition of the essential boundary con-
ditions, the natural neighbour interpolation (NNI)
is employed for constructing trial functions in the
present study. It relies on the concepts of Voronoi
diagram of the given cloud of nodes and its dual
Delaunay tessellation. Each Voronoi cell repre-
sents the space closet to a given node. Thus,
a first-order Voronoi diagram for a set of nodes
N =

{
x1, x2, x3, · · · , xM

} ∈ R2 is a subdi-
vision of the space into sub-regions TI such that
any point x in TI is closer to node xI than to
any other node in the domain [Green and Sibson
(1978)],

TI = {x ∈ R2 : d(x,xI) < d(x,xJ) ∀J �= I} (1)

where d(x,xI) is the distance between x and xI .
The Delaunay triangulation is the geometrical
dual of the Voronoi diagram and it is constructed
by connecting the nodes whose Voronoi cells have
common boundaries. For the definition of Sibson
interpolation it is necessary to previously intro-
duce the concept of second-order Voronoi cell. It
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is defined as the locus of the points that have the
node xI as the closet node and the node xJ as the
second closet node:

TIJ = {x ∈ R2 : d(x,xI) < d(x,xJ) < d(x,xK)
∀J �= I �= K} (2)

TIJ is non-empty only if xI and xJ are natural
neighbours. The natural neighbour shape func-
tions of x with respect to the node xI are defined
in two dimensions as the ratio of the area of TxI

and Tx

φI(x) = AI(x)/A(x) (3)

where

A(x) =
n

∑
J=1

AJ(x) (4)

and n is the number of natural neighbours of the
point x. Referring to Figure 1, the shape function
φ1(x) may be represented as

φ1(x) = Aab f e/Aabcd (5)

b

c
fa

e x

d

Figure 1: 1st-order and 2nd-order Voronoi cells
about x

From this definition, and in the context of two-
dimensional approximations, the unknown dis-
placement field u(x) is approximated in the form

uh(x) =
n

∑
I=1

φI(x)uI (6)

where uI is the vector of nodal displacements of
the n natural neighbours of the point x.

It is straightforward to prove that the NNI shape
functions form the properties of positivity, inter-
polation, and partition of unity [Sukumar, Moran
and Belytschko (1998)]:

0 ≤ φI(x)≤ 1, φI(xJ) = δIJ ,
n

∑
I = 1

φI(x) = 1 (7)

The NNI shape functions also satisfy the local co-
ordinate property, namely

x =
n

∑
I=1

φI(x)xI (8)

which, in conjunction with Eq. (7) imply that the
NNI spans the space of linear polynomials (lin-
ear completeness). Furthermore, the NNI shape
functions have C∞ continuity everywhere, except
at the nodes where they areC0. Importantly, the
NNI shape functions have delta function property
while the shape functions derived from the mov-
ing least squares approximation lack this property.
Hence, the advantage of the NNI is attractive for
practical applications.

3 Formulation of the MLNNI method for dy-
namic simulation

3.1 Basic equations of elastodynamics

In two-dimensional problems with small displace-
ments in the domain Ω bounded by Γu and Γt , the
governing equation for structural dynamics is:

σi j, j +bi = ρ üi +cu̇i in Ω (9)

where ρ is the mass density, c is the damping co-
efficient, üi = ∂ 2ui/∂ t2 is the acceleration, u̇i =
∂ui/∂ t is the velocity, σi j is the stress tensor cor-
responding to the displacement ui, bi is the body
force, and ( ), j denotes ∂/∂x j. The correspond-
ing boundary and initial conditions are given as
follows:

ui = ui on the essential boundary Γu, (10a)

σi jn j = t i on the natural boundary Γt , (10b)

u(x, t0) = u0(x), displacement initial condition,
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(10c)

u̇(x, t0) = v0(x), velocity initial condition (10d)

where ui, ti, u0 and v0 denote the prescribed dis-
placements, tractions, initial displacements and
velocities, respectively, and n j is the unit outward
normal vector to the boundary Γ.

3.2 Free vibration

When bi and c in Eq. (9) are set equal to zero, the
governing equation for no damping free vibration
can be written as

ρ üi −σi j, j = 0. (11)

The boundary conditions are usually the same
form of Eq. (10a) and Eq. (10b), but the traction
t i = 0. For the free vibration problems with the
natural circle frequency ω , u(x, t) can be written
as follows:

u(x, t) = u(x) sin(ωt +ϕ) (12)

Substituting Eq. (12) into Eq. (11) leads to the
following differential equation for free vibration
of an isotropic homogeneous elastic body:

σi j, j +ω2ρui = 0 (13)

In the MLNNI method a weak form over the lo-
cal subdomains such as Ωs is constructed. The
local subdomain is a small region taken for each
node inside the global domain. They can be over-
lapping each other, and cover the whole global
domainΩ. Because the NNI shape functions have
the delta function property, the essential bound-
ary conditions can be imposed directly. Using the
local weighted residual technique, the local weak
form of Eq. (13) can be written as

∫
Ωs

vi(σi j, j +ω2ρui)dΩ = 0, (14)

where vi is the test function.

Using the relationship

viσi j, j = (viσi j), j −vi, jσi j (15)

and the divergence theorem in Eq. (14) leads to

∫
Γs

viσi jn jdΓ−
∫

Ωs

(vi, jσi j −viω2ρui)dΩ

= 0. (16)

The support subdomain Ωs of node xI is a do-
main in which vi(x) �= 0. When there is an in-
tersection between the local boundary Γs and the
global boundary Γ, the boundary Γs is usually
composed of three parts: the internal boundary
ΓsI , the boundaries Γsu and Γst over which the es-
sential and natural boundary conditions are speci-
fied. If there is no intersection between Γs and the
global boundary Γ, ΓsI = Γs. Imposing the natural
boundary condition and noticing that σi jn j = ti,
Eq. (16) can be rewritten as

∫
ΓsI

vitidΓ+
∫

Γsu

vitidΓ+
∫

Γst

vitidΓ

−
∫

Ωs

(vi, jσi j −viω2ρui)dΩ = 0. (17)

In the present analysis of free vibration, the in-
tegrals over Γst vanish for all nodes because of
t i = 0 on Γt . Therefore, Eq. (17) can be simpli-
fied as

∫
ΓsI

vitidΓ+
∫

Γsu

vitidΓ

−
∫

Ωs

(vi, jσi j −viω2ρui)dΩ = 0 (18)

In the MLNNI method, as trial functions are con-
structed by the NNI, which is based on the Delau-
nay tessellations, it is natural to construct polyg-
onal subdomain Ωs using the Delaunay tessella-
tions. Therefore the polygonal subdomain Ωs cor-
responding to node xI is constructed by collect-
ing all the surrounding Delaunay triangles TiI with
node xI being their common vertices, as shown
in Figure 2. By choosing the test functions vi to
be the three-node triangular FEM shape functions
NI in each Delaunay triangle TiI belonging to the
subdomain Ωs centered at node xI, we obtain the
following local weak form:∫

Γsu

vitidΓ−
∫

Ωs

(vi, jσi j −viω2ρui)dΩ = 0 (19)
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Figure 2: Local polygonal subdomain and bound-
ary for node I
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Figure 3: Essential boundary condition Γ over
subdomain Ωs

It should be noted that the integrals over Γsu in
Eq. (19) can be divided into two cases as shown
in Figure 3. For Figure 3a, the test functions NI

are equal to zero over the local prescribed bound-
ary Γsu, and the integrals over Γsu are also equal to
zero; For Figure 3b, although neither the reaction
force ti nor the test function NI is zero, the corre-
sponding stiffness item will vanish because of the
restriction of prescribed displacements over Γsu.
Accordingly, Eq. (19) can be simplified as∫

Ωs

(vi, jσi j −viω2ρui)dΩ = 0 (20)

Substitution of Eq. (6) into the weak form (20) for
all nodes leads to the following discretized system
equation

(K−ω2M)u = 0, (21)

where u is the eigenvector, K and M are the stiff-
ness and mass matrices, respectively. They are

derived in the following forms

KIJ =
M

∑
i=1

∫
TiI

VT
I DBJdΩ (21a)

MIJ =
M

∑
i=1

∫
TiI

ρNIΦΦΦJdΩ (21b)

where M is the total number of Delaunay triangles
TiI in the subdomain Ωs centered at node xI , and
other matrices are given as follows:

D =
E

1−v2

⎡
⎣1 v 0

v 1 0
0 0 1−v

2

⎤
⎦ for plane stress, (22a)

VI =

⎡
⎣NI,x 0

0 NI,y

NI,y NI,x

⎤
⎦ , (22b)

BJ =

⎡
⎣φI,x 0

0 φI,y

φI,y φI,x

⎤
⎦ , (22c)

ΦΦΦJ =
[

φJ 0
0 φJ

]
. (22d)

where E and v are the Young’s modulus and Pois-
son’s ratio, respectively.

Thus, the frequencies and modes of the free vibra-
tion can be computed by solving a linear eigen-
value problem Eq. (21).

3.3 Forced vibration

The governing equation, boundary and initial con-
ditions for the forced vibration are presented in
Eqs. (9) and (10a)-(10d). A local weak form of
the partial differential Eq. (9), over a local do-
main Ωs bounded by Γs, can be obtained using
the local weighted residual technique∫

Ωs

vi(σi j, j +bi −ρ üi −cu̇i)dΩ = 0, (23)

Integrating the first term on the left-hand side of
Eq. (23) by parts and imposing the natural bound-
ary condition (10b), we have∫

Ωs

(viρ üi +vicu̇i +vi, jσi j)dΩ−
∫

ΓsI

vitidΓ

−
∫

Γsu

vitidΓ

=
∫

Γst

vitidΓ+
∫

Ωs

vibidΩ. (24)
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After some manipulations as described in Section
3.1, Eq. (24) can be simplified as

∫
Ωs

(viρ üi +vicu̇i +vi, jσi j)dΩ

=
∫

Γst

vitidΓ+
∫

Ωs

vibidΩ. (25)

In the discretization of the local weak form of the
forced vibration, approximation function uh(x, t),
as a function of both space and time, is discretized
only in the space. Thus, Eq. (6) can be written as

uh(x, t) =
n

∑
I=1

φI(x)uI(t) (26)

Substitution of Eq. (26) into the weak form (25)
for all nodes leads to the following discretized
system equation

Mü(t)+Cu̇(t)+Ku(t) = f(t) (27)

where M, C, K, and f are the matrices of mass,
damping, stiffness and force, respectively. They
are the following forms

MIJ =
M

∑
i=1

∫
TiI

ρNIΦΦΦJdΩ (28a)

CIJ =
M

∑
i=1

∫
TiI

cNIΦΦΦJdΩ (28b)

KIJ =
M

∑
i=1

∫
TiI

VT
I DBJdΩ (28c)

fI(t) =
∫

Γst

NIt(t)dΓ+
M

∑
i=1

∫
TiI

NIb(t)dΩ (28d)

where the matrices of D, VI , BJ and ΦΦΦJ are de-
fined in Eqs. (22a) ∼ (22d).

There are many time integration procedures for
the solution of the equilibrium Eq. (27). In the
present work we have used the Newmark method
[Petyt (1990)] which is a generalization of the lin-
ear acceleration method. The Newmark method is
an implicit time integration method and can give
good results with respect to stability and accuracy.
In this method the following assumptions are used

u̇t+Δt = u̇t +[(1−δ )üt +δ üt+Δt ]Δt (29a)

ut+Δt = ut + u̇tΔt +[(
1
2
−α)üt +α üt+Δt ]Δt2

(29b)

where α and δ are the parameters that can be de-
termined to obtain integration stability and accu-
racy. The Newmark method is unconditionally
stable provided

δ ≥ 0.5 and α ≥ 0.25(0.5+δ )2 (30)

In addition to (28a) and (28b), for solution of
the displacements, velocities and accelerations at
time (t + Δt), the equilibrium Eq. (27) at time
(t +Δt) is also considered:

Müt+Δt +Cu̇t+Δt +Kut+Δt = ft+Δt (31)

Solving from Eq. (28b) for üt+Δt in term of ut+Δt

and then substituting for üt+Δt into Eq. (28a), we
obtain equations for üt+Δt and u̇t+Δt , each in terms
of the unknown displacements ut+Δt only. These
two relations for u̇t+Δt and üt+Δt are substituted
into Eq. (30) to solve for ut+Δt , after which, using
Eq. (28a) and Eq. (28b), üt+Δt and u̇t+Δt can also
be calculated.

4 Numerical examples

This section presents the numerical studies deal-
ing with the applications of the present MLNNI
method for free and forced vibration analyses un-
der plane stress conditions. Except specially men-
tioned, three Gaussian points are used in each De-
launay triangular region for domain integrals. The
international standard unit system, namely, mass
in kilograms, length in metres and time in sec-
onds, is used for all the examples and thus no units
are indicated with all the physical entities.

4.1 A Variable Cross-Section Beam

In the first example, a cantilever beam with vari-
able cross-section shown in Figure 4 is analyzed.
This problem has been studied using MLPG
method by Gu and Liu (2001). The numerical pa-
rameters taken in the computation are: the length
L = 10m, the height h(0) = 5,h(L) = 3, the thick-
ness t = 1.0, Young’s modulus E = 3.0 × 107,
Poisson’s ratio v = 0.3 and mass density ρ = 1.0.
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The node discretization employed here is shown
in Figure 5. To study the influence of number of
Gaussian point on accuracy, six Gaussian points,
as well as three Gaussian points, are used for
domain integrals in each Delaunay triangular re-
gion. In Table 1, the MLNNI results are com-
pared with those obtained by Gu and Liu (2001)
and by FEM commercial software ABAQUS with
very fine mesh (6282 DOF). From this table, one
can observe that the computational results of the
present MLNNI method are in good agreement
with those obtained using MLPG and FEM meth-
ods. It can also be observed that the relative errors
are almost on the same level when domain inte-
grals are evaluated by using three and six Gaus-
sian points in each Delaunay triangular region re-
spectively. For the consideration of computational
inefficiency, we recommend using three Gaus-
sian points in each Delaunay triangular region
for numerical integration in the present MLNNI
method. The first four eigenmodes, obtained with
the present MLNNI method using six Gaussian
points in each Delaunay triangular region are plot-
ted in Figure 6. Comparing with results obtained
by the FEM commercial software ABAQUS, al-
most identical results of eigenmodes are obtained.

Γ Ω

Γ Γ

x

y

( )h x

10L =

Γ

Γ

Ω

Ω

Γ

Γ
Γ

Figure 4: A variable cross-section beam

4.2 A Shear Wall With Four openings

The second numerical example regards a shear
wall with four openings fixed at the two bottom
edges, as shown in Figure 7. The free vibra-
tion is firstly studied here with Young’s modu-
lus E = 10000, Poisson’s ratio v = 0.2, thickness

Figure 5: Node distribution for the variable cross-
section beam

      Mode 1                            Mode 2 

      Mode 3                            Mode 4 

Figure 6: Eigenmodes for the variable cross-
section beam by the MLNNI method

t = 1 and mass density ρ = 1. The free vibration
of this shear wall was also analyzed by bound-
ary element method [Brebbia, Telles and Wro-
bel (1984)] and meshless local Petrov-Galerkin
method (MLPG) [Gu and Liu (2001)]. Both a reg-
ular node distribution and an irregular node distri-
bution shown in Figure 8 are employed. Natural
frequencies of the first eight modes are calculated
by the present MLNNI method and listed in Ta-
ble 2. It is evident that the results from the regu-
lar and irregular node distribution almost coincide
with each other, and the results from both node
distributions agree very well with those obtained
by other methods.

The forced vibration is also studied here for this
shear wall. The shear wall is subjected to a
uniformly-distributed traction P in the form of a
ramped wind load at the left face, as shown in
Figure 7. This forced vibration problem has the
same Young’s modulus, Poisson’s ratio, thickness
and mass density as the free vibration problem of
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Table 1: Natural frequencies of a variable cross-section beam

Mode 1 2 3 4 5
MLNNI (3 Gaussian points) 262.17 922.59 952.34 1867.78 2588.98
MLNNI (6 Gaussian points) 262.05 921.38 952.32 1863.72 2588.16
MLPG (Gu and Liu, 2001) 263.21 923.03 953.45 1855.14 2589.78
FEM (6282 DOF) 261.58 917.66 951.97 1852.28 2584.46

Table 2: Natural frequencies of a shear wall

Mode MLNNI (regular) MLNNI (irregular) MLPG (Gu and Liu,2001) BEM (Brebbia et al., 1984)
1 2.071 2.070 2.069 2.079
2 7.105 7.105 7.154 7.181
3 7.625 7.627 7.742 7.644
4 11.923 11.936 12.163 11.833
5 15.395 15.436 15.587 15.947
6 18.394 18.422 18.731 18.644
7 19.942 19.956 20.573 20.268
8 22.307 22.329 23.081 22.765

3.0 
3.0 

4.8 

3.0 3.0 3.0 3.01.8 1.8 1.8 1.8

P

t

1

0.1
W

ind loading 

P
A

Figure 7: Geometry and loading of a shear wall
with four openings

this example. The time step used in Newmark
method is Δt = 1×10−3 and damping coefficient
c = 0 is used. The results in terms of the history
of the horizontal displacement of point A (5.4,
19.2) are compared with those obtained by the fi-
nite element software ABAQUS/Explicit and are
given in Figure 9. The results corresponding to
both the regular and irregular node distribution
shown in Figure 8 are in good agreement with
each other and with those of the finite element
software ABAQUS. It can be easily found that
the present MLNNI method works well for both

(b)(a)

Figure 8: Node discretization for a shear wall
with four openings: (a) regularly distributed 559
nodes; (b) irregularly distributed 559 nodes.

free vibration analysis and forced vibration analy-
sis. In addition, the numerical results also demon-
strate that the irregular node distribution does not
affect much the numerical accuracy in the present
MLNNI method.

4.3 A Cantilever Beam

The forced vibration of a cantilever beam as
shown in Figure 10 is modeled as the third exam-
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der the ramped wind loading
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Figure 10: A cantilever beam for forced vibration
and transient loading

ple. The numerical parameters taken in the com-
putation are length L = 48, height D = 12, thick-
ness t = 1.0, Young’s modulus E = 3.0 × 107,
Poisson’s ratio v = 0.3, and mass density ρ = 1.0.
The beam is subjected to a transient parabolic
traction at the free end, P = 1000g(t). g(t) is the
function of time and is given in the following form

g(t) =

{
1− t, 0 ≤ t ≤ 1

0, t > 1
(32)

Figure 11: Node distribution for a cantilever beam

As shown in Figure 11, a regular node distribution
with 825 nodes is employed here. The time step
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Figure 12: Vertical displacement at point A with-
out damping under transient loading
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Figure 13: Vertical displacement at point A with
damping under transient loading

used in Newmark method is Δt = 5×10−3. When
the damping is neglected (c = 0), the computa-
tional results for the vertical displacement history
at point A (48.0, 6.0) using the present MLNNI
are graphed in Figure 12. For comparison, the
results obtained by the finite element software,
ABAQUS/Explicit, for the same point are also
plotted in the same graph. The results are almost
identical which proves the validity of the present
method. The computational results with damping
c = 0.5 are presented in Figure 13. One can ob-
serve from Figure 13 that the response is declined
with time because of damping.
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4.4 A Perforated Tension Strip

The last example is a perforated strip in axial ten-
sion as shown in Figure 14. The strip is subjected
to a Heaviside tension step load with initial value
P = 7.5 × 107. The material properties of the
strip are: Young’s modulus E = 2.1×1011, Pois-
son’s ratio v = 0.3, mass density ρ = 7.85×103,
and damping coefficient c = 0. This forced vi-
bration problem has been studied using the dual
reciprocity BEM by Kontoni and Beskos (1993).
As can be seen from Figure 15, only the upper
right quadrant of the strip is modeled due to the
symmetry. Symmetry conditions are imposed on
the left and bottom edges, and the inner bound-
ary of the hole is traction free. The time step
used in the Newmark time integration scheme is
Δt = 4×10−7. Figures 16 and 17 depict the ver-
tical displacement history of point A (0.00, 0.05)
and the horizontal displacement history of point
B (0.05, 0.00) respectively. Also shown in these
Figures are the computational results obtained by
the finite element software, ABAQUS/Explicit. It
is evident that the results obtained by the present
method are in very good agreement with those
obtained using ABAQUS. Comparing the results
here with those reported by Kontoni and Beskos
(1993) also confirms the effectiveness and accu-
racy of the developed MLNNI method for forced
vibration analysis.
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Figure 14: Geometry and loading of a perforated
tension strip

5 Conclusions

A meshless local natural neighbour interpolation
(MLNNI) method has been developed for free
and forced vibration analyses of two dimensional

Figure 15: Node discretization for a perforated
tension strip
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Figure 16: Vertical displacement at point A under
the Heaviside loading
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Figure 17: Vertical displacement at point B under
the Heaviside loading

structures in this paper. This is an attempt to
use the natural neighbour interpolation (NNI) in
the generalized meshless local Petrov-Galerkin
(MLPG) method. The local weak form of the dy-
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namic partial differential equations is generated
by using the local weighted residual method. The
NNI and the three-node triangular FEM shape
function are chosen differently as trial function
and test function. Since the shape functions so
formulated possess delta function property, the
essential boundary conditions can be easily im-
plemented. By virtue of the Delaunay tessel-
lation, the construction of local subdomains is
very simple for all nodes and domain integrals
can be easily evaluated over included Delaunay
triangles in each polygonal subdomain. Exten-
sive structural dynamic analyses of four exam-
ples have been successfully carried out using the
present MLNNI method. The fact that these ex-
amples have quite different dynamic behaviour,
geometries, material properties, boundary condi-
tions, demonstrates the high generality and wide
applicability of the MLNNI method for structural
dynamic analysis. In the next future a special
attention will be devoted to develop the present
MLNNI method for transient dynamic analysis of
elastoplastic structures. This work is currently un-
derway.
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