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A New Shooting Method for Solving Boundary Layer
Equations in Fluid Mechanics

Chein-Shan Liu1, Chih-Wen Chang2 and Jiang-Ren Chang2,3

Abstract: In this paper, we propose a new
method to tackle of two famous boundary
layer equations in fluid mechanics, namely,
the Falkner-Skan and the Blasius equations.
We can employ this method to find unknown
initial conditions. The pivotal point is based
on the erection of a one-step Lie group ele-
ment G(T ) and the formation of a generalized
mid-point Lie group element G(r). Then, by
imposing G(T ) = G(r) we can seek the miss-
ing initial conditions through a minimum dis-
crepancy from the target in terms of a weight-
ing factor r ∈ (0,1). Numerical examples are
worked out to persuade that this novel ap-
proach has good efficiency and accuracy with
a fast convergence speed by searching r with
the minimum norm to fit two targets.

Keyword: One-step group preserving
scheme, Falkner-Skan equation, Blasius
equation, Boundary value problem, Lie-
group shooting method, Estimation of
missing initial condition.

1 Introduction

The Falkner-Skan equation as coined by
Falkner and Skan (1931) arose in the study
of two-dimensional incompressible laminar
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boundary layers of fluids exhibiting similar-
ity. It is a third-order nonlinear two-point
boundary value problem for which no closed-
form solutions are available. The first nu-
merical treatment of this problem was pre-
sented by Hartree (1937). The mathematical
treatments of this problem by Weyl (1942),
Coppel (1960), Rosenhead (1963) and Padé
(2003) were principally concentrated on at-
taining results of existence and uniqueness.
Smith (1954), Cebeci and Keller (1971), Na
(1979), Veldman and Van der Vooren (1980),
Sher and Yakhot (2001), Zaturska and Banks
(2001), Kuo (2003), Salama (2004), and
Salama and Mansour (2005) have addressed
other numerical methods for solving this
problem. All those approaches have mainly
employed shooting or invariant imbedding.
Later, the methods presented by Asaithambi
(1998, 2004a, 2004b, 2005), and Asaithambi
(1997) improved the performance of the pre-
vious methods by reducing the amount of the
computational effort.

When a two-dimensional (2D) steady flow
of an incompressible constant property fluid
with very low viscosity and high Reynolds
number moves promptly over a semi-infinite
flat plate, the friction between the fluid and
the flat plate will obstruct the fluid within
a thin region immediately adjacent to the
boundary layer. The governing equation
describing the boundary layer with such
fluid characteristics and boundary conditions
is called the Blasius equation; see, e.g.,
Schlichting (1979), and Özisik (1979). Bla-
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sius (1908) gave a solution in the form of a
power series and since then, it has led to much
attention on solving this equation by devel-
oping different techniques. Töpfer (1912)
began to adopt the Runge-Kutta algorithms
to solve this equation, and until the age of
Howarth (1938), the numerical solution with
the Runge-Kutta method as presently shown
in tabulated result is still not as accurate and
reliable as today is; see, e.g., Schlichting
(1979), and Özisik (1979). Apart from this,
Lock (1951, 1954) investigated two cases,
where the lower stream may be at rest or in
motion. Later, Potter (1957) extended the
research to two fluids of different viscosi-
ties and densities, where both fluids were
moving co-current with different velocities.
Moreover, Abussita (1994) took a differen-
tial equation of mixing layer into account
that arises in Blasius solutions for flow pass-
ing over a flat plate, and manifested the ex-
istence of a solution for this model by us-
ing the Weyl techniques. Thereafter, Liao
(1997, 1999) proposed a systematic depic-
tion of a new kind of analytic technique for
nonlinear problems, namely, the homotopy
analysis method (HAM), and applied it to
give an explicit and analytic solution of the
2D laminar viscous flow over a semi-infinite
flat plate. This method may have higher
accuracy but it is very complex in expres-
sion. In addition, Yu and Chen (1998) con-
verted the Blasius equation into a pair of ini-
tial value problems, and then solved them
by a differential transformation method. To
speed up the convergent rate and the accu-
racy of calculation, the entire domain needs
to be divided into sub-domains. Besides,
Khabibrakhmanov and Summers (1998) em-
ployed the generalized Laguerre polynomials
to compute a spectral solution of the Blasius
equation on a semi-infinite interval; however,
this method involves many calculations for
nonlinear algebraic equations. For approxi-
mating the solution of the Blasius equation,

He (1999) proposed the variational iteration
method and Lin (1999) employed the param-
eter iteration method to cope with. Recently,
He (2003) coupled the iteration method with
the perturbation method to solve the Blasius
equation, and Wang (2004) even proposed the
Adomian decomposition method to the trans-
formation of the Blasius equation. Both of
their results demonstrate reliability and ef-
ficiency of their own proposed algorithms.
As for solutions and error estimates of the
Blasius equation, Lee and Hung (2002) pro-
posed the modified group preserving (MGP)
scheme together with the shooting method;
however, their method shows complicated in
algorithms and seems indirect to solve the
Blasius equation.

The Lie-group shooting method (LGSM) is
primarily employed for the boundary value
problems as proposed by Liu (2006a, 2006b,
2006c) for direct problems. However, these
approaches are limited only for the 2D ordi-
nary differential equations (ODEs), and here
we will extend them to the multi-dimensional
problems. Authors have used the LGSM to
treat the various problems. The backward
heat conduction problems (BHCPs) [Chang,
Liu and Chang (2007a, 2007b), and Chang,
Liu, Chang (2008)] are formulated with a
semi-discretization version. In order to eval-
uate the missing initial conditions for the
quasi-boundary value problems of the BHCP,
they have employed the LGSM towards the
time direction to derive algebraic equations.
Hence, they can solve them through a min-
imum solution in a compact space of r ∈
(0, 1). The approach is good enough against
the noise disturbance. Liu (2008a) used
the LGSM to identify nonhomogeneous heat
conductivity functions, and it has twofold ad-
vantages in that no a priori information of
heat conductivity is required and no iterations
in the calculation process are needed. After
that, the LGSM is examined through numer-
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ical examples of estimating an unknown heat
conductivity parameter [Liu (2008b)] to con-
vince that it is highly accurate and efficient;
the maximum estimation error is smaller than
10−5 for smooth parameter and for discontin-
uous and oscillatory parameter the accuracy
is still in the order of 10−2. For the Sturm-
Liouville eigenvalues problem, Liu (2008c)
constructed a very effective LGSM to search
the eigenvalues, and when eigenvalue is de-
termined the author can also search a missing
left-boundary condition of the slope through
a weighting factor r ∈ (0,1). Hence, the
eigenvalues and eigenfunctions can be calcu-
lated with a better accuracy. For the inverse
vibration problem [Liu (2008d)], an LGSM
is proposed to simultaneously estimate the
time-dependent damping and stiffness func-
tions by using two sets of displacement as in-
puts. The LGSM approach is very interest-
ing, which resulting to closed-form estimat-
ing equations without needing of any itera-
tion and initial guess of coefficient functions,
and more importantly, it does not require to
assume a priori the functional forms of un-
known coefficients. To estimate the miss-
ing initial conditions for three-point bound-
ary value problems (BVPs) of second-order
ODEs, Liu (2008e) have employed the equa-
tion G(ut0 ,ut1) = G(r) in two-stage of two
consecutive intervals to derive four extra al-
gebraic equations, which together with the
two given nonlocal boundary conditions lead
to totally six equations to solve the six un-
knowns. The method is also workable to find
multiple solutions if the considered equation
has. Liu (2008f) proposed a numerical in-
tegration method of second-order BVPs re-
sulting from the elastica of slender rods un-
der different loading conditions and boundary
conditions. The LGSM is very effective for
large deflection problems of elastica even ex-
hibiting multiple solutions. Liu (2008g) stud-
ied numerical computations of inverse ther-
mal stress problems. The unknown bound-

ary conditions of an elastically deformable
heat conducting rod are not given a priori and
are not allowed to measure directly, because
the boundary may be not accessible to mea-
sure. Although the measured temperature is
disturbed by large noise, the LGSM is stable
to recover the boundary conditions very well.
To evaluate the missing initial conditions for
the BVPs of the Blasius equation, [Chang,
Chang and Liu (2008)] have employed the
equation G(T ) = G(r) to derive algebraic
equations. The numerical implementation of
the LGSM is very simple and the computa-
tion speed is very fast. For the Falkner–Skan
equation, including the Blasius equation as
a special case, Liu and Chang (2008) devel-
oped a new numerical technique, transform-
ing the governing equation into a non-linear
second-order boundary value problem by a
new transformation technique, and then solve
it by the LGSM. The approach is very effec-
tive for searching the multiple-solutions un-
der very complex boundary conditions of suc-
tion or injection, and also allowing the motion
of plate.

In this paper, we propose an LGSM to tackle
these two famous boundary layer equations
in fluid mechanics. Our approach is based
on the group preserving scheme (GPS) de-
veloped by Liu (2001) for the integration of
initial value problems. It will be clear that
our method can be applied to these two fa-
mous boundary layer equations, since we are
able to search the missing initial condition
through a minimum solution of r in a com-
pact space of r ∈ (0,1), where the factor r is
used in a generalized mid-point rule for the
Lie group of one-step GPS. Especially, the
proposed scheme is easy to implement and
time saving. Through this study, we may have
an easy-implementation and accurate LGSM
used in the calculations of these two famous
boundary layer equations.
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2 One-step GPS

2.1 The GPS

Although we do not know previously the
symmetry group of nonlinear differential
equations system, Liu (2001) has embedded
it into an augmented system and found an in-
ternal symmetry of the new system. That is,
for an ODEs system with dimensions n:

u̇ = f(u, t), u ∈ Rn, t ∈ R, (1)

we can embed it into the following n+1-
dimensional augmented system:

d
dt

X :=
d
dt

[
u

‖u‖
]

=

[
0n×n

f(u,t)
‖u‖

fT (u,t)
‖u‖ 0

][
u

‖u‖
]
.

(2)

It is obvious that the first row in Eq. (2) is
the same as the original Eq. (1), but the in-
clusion of the second row in Eq. (2) gives
us a Minkowskian structure of the augmented
system for X satisfying the cone condition:

XT gX = u ·u−‖u‖2 = 0, (3)

where

g =
[

In 0n×1

01×n −1

]
(4)

is a Minkowski metric. In is the identity ma-
trix of order n, and the superscript T denotes
the transpose. The cone condition (3) is a nat-
ural constraint imposed on the system (2).

Consequently, we have an n+1-dimensional
augmented system:

Ẋ = AX (5)

with a constraint (3), where

A :=

[
0n×n

f(u,t)
‖u‖

f T (u,t)
‖u‖ 0

]
(6)

is an element of the Lie algebra so(n,1) satis-
fying

AT g+gA = 0. (7)

Therefore, Liu (2001) has developed a group-
preserving numerical scheme as follows:

Xl+1 = G(1)Xl , (8)

where Xl denotes the numerical value of X
at the discrete time tl, and G(1) ∈ SOo(n,1)
satisfies

GT gG = g, (9)

detG = 1, (10)

G0
0 > 0, (11)

where G0
0 is the 00th component of G.

2.2 Generalized mid-point rule

Applying scheme (8) on Eq. (5) with a
specified initial condition u(0) = u0, we
can compute the solution u(t) by GPS. As-
suming that the total time T is divided
by K steps, that is, the time stepsize we
use in the GPS is Δt = T/K, and starting
from an initial augmented condition X0 =
X(0) = (uT

0 ,‖u0‖)T we may calculate the
value X(T ) = (uT (T ),‖u(T )‖)T at a desired
time t = T .

By applying Eq. (8) step-by-step we can ob-
tain

XT = GK(Δt) . . .G1(Δt)X0, (12)

where XT approximates the exact X(T ) with
a certain accuracy depending on Δτ . How-
ever, let us recall that each Gi, i = 1, . . .,K,
is an element of the Lie group SOo(n,1),
and by the closure property of Lie group
GK(Δt) . . .G1(Δt) is also a Lie group denoted
by G. Hence, we have

XT = GX0. (13)
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This is a one-step transformation from X0 to
XT ; see, e.g., Liu, Chang and Chang (2006).

We can calculate G by a generalized mid-
point rule, which is obtained from an expo-
nential mapping of A by taking the values of
the argument variables of A at a generalized
mid-point and viewing it as a constant matrix.
The Lie group generated form A ∈ so(ν ,1)
is known as a proper orthochronous Lorentz
group, which admits a closed-form represen-
tation as follows:

G =

⎡
⎣In + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎦ , (14)

where

û = ru0 +(1− r)uT , (15)

f̂ = f(t̂, û), (16)

a = cosh

(
T
∥∥f̂
∥∥

‖û‖

)
, (17)

b = sinh

(
T
∥∥f̂
∥∥

‖û‖

)
. (18)

Here, we employ the initial u0 and the final
uT through a suitable weighting factor r to
calculate G, where 0 < r < 1 is a parameter.
The above method applied a generalized mid-
point rule on the calculation of G, and the re-
sult is a single-parameter Lie group element
denoted by G(r).

2.3 A Lie group mapping between two
points

Let us define a new vector

F :=
f̂

‖û‖ , (19)

such that Eqs. (14), (17) and (18) can also be
expressed as

G =

⎡
⎣In + (a−1)

‖F‖2 FFT bF
‖F‖

bFT

‖F‖ a

⎤
⎦ , (20)

a = cosh (T ‖F‖) , (21)

b = sinh(T ‖F‖) . (22)

From Eqs. (13) and (20) it follows that

uT = u0 +ηF, (23)

‖uT‖ = a‖u0‖+b
F ·u0

‖F‖ , (24)

where

η :=
(a−1)F ·u0 +b‖u0‖ ‖F‖

‖F‖2 . (25)

Substituting

F =
1
η

(uT −u0) (26)

into Eq. (24) we obtain

‖uT‖
‖u0‖ = a+b

(uT −u0) ·u0

‖uT −u0‖ ‖u0‖ , (27)

where

a = cosh

(
T ‖uT −u0‖

η

)
, (28)

b = sinh

(
T ‖uT −u0‖

η

)
(29)

are obtained by inserting Eq. (26) for F into
Eqs. (21) and (22).

Let

cosθ :=
(uT −u0) ·u0

‖uT −u0‖‖u0‖ , (30)

S := T ‖uT −u0‖ , (31)

and from Eqs. (27)-(29) it follows that

‖uT‖
‖u0‖ = cosh

(
S
η

)
+ cosθ sinh

(
S
η

)
. (32)

By defining

Z := exp

(
S
η

)
, (33)
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we obtain a quadratic equation for Z from Eq.
(32):

(1+ cosθ )Z2 − 2‖uT‖
‖u0‖ Z +1− cosθ = 0.

(34)

The solution is found to be

Z =

‖uT‖
‖u0‖ +

√(‖uT‖
‖u0‖

)2 −1+ cos2 θ

1+ cosθ
, (35)

and then from Eqs. (33) and (31) we obtain

η =
T ‖uT −u0‖

lnZ
. (36)

Thus, between any two points (u0,‖u0‖) and
(uT ,‖uT‖) on the cone, there exists a single-
parameter Lie group element G ∈ SOo(n,1)
mapping (u0,‖u0‖) onto (uT ,‖uT‖), which
is given by

[
uT

‖uT‖
]

= G
[

u0

‖u0‖
]
, (37)

where G is uniquely determined by u0 and uT

through Eqs. (20)-(22), (26) and (36).

3 The LGSM for Falkner-Skan and Bla-
sius equations

Let us consider the Falkner-Skan equation:

f ′′′ + f f ′′ +υ(1− f ′2) = 0, (38)

subject to the boundary conditions

f (0) = 0, f ′(0) = 0, f ′(∞) = 1, (39)

where the prime stands for the differential
with respect to ξ . Note that problem (38)
and (39) is depicted on a semi-infinite physi-
cal domain.

3.1 The case of ν > 0

Because Eqs. (38) and (39) are defined in an
infinite range, they are not easy to compute in
practice. To remedy this inefficiency we re-
place the condition f ′(∞) = 1 by f ′(T ) = 1,
where T is an unknown variable to be deter-
mined.

Let y1 = f , y2 = f ′ and y3 = f ′′. We can
rewrite Eqs. (38) and (39)

y′1 = y2, (40)

y′2 = y3, (41)

y′3 = −y1y3 −ν(1−y2
2) =: Y(y1,y2,y3), (42)

y1(0) = α = 0, y1(T ) = A, (43)

y2(0) = β = 0, y2(T ) = B = 1, (44)

y3(0) = δ , y3(T ) = C = 0, (45)

where A, T and δ are three unknown con-
stants. Here we adopt a physical by plau-
sible assumption f ′′(T ) = 0, such that there
are still three unknowns to be solved by the
LGSM.

Let

u :=

⎡
⎣y1

y2

y3

⎤
⎦ . (46)

From Eqs. (23), (43),(44) and (45) it follows
that

F :=

⎡
⎣F1

F2
F3

⎤
⎦=

1
η

⎡
⎣A−α

B−β
C−δ

⎤
⎦ . (47)

Starting from an initial guess of (A, T , δ ), we
use the following equation to calculate η:

η =
T
√

(α −A)2 +(β −B)2 +(δ −C)2

lnZ
,

(48)
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in which Z is calculated by

Z =
√

A2+B2+C2√
α2+β 2+δ 2

+
√

A2+B2+C2

α2+β 2+δ 2 − (1− cos2 θ )

1+ cosθ
,

(49)

where

cosθ =
α(A−α)+β(B−β)+δ (C −δ )√

(α −A)2 +(β −B)2 +(δ −C)2

1√
α2 +β 2 +δ 2

. (50)

The above three equations were obtained
from Eqs. (36), (35) and (30) by inserting Eq.
(46) for u.

When comparing Eq. (47) with Eq. (19), and
with the aid of Eqs. (15), (16) and (40)-(45)
we obtain

A = α +
η[rβ +(1− r)B]

ρ
, (51)

B = β +
η[rδ +(1− r)C]

ρ
, (52)

C = δ

+
−η
{

[rα +(1− r)A][rδ +(1− r)C]
+ν{1− [rβ +(1− r)B]2}

}
ρ

.

(53)

Through some calculations, we obtain

T =
−E +

√
E2−4DF

2Dη0
, (54)

A = α +
T η0[rβ +(1− r)B]

ρ
, (55)

δ =
ρ(B−β)

rη
, (56)

where

D :=
ν{1− [rβ +(1− r)B]2}

ρ
, (57)

E := (B−β)[rα +(1− r)A], (58)

F :=
−ρ(B−β)

r
, (59)

Ŷ := Y
(
rα +(1− r)A, rβ +(1− r)B,

rδ +(1− r)C
)
, (60)

ρ :=

√√√√√ [rα +(1− r)A]2

+[rβ +(1− r)B]2

+[rδ +(1− r)C]2
, (61)

η0 :=

√
(α −A)2 +(β −B)2 +(δ −C)2

lnZ
.

(62)

When ν of Eq. (42) is equal to 0, Eq. (42)
is the Blasius equation. Therefore, we can
rewrite Eq. (54) as

T =
2ρ

r[rα +(1− r)A]η0
. (63)

The above derivation of the governing equa-
tions (48)-(63) is stemmed from by letting the
two F in Eqs. (19) and (26) be equal, which
is essentially identical to the specification of
G(T ) = G(r) in terms of the Lie group ele-
ments G(T ) and G(r).
For a specified r, Eqs. (54), (55), (56) and
(63) can be used to generate the new (A, T , δ )
by repeating the above process in Eqs. (48)-
(63) until (A, T , δ ) converges according to a
given stopping criterion with ε1 = 10−10:

√
(Ai+1 −Ai)2 +(Ti+1 −Ti)2 +(δi+1 −δi)2

≤ ε1. (64)

If δ is available, we can return to Eqs. (40)-
(44) but with merely integrating the following
equations by a forward integration scheme as
the one given in Section 2:

y′1 = y2, (65)
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y′2 = y3, (66)

y′3 = −y1y3 −ν(1− y2
2), (67)

y1(0) = α, (68)

y2(0) = β , (69)

y3(0) = δ . (70)

So far, we have not yet said that how to deter-
mine r. Let yr

n(T ) denote the above solution
of yn at T . We start from r = 1/2 to deter-
mine δ by Eqs. (48)-(64) and then numeri-
cally integrate Eqs. (65)-(70) from t = 0 to
t = T , and compare the end values of y2(T )
and y3(T ) with the exact B and C. Then, we
apply the minimum norm to fit the two tar-
gets of y2(T ) = 1 and y3(T ) = 0, which re-
quires us to calculate Eqs. (65)-(70) at each

of the calculation of
√

(yr
2 −B)2 +(yr

3 −C)2,
until it is small enough to satisfy the crite-

rion of
√

(yr
2 −B)2 +(yr

3 −C)2 < εmin, where
εmin = 0.36 is a given error tolerance. Be-
cause the numerical method is very stable,
we can fast carry off the correct range of r
through some trials and modifications.

3.2 The case of ν ≤ 0

Because Eqs. (38) and (39) are not very con-
venient for computations, it is used to re-
place ξ = ∞ in condition (39) with a suffi-
ciently large ξ∞; see, e.g., Asaithambi (1998,
2004a, 2004b, 2005), and Asaithambi (1997).
In terms of the new independent variable t =
x/ξ∞ and dependent variables y1 = f , y2 = f ′
and y3 = f ′′, it is straightforward to replace
Eqs. (40)-(45) by

ẏ1 = ξ∞y2, (71)

ẏ2 = ξ∞y3, (72)

ẏ3 = −ξ∞y1y3−ξ∞ν(1− y2
2), (73)

y1(0) = α = 0, y1(1) = A, (74)

y2(0) = β = 0, y2(1) = B = 1, (75)

y3(0) = δ , y3(1) = C, (76)

where A, C and δ are three unknown con-
stants. Starting from an initial guess of (A, C,
δ ), we use the following equation to calculate
η:

η =

√
(α −A)2 +(β −B)2 +(δ −C)2

lnZ
.

(77)

Comparing Eq. (47) with Eq. (19) and noting
that

û :=

⎡
⎣ŷ1

ŷ2
ŷ3

⎤
⎦=

⎡
⎣rα +(1− r)A

rβ +(1− r)B
rδ +(1− r)C

⎤
⎦ (78)

by Eqs. (15), (16) and (71)-(76), we obtain

A = α +η
ξ∞ŷ2

ρ
, (79)

B = β +η
ξ∞ŷ3

ρ
, (80)

C = δ −η
ξ∞

ρ
[ŷ1ŷ3 +ν(1− ŷ2

2)], (81)

where ρ is still defined by Eq. (61).

Because β = 0 and B = 1 are given constants,
we can solve Eqs. (80) and (81) by using ŷ3 =
rδ +(1− r)C, such that

C =
ρ

ηξ∞
−ξ∞

rη[ŷ1ŷ3 +ν(1− ŷ2
2)]

ρ
, (82)

δ =
ρ

ηξ∞
+ξ∞

η(1− r)[ŷ1ŷ3 +ν(1− ŷ2
2)]

ρ
.

(83)

For a specified r and given constants α = 0,
β = 0 and B = 1, starting from an initial guess
of (A, δ , C), Eqs. (79), (82) and (83) can be
used to generate the new (A, δ , C) by repeat-
ing the above iterative process until (A, δ , C)
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converges according to a given stopping cri-
terion:√

(Ai+1 −Ai)2 +(δi+1 −δi)2 +(Ci+1−Ci)2

≤ ε2, (84)

which means that the norm of the difference
between the ι + 1-th and the ι-th iterations of
(A, δ , X) is smaller that a given stopping cri-
terion ε2 = 10−10. If δ is available, we can
return to Eqs. (71)-(76) and integrate them to
obtain y2(1). The above process can be done
for all r in the interval of r ∈ (0,1). Among
these solutions we pick up r, which leads to
the smallest error of |y2(1)−1| in Eq. (75),
since y2(1) = 1 is our target at the end bound-
ary. That is,

min
r∈(0,1)

|y2(1)−1| . (85)

4 Numerical results and discussions

Solutions of the Falkner-Skan equation have
been investigated in the literature by varying
the values of ν . The solutions correspond-
ing to ν > 0 stand for accelerating flows;
those corresponding to ν = 0 are known as
constant flows; and those corresponding to
ν < 0 are called decelerating flows. It is
known that physically relevant solutions ex-
ist only for −0.1988 ≤ ν ≤ 2. Following
Section 3, when the factor ν is equal to 0.5
(Homann’s solution), 1 (Hiemenz solution)
and 2 (exponentially-varying outer flow), we
apply the Lie-group shooting method to the
Falkner-Skan equation with an initial (A, T ,
δ ) = (3, 5, 2) and through some trials we
take ρ = 0.6515421, ρ = 0.658208, and ρ =
0.6625697, respectively. By using a stepsize
Δξ = 0.0001 the numerical results are shown
in Table 1. Moreover, when the factor ν is
equal to -0.1, -0.12, -0.15, -0.18, and -0.1988,
we apply the Lie-group shooting method to
the Falkner-Skan equation with an initial (A,
δ , C) = (6, 1, 0) and through some trials, we

take r = 0.6153, r = 0.6099, r = 0.6065, r =
0.6165, and r = 0.6225, respectively. By us-
ing a stepsize Δξ = 0.001 the numerical re-
sults are shown in Table 1.

For the case of ν < 0, there also exists the
second solution, which corresponds to nega-
tive value of δ as shown in Table 2. When
the factor ν is equal to -0.1, -0.12, -0.15, and
-0.18, we take ρ = 0.8543, r = 0.8196, r =
0.7696, and r = 0.7237. As an example for the
case of ν < 0, we are considered ν = −0.1
in Fig. 1, where ξ∞ = 10 was fixed. In Fig.
1(a), we plot the error of target with respect
to r. It can be seen that there are two min-
imum points as marked by a and b. When
the ranges for minima are identified, we can
pick up more correct value of ρ by search-
ing the minima in more refined ranges. When
the missing initial conditions are available,
with all given initial conditions we can use
the RK4 method to integrate Eqs. (71)-(73).
There appear two solutions which are marked
by α and β for f ′ in Fig. 1(b) and f ′′ in Fig.
1(c). The situation of multiple solutions oc-
curs only for −0.1988 < ν < 0, and these so-
lutions are said to stand for reverse flows. Our
numerical method is able to attain the solu-
tions of accelerating, constant, decelerating,
and reverse flows. From Tables 1 and 2, it
is apparent that our results are in good agree-
ment with those reported previously in the lit-
erature.

When the factor ν is equal to 0, we apply
the Lie-group shooting method to the Blasius
equation with an initial (A, δ ) = (3, 2) and
through some trials, we take r = 0.520748.
By using a stepsize Δξ = 0.0001 the numer-
ical results are shown in Fig. 2 and Table 3.
From Table 3, it is obvious that our results
are in excellent agreement with those given
by Cortell (2005).
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Figure 1: For the Falkner-Skan equation with ν =−0.1 we plot the error of target with respect to r
in (a), (b) displaying two different solutions of f ′,and (c) displaying two different solutions of f ′′.
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Table 1: Comparison of computed δ for −0.1988 ≤ ν ≤ 2.

ν LGSM Asaithambi
(1998)

Asaithambi
(2004)

Asaithambi
(2004)

Asaithambi
(2005)

Salama
(2004)

2 1.687218 1.687222 1.687218 1.687222 1.687222 1.687218
1 1.232588 1.232589 1.232588 1.232588 1.232588 1.232588
0.5 0.927680 0.927682 0.927680 0.927680 0.927680 0.927680
0.0 0.469600 0.469601 0.469600 0.469600 0.469600 0.469600
-0.1 0.319269 0.319270 0.319269 0.319270 0.319270 0.319270
-0.12 0.281761 0.281761
-0.15 0.216361 0.216360 0.216358 0.216361 0.216361 0.216362
-0.18 0.128637 0.128636 0.128624 0.128636 0.128637 0.128638
-0.1988 0.005190 0.005218 0.005239 0.005220 0.005225 0.005226

Table 2: Comparison of computed δ for −0.1988 < ν < 0.

ν LGSM Asaithambi (1997)
-0.1 -0.140546 -0.140546
-0.12 -0.142935 -0.142935
-0.15 -0.133419 -0.133421
-0.18 -0.097690 -0.097692

Table 3: Values of functions f , f ′ and f ′′. LGSM Lie-group shooting method; Cortell’s solution.

ξ f of LGSM f of C f ′ of LGSM f ′ of C f ′′ of
LGSM

f ′′ of C

0 0.00000 0.00000 0.00000 0.00000 0.46960 0.46960
1 0.23298 0.23299 0.46065 0.46063 0.43439 0.43438
2 0.88682 0.88681 0.81675 0.81670 0.25568 0.25567
3 1.79567 1.79558 0.96912 0.96906 0.06770 0.06771
4 2.78407 2.78390 0.99783 0.99777 0.00687 0.00687
5 3.78349 3.78325 0.99999 0.99994 0.00026 0.00026
6 4.78354 4.78324 1.0 1.0 0.0 0.0

5 Conclusions

In order to evaluate the missing initial con-
ditions for the boundary value problems of
boundary layer equations, we have employed
the equation G(T ) = G(r) to derive algebraic
equations. Hence, we can solve them through
a minimum solution in a compact space of r ∈
(0,1). Numerical examples of the Falkner-
Skan and the Blasius equations were exam-
ined to ensure that the new algorithm has a
fast convergence speed on the solution of r

in a pre-selected range smaller than (0, 1) by
using the minimum norm to fit two targets,
which usually required only a small number
of iterations. Through this paper, it can be
concluded that the new Lie-group shooting
method is accurate, effective and stable. Its
numerical implementation is very simple and
the computation speed is very fast. Thus, it is
highly advocated to be used in the numerical
computations of these two famous boundary
layer equations in fluid mechanics.
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