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Fast Parallel Finite Element Approximate Inverses

G.A. Gravvanis and K.M. Giannoutakis1

Abstract: A new parallel normalized optimized
approximate inverse algorithm, based on the con-
cept of the “fish bone” computational approach
with cyclic distribution of the processors satisfy-
ing an antidiagonal data dependency, for comput-
ing classes of explicit approximate inverses, is in-
troduced for symmetric multiprocessor systems.
The parallel normalized explicit approximate in-
verses are used in conjunction with parallel nor-
malized explicit preconditioned conjugate gradi-
ent square schemes, for the efficient solution of
finite element sparse linear systems. The paral-
lel design and implementation issues of the new
proposed algorithms are discussed and the paral-
lel performance is presented, using OpenMP.

Keyword: Sparse linear systems, precondi-
tioning, parallel normalized approximate in-
verses, parallel preconditioned conjugate gradient
method, parallel computations, symmetric multi-
processor systems, OpenMP.

1 Introduction

Let us consider the linear system derived from the
discretization of many scientific and engineering
two dimensional problems by the finite element
(FE) method, i.e.

Au = s (1)

where the coefficient matrix A is a non-singular
large, sparse, symmetric, positive definite, di-
agonally dominant (n × n) matrix of irregular
structure (where all the off-center band terms
are grouped in regular band of width � at semi-
bandwidth m), Eq. (2), while u is the FE solution
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at the nodal points and s is a vector, of which the
components result from a combination of source
terms and imposed boundary conditions.

The solution of sparse non-linear systems, be-
cause of its applicability to real-life problems,
has attracted the attention of many researchers
and has been obtained either by direct or itera-
tive methods, [Duff (2000); Lipitakis and Evans
(1987)]. Recently, a direct solution method for
the quasi-unsymmetric sparse matrix arising in
the Meshless Local Petrov-Galerkin method has
been proposed in [Yuan, Chen, and Liu (2007)],
while parallel Seidel-type domain decomposition
iterative method, based on a hybridization of a
nonconforming mixed finite element method, was
introduced in [Ha, Seo and Sheen (2006)].
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An important achievement over the last decades
is the appearance and use of Explicit Precondi-
tioned Methods for solving sparse linear systems,
and the preconditioned form of the linear system
(1) is

MAu = Ms (3)

where M is a suitable preconditioner, [Lipi-
takis and Evans (1987); Lipitakis and Gravvanis
(1995)]. The preconditioner M has therefore to
satisfy the following conditions: (i) MA should
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have a “clustered” spectrum, (ii) M can be effi-
ciently computed in parallel and (iii) finally “M
× vector” should be fast to compute in paral-
lel, [Gravvanis (2000); Huckle (1999); Huckle
(1998); Saad and Vorst (2000)]. In recent years
many researchers have derived preconditioners
based on various techniques, which are difficult to
be implemented on parallel systems, [Akcadogan
and Dag (2003); Benzi (2002); Benzi, Meyer and
Tuma (1996); Chan and Vorst (1997); Cosgrove,
Dias and Griewank (1992); Dubois, Greenbaum
and Rodrigue (1979); Grote and Huckle (1977);
Kolotilina and Yeremin (1993); Saad and Vorst
(2000)]. Our main motive for the derivation of
the new Parallel Normalized Approximate Inverse
Finite Element Matrix techniques is that they can
be efficiently used in conjunction with normalized
explicit preconditioned conjugate gradient – type
schemes on symmetric multiprocessor systems.

For the parallel construction of the normalized ap-
proximate inverse preconditioner the “fish-bone”
computational approach, with respect to the an-
tidiagonal data dependency pattern, has been con-
sidered. Cyclic distribution of the processors
for any associated row and column (inverted L-
shaped block) has been used, in order to increase
the granularity and to overcome the paralleliza-
tion overheads, yielding an efficient approach for
any choice of the “retention” parameter (number
of elements kept in the approximate inverse) and
number of processors.

The inherently parallel linear operations between
vectors and matrices involved in the normal-
ized explicit preconditioned conjugate gradient
schemes exhibit significant amounts of loop-level
parallelism that can lead to high performance gain
on shared address space systems, [Akl (1997);
Dongarra, Duff, Sorensen and Vorst (1998);
Grama, Gupta, Karypis and Kumar (2003)].

For the implementation of the parallel programs,
the OpenMP application programming interface
has been used. OpenMP has emerged as a shared-
memory programming standard and it consists of
compiler directives and functions for supporting
both data and functional parallelism. The parallel
for pragma with static scheduling has been used
for the parallelization of loops on both the con-

struction of the approximate inverse and the con-
jugate gradient schemes.

In Section 2, a new parallel finite element nor-
malized approximate inverse algorithm is intro-
duced, based on the “fish bone” computational
pattern satisfying an antidiagonal data depen-
dency. In Section 3, a parallel normalized pre-
conditioned conjugate gradient square method for
solving sparse finite element systems is presented.
Finally in Section 4, the performance and appli-
cability of the new proposed parallel approximate
inverse preconditioning is discussed and the par-
allel performance on a symmetric multiprocessor
system is given, using OpenMP.

2 Parallel Normalized Finite Element Ap-
proximate Inverses

In this section we present a parallel implementa-
tion of the finite element normalized approximate
inverse algorithm, based on the “fish bone” com-
putational approach, for solving linear systems on
symmetric multiprocessor systems.

Let us assume the normalized sparse approxi-
mate factorization, [Gravvanis and Giannoutakis
(2006); Gravvanis and Giannoutakis (2003); Lip-
itakis and Evans (1987); Lipitakis and Evans
(1984)], of the coefficient matrix A, such that:

A≈DrT
t
r TrDr, r ∈ [1, ...,m−1), (4)

where r is the “fill-in” parameter, i.e. the number
of outermost off-diagonal entries retained at semi-
bandwidths m, Dr is a diagonal matrix

Dr ≡ diag

(
d1, ...,dm−1

...dm, ...,dp−1
...dp, ...,dn

)
,

(5)

and Tr is a sparse upper (with unit diagonal ele-
ments) triangular matrix of the same profile as the
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coefficient matrix A, i.e.
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The elements of the decomposition factors were
computed by the FEANOF-2D algorithm, [Lip-
itakis and Evans (1987); Lipitakis and Evans
(1984)].

Let Mδ l
r = D−1

r M̂δ l
r D−1

r = (μi, j), i ∈ [1,n], j ∈
[max(1, i− δ l + 1),min(n, i + δ l − 1)], be the
banded form of the normalized approximate in-
verse of the coefficient matrix A. The elements of
the banded form of the approximate inverse can
be determined by retaining a certain number of
elements of the inverse, i.e. only δ l elements in
the lower part and δ l-1 elements in the upper part
of the inverse next to the main diagonal. Then the
elements can be computed by solving recursively
the following systems:

M̂δ l
r T t

r = (Tr)
−1 and TrM̂

δ l
r =

(
Tt

r

)−1
, (7)

without inverting the decomposition factors, by
the Normalized Banded Approximate Inverse
Finite Element Matrix algorithmic procedure
(henceforth called the NORBAIFEM-2D algo-
rithm).

The computational work of the NORBAIFEM-
2D algorithm is O [nδ l (r +�)] multiplicative op-
erations, while the storage of the approximate
inverse in only n× (2δ l − 1)-vector spaces is
achieved using an optimized storage scheme,
based on a moving window shifted from bottom
to top, [Gravvanis and Giannoutakis (2003)]. The
optimized NORBAIFEM-2D algorithm (hence-
forth called the NOROBAIFEM-2D algorithm)
is particularly effective for solving “narrow-
banded” sparse systems of very large order, i.e.
δ � ln/2.

It should be noted that this class of normalized ap-
proximate inverse includes various families of ap-
proximate inverses according to the requirements
of accuracy, storage and computational work, as
can be seen by the following diagrammatic rela-
tion, [Gravvanis and Giannoutakis (2003)]:

A−1←
class I︷ ︸︸ ︷

D−1
r

ˆ̃Mδ l
r=m−1D−1

r ←
class II︷ ︸︸ ︷

D−1
r M̂δ l

r=m−1D−1
r ,

←
class III︷ ︸︸ ︷

D−1
r M̂δ l

r D−1
r ←

class IV︷︸︸︷
D−2

r (8)

where the entries of the class I inverse have been
retained after the computation of the exact in-
verse (r = m− 1), while the entries of the class
II inverse have been computed and retained dur-
ing the computational procedure of the (approxi-
mate) inverse (r = m−1). The entries of the class
III inverse have been retained after the computa-
tion of the approximate inverse (r ≤ m-1). Hence
an approximate inverse is derived in which both
the sparseness of the coefficient matrix is rela-
tively retained and storage requirements are sub-
stantially reduced. The class IV of approximate
inverse retains only the diagonal elements, i.e.
δ l=1, hence M̂δ l

r ≡ I, resulting in a fast inverse
algorithm.

For the parallelization of the NORBAIFEM-2D
algorithm, the “fish bone” computational pattern
has been used. Each inverted L-shaped block, cf.
(9), is assigned onto one processor, i.e. at most
(2δ l-1) elements per processor. If the number of
processors is less than the order of the matrix n,
then a cyclic distribution of the processors on the
inverted L-shaped blocks (i.e. i-th row and i-th
column) has been used. For example, without loss
of generality, the pattern is shown in equation (9),
for n=8, δ l=4 and number of processors=4 (the
numbers in the circles indicate the rank of each
processor).

The computation of each inverted L-shaped block
can not start concurrently by the processors, be-
cause of the data dependency of the elements of
the approximate inverse. More specific, the pro-
cessor with rank (k), can not start the computation
of the element μ̂i, j , until the processor with rank
(k-1) has finished the computation of the element
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μ̂i+1, j and its symmetric counterpart (if they exist
within the band of the approximate inverse). The
superscript of each element in equation (9) indi-
cate the priority of the computations, i.e. the ele-
ment μ̂7,6 of the processor with rank 1, will start to
be computed after processor with rank 0 has com-
puted the element μ̂8,6 and μ̂6,8. When processor
1 has finished the computation of the element μ̂7,6

and its symmetric counterpart, then the processor
with rank 2 is ready to start the computation of
the element μ̂6,6. The data dependency pattern
follows the antidiagonal motion (wave pattern ap-
proach) described in [Gravvanis and Giannoutakis
(2006)].

It should be noted that when δ l = 1 we have
M̂δ l

r ≡ I and the approximate inverse for δ l = 2
can not be constructed in parallel, due to the data
dependency pattern and the symmetric property of
the approximate inverse.

For the parallel construction of the optimized
form of the approximate inverse, a simple trans-
formation of the indexes (based on a moving win-
dow shifted from bottom to top) of the elements of
the approximate inverse has been used, cf. [Grav-
vanis (1998)].
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Let us consider that the command forall denotes
the parallel for instruction (forks/joins threads),
for executing parallel loops, and myrank is the
rank of each process. Then, the Parallel Fish-
Bone NOROBAIFEM-2D algorithm (henceforth
called the PaFiBo-NOROBAIFEM-2D algo-
rithm), on symmetric multiprocessor systems, can
be described as follows:

forall i = n downto 1 (cyclic distribution with
chunk size = 1)

call inverse(i)

where the function inverse(i), computes the i-
th inverted L-shaped block according to the
NOROBAIFEM-3D algorithm, [Gravvanis and
Giannoutakis (2003)]:

function inverse (i)
Let r� = r +�, m� = m+�, mr = m− r, nmr =
n−mr and nm� = n−m�.
for j = i downto max(i−δ l +1,1)

if i <> n then
wait (until (myrank−1)( j) > myrank( j))
if j > nmr then

if i = j then
if i=n then

μ̂1,1 = 1 (10)

else

μ̂n−i+1,1 = 1−g j · μ̂n− j,δ l+1 (11)

else

μ̂n−i+1,i− j+1 =−g j · μ̂n−i+1,i− j (12)

else
if j≥ r� and j ≤nmr then

if i = j then

μ̂n−i+1,1 = 1−g j · μ̂n− j,δ l+1

−
nmr− j

∑
k=0

hr�−1−k, j+1−r+k · μ̂x,y (13)

call mw (n,δ l, i, mr+ j+k,x,y)
else

μ̂n−i+1,i− j+1 =−g j · μ̂n−i+1,i− j

−
nmr− j

∑
k=0

hr�−1−k, j+1−r+k · μ̂x,y (14)

call mw (n,δ l, i, mr+ j+k,x,y)
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else
if j > nm�+1 and j ≤ r�-1 then

if i = j then

μ̂n−i+1,1 = 1−g j · μ̂n− j,δ l+1

−
�

∑
k= j+1−r

k>0

h j,k · μ̂x1,y1−
nm�

∑
λ=0

h j−1−λ ,�+1+k · μ̂x2,y2

(15)

call mw (n,δ l,i,m + k-1,x1,y1) call mw
(n,δ l,i,m�+λ ,x2,y2)

else

μ̂n−i+1,i− j+1 =−g j · μ̂n−i+1,i− j

−
�

∑
k= j+1−r

k>0

h j,k · μ̂x1,y1−
nm�

∑
λ=0

h j−1−λ ,�+1+k · μ̂x2,y2

(16)

call mw (n,δ l,i,m + k-1,x1,y1) call mw
(n,δ l,i,m�+λ ,x2,y2)

else
if j ≤ nm�+1 then

if i = j then
if i=1 then

μ̂n,1 = 1−g1 · μ̂n−1,δ l+1−
�

∑
k=1

h1,k · μ̂x,y (17)

call mw (n,δ l,1, m+k-1,x,y)
else

μ̂n−i+1,1 = 1−g j · μ̂n− j,δ l+1

−
�

∑
k= j+1−r

k>0

h j,k · μ̂x1,y1−
j−1

∑
λ=1

h j−λ ,�+λ · μ̂x2,y2

(18)

call mw (n,δ l,i,m + k− �,x1,y1) call mw
(n,δ l,i,m�+λ -1,x2,y2)

else

μ̂n−i+1,1 =−g j · μ̂n− j,δ l+1−
�

∑
k= j+1−r

k>0

h j,k · μ̂x1,y1−
j−1

∑
λ=1

h j−λ ,�+λ · μ̂x2,y2

(19)

call mw (n,δ l,i,m + k − �,x1,y1) call mw
(n,δ l,i,m�+λ -1,x2,y2)

else
if i <> j then

μ̂n−i+1,δ l+i− j = μ̂n−i+1,i− j+1 (20)

while, the procedure mw(n,δ l,s,q,x,y),
[Gravvanis (1998)], can be described as fol-
lows:

procedure mw(n,δ l,s,q,x,y)
if s≥ q then

x = n+1− s; y = s−q+1 (21)

else

x = n+1−q; y = δ l +q− s. (22)

In order to follow the data dependency pattern
during the parallel construction of the approx-
imate inverse, a shared variable has been used
for synchronizing the processes according to their
private variable j (the private variable j of pro-
cessor k should be less than the private variable
j of processor k-1 for the computation of the ele-
ment μ̂i, j and its symmetric counterpart of proces-
sor k). The function wait is a custom synchroniza-
tion utility, which compares the private variable j
of process with rank myrank ((myrank)( j)), and
private variable j of process with rank myrank-
1 ((myrank-1)( j)). The cyclic distribution of the
inverted L-shaped blocks on the processors is im-
plemented with OpenMP by using static schedul-
ing with chunk size = 1 in the parallel for pragma.
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3 Parallel Normalized Preconditioned Con-
jugate Gradient – type method

In this section we present a class of parallel Nor-
malized Explicit Preconditioned Conjugate Gra-
dient - type method, based on the derived parallel
optimized approximate inverse, designed for sym-
metric multiprocessor systems.

The Parallel Normalized Explicit Preconditioned
Conjugate Gradient Square (PNEPCGS) algo-
rithm, for solving linear systems, can then be de-
scribed as follows:

Let u0 an arbitrary initial approximation to the so-
lution vector u. Then,

forall j=1 to n

(r∗0) j = s j−A(u0) j (23)

if δ l=1 then
forall j=1 to n

(r0) j = (r∗0) j/
(
d2)

j (24)

else
forall j=1 to n

(r0) j =⎛
⎜⎜⎜⎝

j
∑

k=max(1, j−δ l+1)
μ̂n+1−i,i+1−k (r∗0)k /dk+

min(n, j+δ l−1)
∑

k= j+1
μ̂n+1−k,δ l+k− j (r∗0)k /dk

⎞
⎟⎟⎟⎠

/
(d) j (25)

forall j=1 to n

(σ0) j = (r0) j (26)

forall j=1 to n (reduction +p0)

p0 = (σ0) j ∗ (r0) j (27)

Then, for i = 0, 1, ..., (until convergence)
compute in parallel the vectors ui+1, ri+1,
σi+1 and the scalar quantities αi, βi+1 as fol-
lows:

forall j=1 to n

(qi) j = A(σi) j (28)

if δ l=1 then
forall j=1 to n

(gi) j = (qi) j/
(
d2)

j (29)

else
forall j=1 to n

(gi) j =⎛
⎜⎜⎜⎝

j

∑
k=max(1, j−δ l+1)

μ̂n+1−i,i+1−k (qi)k /dk+

min(n, j+δ l−1)
∑

k= j+1
μ̂n+1−k,δ l+k− j (qi)k /dk

⎞
⎟⎟⎟⎠

/
(d) j (30)

forall j=1 to n (reduction +ti)

ti = (σ0) j ∗ (gi) j (31)

ai = pi/ti (32)

forall j=1 to n

(ei+1) j = (ri) j +bi (ei) j−ai (gi) j (33)

( fi) j = (ri) j +bi (ei) j +(ei+1) j (34)

(ui+1) j = (ui) j +ai ( fi) j (35)

forall j=1 to n

(qi) j = A( fi) j (36)

if δ l=1 then
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forall j=1 to n

(gi) j = (qi) j/
(
d2)

j (37)

else
forall j=1 to n

(gi) j =⎛
⎜⎜⎜⎝

j

∑
k=max(1, j−δ l+1)

μ̂n+1−i,i+1−k (qi)k /dk+

min(n, j+δ l−1)
∑

k= j+1
μ̂n+1−k,δ l+k− j (qi)k /dk

⎞
⎟⎟⎟⎠

/
(d) j (38)

forall j=1 to n

(ri+1) j = (ri) j−ai (gi) j (39)

forall j=1 to n (reduction +pi+1)

pi+1 = (σ0) j ∗ (ri+1) j (40)

bi+1 = pi+1/pi (41)

forall j=1 to n

(σi+1) j = (ri+1) j +2bi+1 (ei+1) j +b2
i+1 (σi) j

(42)

It should be noted that the parallelization of the
coefficient matrix A×vector operation has been
implemented by taking advantage of the sparsity
of the coefficient matrix A.

In our implementation, the parallel for pragma
with static scheduling has been used in order to
generate code that forks/joins threads.

4 Numerical Results

In this section we examine the applicability and
effectiveness of the new proposed parallel finite

element approximate inverse preconditioning for
solving sparse linear systems.

The numerical results presented in this section
were obtained on an SMP machine consisting of
16 2.2 GHz Dual Core AMD Opteron processors,
with 32 GB RAM running Debian GNU/Linux
(National University Ireland Galway). For the
parallel implementation of the algorithms pre-
sented, the Intel C Compiler v9.0 with OpenMP
directives has been utilized with no optimization
enabled at the compilation level. It should be
noted that due to administrative policies, we were
not able to explore the full processor resources
(i.e. more than 8 threads).

Let us consider a 2D-boundary value problem
with Dirichlet boundary conditions:

uxx +uyy +u = F, (x,y) ∈ R,

u(x,y) = 0, (x,y) ∈ ∂R,
(43)

where R is the unit square and ∂R denotes the
boundary of R. The domain is covered by a
non-overlapping triangular network resulting in a
hexagonal mesh. The right hand side vector of
the system (1) was computed as the product of
the matrix A by the solution vector, with its com-
ponents equal to unity. The “fill-in” parameters
were set to r=2 and the width parameters were set
to �=3. The iterative process was terminated when
‖ri‖∞ 〈10−5.

Table 1: Speedups and processors allocated of the
PaFiBo-NOROBAIFEM-2D algorithm, for sev-
eral values of δ l, with n=10000 and m=101.

“Retention” Speedups for the PaFiBo-
parameter NOROBAIFEM-2D algorithm

Number of processors
2 4 8

δ l=m 1.987 3.936 7.690
δ l= 2m 1.992 3.967 7.809
δ l=4m 1.995 3.971 7.842
δ l=6m 1.999 3.972 7.880

The speedups and efficiencies of the PaFiBo-
NOROBAIFEM-2D algorithm for several values
of the “retention” parameter δ l with n=10000,
m=101, are given in Table 1 and 2 respectively.
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Table 2: Efficiencies and processors allocated of
the PaFiBo-NOROBAIFEM-2D algorithm, for
several values of δ l, with n=10000 and m=101.

“Retention” Efficiencies for the PaFiBo-
parameter NOROBAIFEM-2D algorithm

Number of processors
2 4 8

δ l=m 0.994 0.984 0.961
δ l= 2m 0.996 0.992 0.976
δ l=4m 0.997 0.993 0.980
δ l=6m 0.999 0.993 0.985

In Fig. 1 and 2 the speedups and processors allo-
cated for several values of the “retention” param-
eter δ l, and the parallel efficiency for several val-
ues of the “retention” parameter δ l are presented
respectively for the PaFiBo-NOROBAIFEM-2D
algorithm with n=10000, m=101.

The speedups and efficiencies of the PNEPCGS
method for several values of the “retention” pa-
rameter δ l with n=10000, m=101 are given in Ta-
ble 3 and 4 respectively. In Fig. 3 and 4 the
speedups and processors allocated for several val-
ues of the “retention” parameter δ l, and the par-
allel efficiency for several values of the “reten-
tion” parameter δ l are presented respectively for
the PNEPCGS method with n=10000, m=101.
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Figure 1: Speedups and processors allocated of
the PaFiBo-NOROBAIFEM-2D algorithm, for
several values of δ l, with n=10000 and m=101.

It can be observed, that due to coarse granular-
ity and the reduced overheads of the parallel con-
struction of the approximate inverse, the parallel
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Figure 2: Parallel efficiency of the PaFiBo-
NOROBAIFEM-2D algorithm, for several val-
ues of δ l, with n=10000 and m=101.

Table 3: Speedups and processors allocated of the
PNEPCGS method, for several values of δ l, with
n=10000 and m=101.

“Retention” Speedups for PNEPCGS
parameter Number of processors

2 4 8
δ l= 1 1.480 1.537 1.677
δ l= 2 1.901 2.691 3.353
δ l= m 1.932 3.576 6.559

δ l= 2m 1.939 3.625 6.608
δ l= 4m 1.945 3.697 6.613
δ l= 6m 1.956 3.736 6.700

Table 4: Parallel Efficiency of the PNEPCGS
method, for several values of δ l, with n=10000
and m=101.

“Retention” Efficiency for PNEPCGS
parameter Number of processors

2 4 8
δ l= 1 0.740 0.384 0.210
δ l= 2 0.951 0.673 0.419
δ l= m 0.966 0.894 0.820

δ l= 2m 0.969 0.906 0.826
δ l= 4m 0.973 0.924 0.827
δ l= 6m 0.978 0.934 0.837

efficiency is almost close to the upper theoretical
bound for all values of the “retention” parameter
δ l.

Additionally for large values of the “retention”
parameter, i.e. multiples of the semi-bandwidth
m, the speedups and the efficiency tend to the up-
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Figure 3: Speedups and processors allocated of
the PNEPCGS method, for several values of δ l,
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Figure 4: Parallel efficiency of the PNEPCGS
method, for several values of δ l, with n=10000
and m=101.

per theoretical bound, for the parallel normalized
preconditioned conjugate gradient method, since
the coarse granularity amortizes the paralleliza-
tion overheads.

Finally, we state that the new parallel normal-
ized approximate inverse preconditioned method,
can be efficiently used for solving non-linear
initially/boundary value problems on symmet-
ric multiprocessor systems, and investigate the
implementation on different computational plat-
forms.
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