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A Meshless Approach to Capturing Moving Interfaces in Passive Transport
Problems

L. Mai-Cao1 and T. Tran-Cong2

Abstract: This paper presents a new meshless
numerical approach to solving a special class of
moving interface problems known as the passive
transport where an ambient flow characterized by
its velocity field causes the interfaces to move and
deform without any influences back on the flow.
In the present approach, the moving interface is
captured by the level set method at all time as
the zero contour of a smooth function known as
the level set function whereas one of the two new
meshless schemes, namely the SL-IRBFN based
on the semi-Lagrangian method and the Taylor-
IRBFN scheme based on Taylor series expansion,
is used to solve a convective transport equation
for advancing the level set function in time. In
addition, a mass correction is introduced after the
reinitialization step to ensure mass conservation.
Some basic tests are preformed to verify the accu-
racy and stability of the new numerical schemes
which are then applied to simulate bubbles mov-
ing, stretching and merging in an ambient flow to
demonstrate the performance of the new meshless
approach.

Keyword: Level set method, meshless method,
radial basis functions, IRBFN, moving inter-
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1 Introduction

Numerical methods for moving interface prob-
lems in general, or passive transport problems in
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particular, have been increasingly studied in re-
cent years. A moving interface is defined as the
time-dependent boundary Γ(t) of Ω ⊂ Rd ,d =
1,2,3, that has an outward unit normal n and a
normal velocity (also known as speed) F at each
point. In a passive transport problem one would
like to determine the evolution of Γ(t) with time
driven by a given externally generated velocity
field v such that F = v · n. In such a problem,
the influence of the moving interfaces on the ve-
locity field is ignored. When it moves, the inter-
face Γ(t) might undergo topological changes, i.e.
splitting of an interface and/or merging of several
interfaces.

There are two basic approaches to modeling the
motion of the interfaces: moving-grid and fixed-
grid methods. In the moving-grid methods, the
interface is treated as the boundary of a mov-
ing surface-fitted grid [Floryan and Rasmussen
(1989)]. This approach allows a precise represen-
tation of the interface whereas its main drawback
is the severe deformation of the mesh due to the
interface motion. The second approach, which is
based on fixed grids, includes tracking and cap-
turing methods. The tracking methods explicitly
represent the moving interface by means of prede-
fined markers [Unverdi and Tryggvason (1992)].
In capturing methods, on the other hand, the mov-
ing interface is not explicitly tracked, but rather
captured via a characteristic function. Examples
of the capturing methods are phase field method
[Jacqmin (1999)], volume-of-fluid method [Hirt
and Nichols (1981)] and level set method [Osher
and Sethian (1988)]. The characteristic function
used to implicitly describe the moving interface is
the order parameter in the phase field method, vol-
ume fraction in the volume-of-fluid method and
level set function in the level set method. For
these (capturing) methods, no grid manipulation
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(e.g. rezoning/remeshing) is needed to maintain
the overall accuracy even when the interface un-
dergoes large deformation. In this work, the level
set method is used to capture the moving inter-
faces.

The underlying idea of the level set method is
to embed the moving interface Γ(t) as the zero
level set of a smooth (at least Lipchitz continuous)
function φ (x, t) known as the level set function
[Osher and Sethian (1988)]. The moving interface
can be then captured at any time by locating the
set of Γ(t) for which φ (x, t) vanishes. The level
set function is advanced with time by a convective
transport equation known as the level set equation.
Usually, φ (x, t) is initialized as a signed distance
function to the interface [Sethian (1999); Osher
and Fedkiw (2003)]. Due to numerical error, how-
ever, this feature is not necessarily held. Reini-
tialization is therefore needed to make the level
set function signed distance function after certain
time steps, which could be achieved by solving
a time-dependent PDE to steady state [Sussman,
Smereka, and Osher (1994)]. It has been reported
that such a reinitialization procedure could intro-
duce some numerical diffusion which results in
an inaccuracy of the interface location and some
loss of mass [Tornberg (2000)]. The procedure
has been improved in [Chang, Hou, Merriman,
and Osher (1996); Sussman and Fatemi (1999);
Peng, Merriman, Osher, Zhao, and Kang (1999)].
In this work, an additional mass correction based
on a well-known formula for the first variation of
a volume integral [Cuvelier and Schulkes (1990)]
is introduced after the reinitialization step to pre-
vent any significant losses of mass.

The level set method has been applied widely
in fluid dynamics [Sussman, Smereka, and Os-
her (1994); Sussman and Smereka (1997); Iafrati,
Mascio, and Campana (2001)], and structural
shape and topology optimization [Wang, Lim,
Khoo, and Wang (2007)], to name just a few
applications. Some conservative schemes have
been used to solve the level set equation such
as Lax-Friedrichs [Crandall and Lions (1984)],
Essentially Non-Oscillatory ENO [Shu and Os-
her (1989)], and Godunov’s schemes [Bardi and
Osher (1991)]. In this paper, two new mesh-

less numerical schemes, namely the SL-IRBFN
scheme based on the semi-Lagrangian method
and the Taylor-IRBFN motivated by the well-
known Taylor-Galerkin method, are proposed to
deal with the level set equation. In contrast
to the meshless local Petrov-Galerkin (MLPG)
method [Atluri (2004)], the present approach,
also truly meshless, is based on global ra-
dial basis function network approximants. Un-
like the traditional differential approach [Kansa
(1990);Sarler (2005);Shu, Ding, and Yeo (2005)],
the present method is based on integrated (in-
direct, integral) radial basis function networks
(IRBFN) [Mai-Duy and Tran-Cong (2001a);Mai-
Duy and Tran-Cong (2001b);Mai-Duy and Tran-
Cong (2003);Mai-Duy (2004);Mai-Cao and Tran-
Cong (2005)].

The semi-Lagrangian method can be considered
as a hybrid approach between the Eulerian and
the Lagrangian methods [Staniforth and Cote
(1991)]. An Eulerian scheme retains the regular-
ity of the mesh but requires small time steps in
order to maintain stability. A Lagrangian scheme,
on the other hand, is less restricted by stability
requirements and allows larger time steps. How-
ever, since the fluid particles, initially regularly
spaced, move with time, they usually become ir-
regularly spaced as the system evolves. The semi-
Lagrangian advection scheme combines the ad-
vantages of both schemes - the regularity of the
Eulerian scheme and the enhanced stability of the
Lagrangian scheme. The basic idea is to discretize
the Lagrangian derivative of the transport quantity
in time instead of the Eulerian derivative. It in-
volves backward time integration along the char-
acteristic curve to find the departure point of a
fluid particle arriving at an Eulerian grid point.
The solution at the departure points is then ob-
tained by interpolation. Interested readers are re-
ferred to [Staniforth and Cote (1991); Oliveira
and Baptista (1995); Behrens and Iske (2002)]
and the references therein for details on semi-
Lagrangian methods.

Another well-known numerical method, namely
the Taylor-Galerkin method, is widely used for
solving convective transport equations [Donea
(1984)]. This method is based on the Taylor series
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expansion about a point in time of a function in-
cluding higher-order time derivatives. In general,
by replacing the temporal derivatives in the Tay-
lor series expansion with the corresponding spa-
tial ones via the differential equation to be solved,
the accuracy and the stability of the numerical
solution can be improved [Donea and Huerta
(2003)]. For the Taylor-Galerkin method, the
resultant semi-discrete equation is discretized in
space using the standard Galerkin FEM method.
For the Taylor-IRBFN scheme, on the other hand,
the IRBFN method is used for spatial discretiza-
tion.

The remaining of this paper is organized as fol-
lows. Firstly the IRBFN method, the level
set method, the meshless semi-Lagrangian SL-
IRBFN and the Taylor-IRBFN schemes are in-
troduced. The new meshless approach to solving
passive transport problems is then presented with
a detailed discussion on all ”ingredients" men-
tioned above, particularly the SL-IRBFN, Taylor-
IRBFN schemes and the additional mass correc-
tion procedure. Finally, the individual schemes
and the new approach are verified with some basic
tests and demonstrated with some typical passive
transport problems.

2 IRBFN approximation of functions and its
derivatives

Let u(x, t) be an unknown function continuously
defined on QT := (0,T)×Ω, where Ω ⊂ Rd, d =
1,2,3 is a bounded domain. For convenience,
the components of a typical point are denoted
by x = (x,y, z) and typically derivatives with re-
spect to x are used to illustrate the derivation
of the method. Given a set of discrete points
{x j}M

j=1 in Ω and the corresponding nodal val-
ues of the function at certain point in time t,
u(t) = [u1(t),u2(t), ...,uM(t)]T , the IRBFN for-
mulation for the approximation of the function
and its derivatives (e.g. with respect to x) is writ-
ten as follows.

∂ 2u(x, t)
∂x2 ≈ ĝ(x)T G−1u(t), (1)

∂u(x, t)
∂x

≈ g̃(x)T G−1u(t), (2)

u(x, t)≈ g(x)T G−1u(t), (3)

where ĝ(x) is a set of basis functions whose jth

component is defined as follows.

ĝ j(x) = ϕ(||x−x j||), j = 1, . . .,N,

ĝ j(x) = 0, j = N +1, . . . ,N,
(4)

in which ϕ(||x− x j||) are radial basis functions
such as Hardy’s multiquadrics

ϕ(||x−x j||) =
√

r2
j + s2

j , j = 1, . . . ,N, (5)

or Duchon’s thin plate splines

ϕ(||x−x j||) = r2m
j logr j, j = 1, . . . ,N, (6)

where m is the TPS order, r j = ||x−x j|| is the Eu-
clidian norm, and s j is the RBF shape parameter
given by [Moody and Darken (1989)]

s j = β d min
j , (7)

in which β is the user-defined parameter and d min
j

is the distance from the jth data point to its nearest
neighboring point.

The functions g̃(x) and g(x) in (2) and (3) are ob-
tained by symbolically integrating ĝ(x) in the x
direction once and twice, respectively. The ma-
trix G is defined as

G =

⎡
⎢⎢⎢⎣

g1(x1) g2(x1) . . . gN(x1)
g1(x2) g2(x2) . . . gN(x2)

...
...

. . .
...

g1(xM) g2(xM) . . . gN(xM)

⎤
⎥⎥⎥⎦ , (8)

where g j(x), j = 1, . . .,N is the jth component of
g(x), and N = N + P in which P is the number
of discrete points needed to approximate the con-
stants of integration. Details on the derivation of
the IRBFN formulation and numerical investiga-
tions of the IRBFN method can be found in [Mai-
Cao and Tran-Cong (2005)] for transient prob-
lems and in [Mai-Duy, Mai-Cao, and Tran-Cong
(2007)] for fluid flow applications.

For a more compact form, the IRBFN formulation
can be written as follows.

uxx(x, t)≡ ∂ 2u(x, t)
∂x2 ≈ ψ∂xx

(x)T u(t), (9)



160 Copyright c© 2008 Tech Science Press CMES, vol.31, no.3, pp.157-188, 2008

ux(x, t)≡ ∂u(x, t)
∂x

≈ ψ∂x
(x)T u(t), (10)

u(x, t)≈ ψ(x)T u(t), (11)

where

ψ∂xx
(x) = ĝ(x)T G−1, (12)

ψ∂x
(x) = g̃(x)T G−1, (13)

ψ(x) = g(x)T G−1. (14)

Let S be a certain differential operator in space
that operates on the scalar function u(x, t) in Ω ∈
Rd, d = 1,2,3, the IRBFN formulation above can
be then rewritten in a generic form for approx-
imating function u(x, t) and/or its derivatives as
follows.

S u(x, t)≈ ψT
S (x)u(t), (15)

where ψS (x) is the vector whose components are
the results of the application of operator S on the
corresponding components of ψ(x),

ψS (x) = [S ψ1(x),S ψ2(x), . . .,S ψM(x)]T .

(16)

For a special case where S is the identity op-
erator, S = I , one gets the approximation of
function u(x, t). Otherwise, one obtains the corre-
sponding derivative of the function. For example,
if S = ∂

∂y ≡ ∂y, one has the approximation of the
first order derivative of u(x,y, t) in the y direction
as follows.

S u(x,y, t) =
∂
∂y

u(x,y, t)≈ ψT
∂y

(x,y)u(t). (17)

3 Level set method

In the level set method, the moving interface Γ(t)
which bounds an open region Ω ⊂ Rd (d = 2,3) is
embedded as the zero level set of a higher dimen-
sional function φ (x, t) such that

Γ(t) = {x ∈ Rd| φ (x, t) = 0}
Initially, φ is defined as the signed distance func-
tion from the front such that

φ (x, t) =

⎧⎨
⎩

+d(x, t) x ∈ Ω+

0 x ∈ Γ
−d(x, t) x ∈ Ω−

(18)

where d(x, t) represents the Euclidean distance
from x to the interface, Ω− and Ω+ are interior
and exterior regions respectively. The interface
can be then captured at any time by locating the
set of Γ(t) for which φ vanishes. In other words,
instead of working with the interface, one evolves
the level set with the following transport equation
for φ ,

φt +v ·∇φ = 0, φ (x, t = 0) = φ0(x), (19)

where φ0(x) is a given function. Whenever
needed, the moving interface can be extracted as
the zero level of the level set function φ (x, t). It
is noted that while the level set function φ (x, t) is
initialized as a signed distance function from the
free surface, this is not necessarily true as time
proceeds. In order to keep the numerical solu-
tion accurate, one needs to reinitialize φ (x, t) to
be the signed distance function from the evolving
front Γ(t) after certain period in time. This is ac-
complished by solving the following problem to
steady state:

φt = Sε(φ)(1−|∇φ |), φ (x,y, t = 0) = φ (x,y)
(20)

where Sε denotes the smoothed sign function

Sε(φ ) =
φ√

φ 2 +ε2
(21)

in which ε can be chosen to be the minimum dis-
tance from any data point to the others.

As mentioned earlier, due to numerical diffusion
coming from the approximation of sign(φ ) in
solving equation (20), the reinitialization proce-
dure presented above could move the interface lo-
cation and cause some losses of mass. A mass
correction which is added after the reinitialization
step is described in section §6.4.

4 SL-IRBFN scheme for convective transport
equations

Consider the transport equation with source term

∂φ
∂ t

+v ·∇φ = f (x, t), (22)



Meshless Capturing of Moving Interfaces 161

where φ = φ (x, t) is a scalar quantity, and v(x) is
a given convection velocity. The above equation
can be written in the following Lagrangian form

dφ
dt

= f (x, t) (23)

dx
dt

= v(x, t) (24)

The procedure for solving equations (23) and (24)
using semi-Lagrangian method is as follows.

• At each time step, track backward particles
that arrive at the grid points over a single
time step along characteristic curves (24) to
their departure points;

• Compute the solution values at the departure
points;

• Solve (23) for the current time step using the
solution values at the departure points as the
initial values;

• Advance to the next time step and repeat
the above steps until the predefined time is
reached.

Applying the semi-Lagrangian method to prob-
lem (23) in which the first-order backward Euler
difference scheme is used for the time derivative,
one obtains

φ n+1−φ n
d

Δt
= f n+1, (25)

where φ n
d is the value of φ at the departure points

xd. φ n
d is determined by first solving the following

equation

dx
dt

= v(x, t), xn+1 = xa, (26)

backward in one single step for the departure
points xd at time tn with the initial condition
xn+1 = xa. φ n

d can be then obtained via interpola-
tion from φ n at grid points. In the above equation,
xa is the position of the arrival points which are
the grid points at time tn+1. Equation (26) can be
solved by the explicit midpoint rule [Temperton
and Staniforth (1987)] as follows.

x̂ = xa − Δt
2

v(xa, t
n), (27)

xd = xa−Δt v
(

x̂, tn +
Δt
2

)
. (28)

By letting

δ = xa−xd , (29)

and substituting (27),(29) into (28), one obtains

δ = Δt v
(

xa − Δt
2

v(xa, t
n), tn +

Δt
2

)
. (30)

Once equation (30) is solved for δ , the depar-
ture points xd can be found via equation (29). It
is noted that the velocity field at t = tn + Δt

2 in
(30) can be determined by extrapolation using the
Adams-Bashforth formula

v(x, tn+
Δt
2

) =
3
2

v(x, tn)− 1
2

v(x, tn−Δt)+O(Δt2).

(31)

Alternatively, equation (26) can be solved by an
implicit midpoint rule as follows.

x̂ = xa − Δt
2

v
(

x̂, tn +
Δt
2

)
. (32)

xd = xa−Δt v
(

x̂, tn +
Δt
2

)
. (33)

In this case, one has to solve the following equa-
tion for δ ,

δ = Δt v
(

xa − δ
2
, tn +

Δt
2

)
. (34)

Although equation (34) has to be solved itera-
tively, it converges after just a few iterations pro-
vided that max |∇v|Δt is sufficiently small [Al-
lievi and Bermejo (2000)]. To enhance the ac-
curacy of the integration, higher-order methods
should be used. In this work, the IRBFN semi-
discrete scheme, presented in [Mai-Cao and Tran-
Cong (2005)] with the fourth-order Runge-Kutta
method, is used.

In general, the departure points xd do not coincide
with the grid points. The values of φ n

d at those
points are then obtained by interpolation. The
IRBFN method with Duchon TPS basis functions
is used for this purpose. Alternatively, the cubic
spline interpolation can be used. After getting φ n

d ,
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the new value φ n+1 at time tn+1 can be obtained
by equation (25). For convective transport equa-
tion with no source term, the semi-Lagrangian
scheme reduces to φ n+1 = φ n

d , i.e. the value of
function φ remains constant on the characteristics
and the old value is simply copied into its new po-
sition on the regular grid.

5 Taylor-IRBFN schemes for convective
transport equations

Consider the two-dimensional pure convective
transport equation

∂φ
∂ t

+u
∂φ
∂x

+v
∂φ
∂y

= 0, (35)

φ (x,y, t = 0) = φ 0(x,y), (36)

where φ 0(x,y) is a given function, and u = u(x,y)
and v = v(x,y) are the component of a given time-
independent velocity field in x and y direction,
respectively. For the sake of presentation using
the same notations as in [Donea (1984)], equation
(35) is rewritten as follows.

φt = −uφx −vφy, (37)

where φt , φx, φy are the derivatives of φ in time, x
and y direction, respectively.

In the remaining parts of this section, two formu-
lations of the Taylor-IRBFN scheme, namely TE-
IRBFN and TCN-IRBFN are derived to solve the
problem under consideration. The two formula-
tions differ in the manner the first-order derivative
in time is approximated. The former is based on
the Euler difference formula whereas the Crank-
Nicolson method is used in the latter.

5.1 The TE-IRBFN Scheme

The TE-IRBFN scheme for solving (35) is derived
as follows.

Firstly, applying Taylor series expansion of φ for-
ward about t = tn yields

φ n+1 = φ n +Δtφ n
t +

Δt2

2
φ n

tt +
Δt3

6
φ n

ttt +O(Δt4),

(38)

or

φ n+1−φ n

Δt
= φ n

t +
Δt
2

φ n
tt +

Δt2

6
φ n

ttt +O(Δt3). (39)

Secondly, by differentiating equation (37) succes-
sively up to the third order derivative in time and
replacing the first order derivatives in time with
the corresponding spatial derivatives in the right-
hand side of the transport equation to be solved
(37), one obtains

φtt =
[
(uux +uyv)∂x +u2∂xx +(uvx +vvy)∂y+

v2∂yy +2uv∂xy
]

φ , (40)

φttt =
[
(uux +uyv)∂x +u2∂xx +(uvx +vvy)∂y+

v2∂yy +2uv∂xy
]

φt, (41)

where ∂x and ∂y denote the spatial differential op-
erators in x and y directions, respectively. The last
first-order time derivative in equation (41) is kept
to avoid high-order spatial derivatives in the resul-
tant formulas.

By using the new differential operator notation ∂χ
defined as

∂χ =
[
(uux +uyv)∂x +u2∂xx +(uvx +vvy)∂y+

v2∂yy +2uv∂xy
]
, (42)

one has the simpler forms of equations (40) and
(41) as follows.

φtt = ∂χφ , (43)

φttt = ∂χ φt. (44)

Next, substituting (37), (43) and (44) into (39)
yields

φ n+1−φ n

Δt
= (−u∂x −v∂y)φ n +

Δt
2

∂χφ n+

Δt2

6
∂χ φ n

t +O(Δt3). (45)

Finally, by replacing φ n
t in the above equation

with the Euler difference formula

φ n
t =

φ n+1−φ n

Δt
, (46)
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and rearranging the terms, one obtains
(

1− Δt2

6
∂χ

)
Δφ =

[
Δt (−u∂x −v∂y)+

Δt2

2
∂χ

]
φ n +O(Δt3), (47)

where Δφ = φ n+1−φ n. For each time step, equa-
tion (47) is solved for Δφ , and the solution at
t = tn+1 is obtained via φ n+1 = φ n +Δφ .

Using the IRBFN method for the spatial dis-
cretization of equation (47), the fully discrete TE-
IRBFN formulation for problem (35) can be then
derived as follows.[

1− Δt2

6
ψT

∂χ
(xi)

]
Δφ =

[
Δt

(
−uiψT

∂x
(xi)−viψT

∂y
(xi)

)
+

Δt2

2
ψT

∂χ
(xi)

]
φ n,

i = 1,2, . . .,M, (48)

where ψ∂χ , ψ∂x
and ψ∂y

are the IRBFN approxi-
mations to the differential operator ∂χ , ∂x and ∂y,
respectively; ui and vi are the components of the
velocity field v at position xi in x and y directions,
respectively.

5.2 The TCN-IRBFN Scheme

The TCN-IRBFN scheme for solving (35) is de-
rived as follows.

Firstly, applying Taylor series expansions of func-
tion φ forward about t = tn and backward about
t = tn+1 yields

φ n+1 = φ n +Δtφ n
t +

Δt2

2
φ n

tt +
Δt3

6
φ n

ttt +O(Δt4),

(49)

φ n = φ n+1−Δtφ n+1
t +

Δt2

2
φ n+1

tt − Δt3

6
φ n+1

ttt +

O(Δt4) (50)

Subtracting (50) from (49) and rearranging terms
result in

φ n+1−φ n

Δt
=

(φ n
t +φ n+1

t )
2

+
Δt
4

(φ n
tt −φ n+1

tt )+

Δt2

12
(φ n

ttt +φ n+1
ttt )+O(Δt3). (51)

Next, substituting (37),(40),(41) into (51) and re-
arranging terms, one obtains

φ n+1−φ n

Δt
= −1

2
(u∂x +v∂y)

(
φ n +φ n+1)+

Δt
4

∂ χ
(
φ n −φ n+1)+

Δt2

12
∂ χ

(
φ n

t +φ n+1
t

)
+

O(Δt3), (52)

where the differential operator notation ∂χ is de-
fined in (42).

Finally, by applying the Crank-Nicolson time-
stepping [Donea (1984)]

1
2

(
φ n

t +φ n+1
t

)
=

φ n+1−φ n

Δt
, (53)

one obtains the semi-discrete form of (37) as fol-
lows.
[

1+
Δt
2

(u∂x +v∂y)+
Δt2

12
∂ χ

]
Δφ

= −Δt(u∂x + v∂y)φ n, (54)

where Δφ = φ n+1−φ n. For each time step, equa-
tion (54) is solved for Δφ , and the solution at
t = tn+1 is obtained via φ n+1 = φ n +Δφ .

Using the IRBFN method for the spatial dis-
cretization of equation (54), the fully discrete
TCN-IRBFN formulation for problem (35) can be
then derived as follows.
{

1+
Δt
2

[
uiψT

∂x
(xi)+viψT

∂y
(xi)

]
+

Δt2

12
ψT

∂χ
(xi)

}

Δφ =

−Δt
[
uiψT

∂x
(xi)+viψT

∂y
(xi)

]
φ n, i = 1, . . . ,M,

(55)

where ψ∂χ , ψ∂x
and ψ∂y

are the IRBFN approxi-
mations to the differential operator ∂χ , ∂x and ∂y,
respectively; ui and vi are the components of the
velocity field v at position xi in x and y directions,
respectively.

6 A new meshless approach to passive trans-
port problems

The present new meshless numerical approach to
capturing moving interfaces in passive transport
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problems is built by bringing all ingredients pre-
viously presented together and consists of the fol-
lowing steps.

Step 1: Initialize the level set function φ (x) to
be the signed distance function as described by
equation (18);

Step 2: Advance the level set function by solv-
ing the convective transport equation (19) for
one time step using either SL-IRBFN or Taylor-
IRBFN schemes presented in sections §4 and §5,
respectively;

Step 3: Re-initialize the level set function that has
just been calculated in Step 2 and do the mass cor-
rection;

Step 4: The interface as the zero contour of the
level set function has now been advanced one time
step. Go back to step 2 for further evolution of
the moving interface until the predefined time is
reached.

6.1 Initialization

At time t = 0, the signed distance function in (18)
is defined as the distance from the given colloca-
tion point x to the initial interface curve and the
sign is chosen to be positive if the point is inside
the curve, and negative if outside,

d(xi,yi,0) = ±min‖x−xi‖,xi ∈ Γ0, (56)

where Γ0 = Γ(0) is the initial interface whose dis-
crete representation is xi.

6.2 Advancing the level set function

The procedure for advancing the level set function
with time by the SL-IRBFN scheme presented in
section §4 consists of the following steps

Given v0, for any x ∈ Ω and n = 0,1, . . .,N

1. Compute the departure points xd at t = tn

corresponding to the grid point x = xa at
t = tn+1 in (23) and (24) using the semi-
discrete IRBFN-based scheme with Runge-
Kutta method as described in [Mai-Cao and
Tran-Cong (2005)];

2. Calculate φ n
d at the departure points xd by

interpolating the known values of φ (x, tn) at
the grid points using the IRBFN method;

3. Advance φ (x, t) one time step by assigning
φ n+1 = φ n

d

6.3 Calculation of φ at departure points

As mentioned earlier, since the departure points
xd do not coincide with the grid points, the values
of φ n

d at those points are obtained by interpolation.
The IRBFN formulation is used for this purpose
as follows.

φ (x, t) = gT (x)G−1φφφ (t) (57)

where φφφ (t) is the values of φ (x, t) at all data points
x at time t. The values of φ n

d at the departure
points xd are obtained by IRBFN interpolation as
follows.

φ (x = xd, t = tn) = gT (x = xd)G−1 φφφ (t = tn).
(58)

It is noted that G−1 needs to be calculated only
once, and thus only matrix-vector operations are
performed at each time step for interpolation.

6.4 Re-initialization and mass correction

The reinitialization step is done by solving
equation (20) to steady-state using the semi-
implicit IRBFN-based scheme with the fourth-
order Runge-Kutta procedure [Mai-Cao and Tran-
Cong (2005)]. The mass correction is then per-
formed to to ensure mass conservation as follows.
Suppose that after advancing the level set function
at time step t = tn+1, one gets the moving interface
Γ that bounds the domain Ω2 = x ∈ Ω : φ < 0. To
correct the area of Ω2, one changes the zero level
set to certain neighboring isoline based on the fact
that it has almost the same shape since φ is a dis-
tance function. This can be done by simply mov-
ing the level set function upward or downward by
an amount of cφ , where |cφ | is the distance be-
tween the old and the new zero-level sets

φ new = φ −cφ , (59)

where φ new is the new (raised or lowered) level set
function, Ωnew

2 = {x ∈ Ω : φ new < 0}. The well-
known formula for the first variation of a volume
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integral [Cuvelier and Schulkes (1990)] is then
used to calculate cφ as follows.

Sexact −S(Ω) =
∫

Ωnew
2

dΩ−
∫

Ω2

dΩ =
∫

Γ
(cφ n) ·ndΓ+O(c2

φ), (60)

or

Sexact −S(Ω2) = cφ

∫
Γ

dΓ+O(c2
φ ), (61)

where Sexact is the given exact area of the region,
and S(Ω2) is the area of Ω2. It follows that

cφ =
Sexact −SΩ2

L(Γ)
, (62)

in which L(Γ) is the length of the interface Γ. It
is noted from equation (62) that if Sexact > S(Ω2)
then cφ > 0, and the level set function φ is to be
lowered, meaning that the domain Ω2 expands.
Otherwise, the domain shrinks. In both cases, the
level set function is corrected accordingly. In this
way, the reinitialization procedure prevents an ac-
cumulation of numerical errors in a long run as
shown in the numerical results.

7 Numerical results

Some numerical tests are performed in this sec-
tion to verify the individual numerical schemes as
well as the new meshless approach presented in
the previous sections. The first test is for check-
ing the capability of the SL-IRBFN and Taylor-
IRBFN schemes in dealing with shock wave prop-
agation. The next two problems provide basic
tests on the accuracy and efficiency for the new
meshless approach to capturing moving interfaces
of a solid circle that translates and rotates in a cav-
ity. The present approach is then demonstrated
with the simulation of more complicated passive
transport problems in which bubbles are moving,
stretching and merging together in a divergence-
free shear flow.

7.1 Test 1 - Convective transport problems

Test problem 1.1

Consider the propagation of a cosine profile gov-
erned by the following convective transport equa-
tion

∂u
∂ t

+c
∂u
∂x

= 0, x ∈ Ω (63)

with the following initial condition

u(x,0) ={ 1
2(1+cos(π(x−x0)/σ)) |x−x0| ≤ σ
0 otherwise

(64)

where c = 1 is the propagation speed.

The steep profile of the solution is well cap-
tured by the SL-IRBFN scheme as shown in
Figure 1. In fact, with N = 61 regularly lo-
cated points and CFL = 0.5, the numerical so-
lutions are accurate up to 3 digits after the dec-
imal point in the steep region whereas the abso-
lute errors by the scheme can be of order 10−5

in the flat regions. In addition, it can be seen
in Figure 1 that there are no severe errors found
right before and after the shock as observed in
Lax-Wendroff and second-order Taylor-Galerkin
schemes [Donea and Huerta (2003)].

A comparison of accuracy and stability of the
TCN-IRBFN scheme using MQ and TPS basis
functions is shown in Figure 2. As can be seen
from the figure, the MQ-based scheme is more ac-
curate and stable than its counterpart TPS-based
scheme. For this test, the β parameter of MQ-
RBF is set to 1.0. Figure 3 shows a comparison of
accuracy and stability of the TE-IRBFN schemes
using MQ and TPS basis functions. It is observed
from this test that TE-IRBFN scheme using MQ-
RBF again yields better solution in terms of both
accuracy and stability than its TPS-based counter-
part.

7.1.1 Test problem 1.2

Consider a convective transport equation

∂u
∂ t

− (sinx)
∂u
∂x

= 0, x ∈ Ω, t ∈ (0,
π
2

], (65)

subject to the initial condition

u(x,0) = sinx (66)
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Figure 1: Test 1.1: Numerical solution (top) and its L∞−norm error (bottom) by the SL-IRBFN scheme.
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basis functions), (Top) Absolute error at the last time step; (Bottom) L∞-norm error with respect to time.
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The analytical solution to the problem is

u(x, t) = sin
(

2tan−1
(

expt tan
x
2

))
, (67)

which develops sharp layers near the end points
x = 0 and x = 2π . The problem is solved up to
time t = π/2 by the Taylor-IRBFN scheme us-
ing regularly located points with point spacing as
large as 1/10. Figure 4 shows the analytical and
numerical solution by the TCN-IRBFN scheme.
As can be seen from the figure, sharp layers near
the end points are well resolved by the present
scheme even with rather large time steps (Δt = 0.1
or CFL=1). In this case, the time-step size de-
pends on the accuracy requirement, not on stabil-
ity.

For the purpose of investigating the effect of CFL
numbers on the accuracy and stability of the new
numerical schemes, the test problem is solved by
the SL-IRBFN and TE-IRBFN schemes using a
set of different CFL numbers. The root mean
square errors corresponding to the CFL numbers
are calculated as follows.

RMSE =

√
∑nt

i=1(un−ue)2

nt
, (68)

where un and ue are the numerical and exact solu-
tions, respectively; nt is the total number of time
steps. As can be seen in Figure 5, for various CFL
numbers widely ranging from 0.5 to 4, the root
mean square errors are bounded to O(10−3) for
the SL-IRBFN scheme, and O(10−4) for the TE-
IRBFN scheme. This verifies the accuracy and
stability of the two new numerical schemes. It is
observed from the test that on the one hand, the
TE-IRBFN scheme is not sensitive to CFL num-
ber, meaning that the scheme works fine with high
CFL numbers. On the other hand, it is also noted
that unlike the SL-IRBFN scheme where the value
of the unknown at each time step can be found ex-
plicitly, the Taylor-IRBFN scheme requires a so-
lution of a system of equations at each time step.

7.2 Test 2 - Solid body translation

In this test problem, a circle of radius 0.5, initially
centered at (-0.75,0), translates to the right due to
an external velocity field v = (u,v) = (1,0). The

objective of the test is to check the accuracy and
stability of the new meshless approach in captur-
ing the moving interface. The circle is translated
until time t = 1.0, and the percentage change in
the area is calculated for verification purpose.

The problem is solved by the present meshless ap-
proach with uniform point spacing dx = 1/15 and
time-step size dt = 0.0667. The level set function
is advanced in time by the Taylor-IRBFN scheme.

Figure 6 shows zero contours of the level set func-
tion at different points in time by the TCN-IRBFN
scheme. At each time step of interest, the zero
contour of the level set function which is the mov-
ing interface is extracted using standard contour-
ing algorithm, and the corresponding area of the
circle at those time steps are calculated and com-
pared to the exact area of the original circle. As
can be seen from the figure, the circle is well cap-
tured by the present approach at different points
in time.

Figure 7 shows the percentage change in area at
different points in time of interest. It can be seen
from the figure that the present approach with the
TCN-IRBFN scheme is not only able to accu-
rately capture the moving interface but also sta-
ble with the error bounded within O(10−5) over
the computational time domain. The percent-
age changes in area at different points in time in
this test show that with a coarser point density
(dx = 1/15) and a larger time step (dt = 0.0667),
the present meshless approach (using either TE-
IRBFN or TCN-IRBFN scheme for solving the
level set function) gives more accurate solutions
(%error ∼ O(10−5) − O(10−3)) than those re-
sulted from the mesh-based level set scheme
(%error ∼O(10−2)) with denser discretization in
space (dx = 1/80) and time (CFL = 0.9) [Sethian
(1999)]. Figure 7 also shows that the TCN-
IRBFN scheme yields better result than the TE-
IRBFN scheme for this test problem.

It is noted that for such a simple velocity field in
this test, the reinitalization step is not needed. In
fact, only a mass correction presented in Section
§6.4 is performed at each time step in this test.
Without the reinitialization step, the present ap-
proach is still highly accurate and stable. This ver-
ifies the efficiency of the new meshless approach
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for this basic test problem.

7.3 Test 3 - Rotation of a solid body

Consider the rotation of a circle of radius r = 0.5
initially centered at (−0.75,0) in a vortex flow
with velocity field (u,v) = (−y,x). It is noted that
with such a velocity field, the circle rotates around
the coordinate’s origin (0,0) without any defor-
mations. In other words, the circle is considered
to be a solid body. An half cycle of rotation is per-
formed by the present meshless approach, and the
percentage change in area of the circle during its
motion is calculated.

The problem is solved by the present meshless ap-
proach with point density dx = dy = 1/12 and
time-step size dt = π/100 = 0.0314. The level
set function is advanced in time by the SL-IRBFN
scheme (described in Section §4 in which the
IRBFN semi-discrete scheme [Mai-Cao and Tran-
Cong (2005)] with the fourth-order Runge-Kutta
procedure is used to track particles that arrive at
the grid points backward to their departure points
over a single time step. The function values at
those departure points are then obtained by inter-
polation with TPS-IRBFN formulation.

Figure 8 shows the zero contours of the level set
function at different points in time. Although us-
ing a rather coarse point density and normal time-
step size, the present approach still exactly recon-
structs the moving circle at the points in time of
interest. Figure 9 presents the percentage errors
in area at different points in time. With a very
coarse point density (dx = 1/12) and a large time-
step size (dt = 0.0314), the present meshless ap-
proach, using the SL-IRBFN scheme for solving
the level set function, gives the solution after an
half cycle of rotation with the change/error in area
of 0.006970%. In [Sethian (1999)], the same test
problem was performed with different grid sizes
and the percentage error in area was reported to
be 0.09758% with the grid size of 161 × 161.
No conclusion on which (meshless or mesh-based
scheme) is better is made for this particular test
problem since there is no information about the
time-step size used in [Sethian (1999)].

It is noted that the numerical solution for this test
is obtained without the reinitialization step. In

fact, only a mass correction step is performed at
each time step. The numerical result shows that
the present approach is accurate and stable with
the error bounded within O(10−4)−O(10−3). It
can be concluded that for such a simple veloc-
ity field like the one in this test or in Test 2, the
reinitialization step is not required provided that a
mass correction is performed at each time step.
Since no PDEs are solved in the mass correc-
tion procedure, saving of computational time is
achieved.

7.4 Test 4 - Passive transport of a bubble in a
shear flow

In this problem (this example and the follow-
ing one represent more serious application of the
present approach), a bubble with a radius of 0.15,
initially centered at (0.5,0.7) moves and deforms
in a shear flow with a divergence-free velocity
field v = (u,v) defined as follows.

u = −sinπxcosπy, 0 ≤ x,y ≤ 1, t ≥ 0, (69)

v = cosπxsinπy, 0 ≤ x,y ≤ 1, t ≥ 0. (70)

The problem is solved by the present meshless ap-
proach with a point density dx = dy = 1/50 and
time-step size dt = 0.01. The time-step size dt is
so chosen to satisfy the Courant-Friedreichs-Levy
condition [Osher and Fedkiw (2003)].

Δt ×max

{ |u|
dx

+
|v|
dy

}
= CFL, (71)

where the CFL number is chosen to be unity.

In this problem, the level set function is ad-
vanced in time by the SL-IRBFN scheme in which
the values of the level set function at departure
points are obtained via interpolation by the TPS-
IRBFN formulation. At the end of each time step,
the reinitialization procedure is done by solv-
ing equation (20) to steady-state using the semi-
implicit IRBFN-based scheme with the fourth-
order Runge-Kutta procedure [Mai-Cao and Tran-
Cong (2005)]. For the purpose of investigating
the effect of the mass correction on the accuracy
and stability of the present approach, the reinitial-
ization procedure is done with and without mass
correction. The area of the bubble in motion is
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calculated at each time step and compared to the
original area (πR2). The error in area of the bub-
ble in motion throughout the simulation time is
then used to check the stability of the present ap-
proach.

Figures 10-13 show the zero contours (left) and
level set function (right) at different points in
time.

Figure 14 shows a comparison of the percent-
age error in area of the bubble resulted from the
present approach with and without mass correc-
tion for this problem. As can be seen from the
figure, the accuracy of the numerical solution is
improved significantly with mass correction. In
addition, the percentage error of the bubble is
bounded within O(10−5)-O(10−4), indicating the
good stability of the present approach with mass
correction.

7.5 Test 5 - Passive transport of four bubbles in
a shear flow

The purpose of this example is to demonstrate the
ability of the new meshless approach in dealing
with topological changes of interfaces in passive
transport problems. Four bubbles, each having a
radius of R = 1/6, are initially centered as shown
in the top of Figure 15. The bubbles move in a
domain of (−1,1)× (−1,1) where there exists a
shear flow with the velocity field defined as fol-
lows.

u = −y
max

{
1−(

1−x2 −y2
)4

,0
}

8(x2 +y2)
(72)

v = x
max

{
1−(

1−x2 −y2
)4

,0
}

8(x2 +y2)
(73)

The problem is solved by the present meshless ap-
proach with a uniform point spacing dx = dy =
1/60 and time-step size dt = 0.0678. The time-
step size dt is so chosen to satisfy the Courant-
Friedreichs-Levy condition as in the previous ex-
ample.

In this example, the level set function is advanced
in time by the SL-IRBFN scheme and the reini-
tialization procedure is done at each time step.
For the purpose of investigating the effect of the

mass correction on the accuracy and stability of
the present approach, the reinitialization proce-
dure is done with and without mass correction.
The total area of the bubbles in motion is calcu-
lated at each time step and compared to the orig-
inal value (a0 = 4πR2). The error in area of the
bubbles in motion throughout the simulation time
is then used to check the stability of the present
approach.

Figures 15-17 show the zero contours (left) and
level set function (right) at different points in
time.

Figure 18 shows a comparison of the percent-
age error in area of the bubble resulted from the
present approach with and without mass correc-
tion for this example. As can be seen from the
figure, the accuracy of the numerical solution is
improved significantly with mass correction. In
addition, the percentage error of the bubble is
bounded within O(10−5)-O(10−3), indicating the
good stability of the present approach with mass
correction.

8 Concluding Remarks

A new meshless approach to capturing moving in-
terfaces in passive transport problems is presented
in this paper where the motion and deformation
of the moving interfaces are well captured by a
unique procedure even with the presence of topo-
logical changes. The present approach brings the
highly accurate IRBFN method for spatial dis-
cretization, the high-order time stepping methods
based on semi-Lagrangian or Taylor series expan-
sions and the level set method together for dealing
with moving interfaces in an accurate and efficient
manner. In this work, a mass correction procedure
is introduced at each time step to improve the ac-
curacy of the interface reconstruction. The pro-
cedure can be used with or without a reinitializa-
tion step. Numerical experiments, including some
basic tests for the new numerical schemes and
the simulation of one or more bubbles moving,
stretching and merging in ambient shear flows,
show the good capability of the present approach
for this particular moving interface problem.
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Figure 11: Test 4: The zero contour and the level set function at t = 1.40 (top) and t = 1.90 (bottom).
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Figure 12: Test 4: The zero contour and the level set function at t = 2.40 (top) and t = 2.90 (bottom).
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Figure 13: Test 4: The zero contour and the level set function at t = 3.40 (top) and t = 4.00 (bottom).
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Figure 14: Test 4: Comparison of the percentage error in area of the bubble resulted from the present
approach with and without mass correction. The accuracy of the numerical solution is improved significantly
with mass correction. The error is bounded within O(10−5)-O(10−4), indicating that the present approach
with mass correction is stable for this problem.



Meshless Capturing of Moving Interfaces 183

x

y

Initial zero contour

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

0

1
−0.5

0

0.5

1

x

Initial level set function

y

x

y

Zero contour at t = 1.357

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1
−0.5

0

0.5
1

−1

0

1

0

0.2

0.4

0.6

0.8

x

Level set function at t = 1.357

y

Figure 15: Test 5: Zero contours and the level set function at t=0 (top) and t=1.357 (bottom).
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Figure 16: Test 5: Zero contours and the level set function at t=3.392 (top) and t=6.105 (bottom).
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Figure 17: Test 5: Zero contours and the level set function at t=8.141 (top) and t=10.176 (bottom).
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Figure 18: Test 5: Comparison of the percentage error in area of the bubbles resulted from the present
approach with and without mass correction. The accuracy of the numerical solution is improved significantly
for the latter case. The error in total area of the bubbles in motion is bounded within O(10−5)-O(10−3),
indicating the good stability of the present approach with mass correction.
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