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A Time-Domain FEM-BEM Iterative Coupling Algorithm to Numerically
Model the Propagation of Electromagnetic Waves

Delfim Soares Jr.1

Abstract: In this work, a time-domain finite el-
ement – boundary element iterative coupling tech-
nique is presented in order to analyse electromag-
netic scattering from two-dimensional inhomoge-
neous objects. In the iterative coupling algorithm,
the domain of the original problem is subdivided
into sub-domains and each sub-domain is anal-
ysed independently (as an uncoupled model) tak-
ing into account successive renewals of variables
at common interfaces. In order to improve the ef-
fectiveness of the iterative coupling approach, the
evaluation of an optimised relaxation parameter
is discussed, taking into account the minimisa-
tion of a square error functional. The algorithm
that arises is efficient, accurate and flexible. At
the end of the paper, numerical examples are pre-
sented, illustrating the potentialities of the pro-
posed methodology.
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1 Introduction

In engineering analysis there is no single numer-
ical method that can most properly handle all
problems. The Finite Element Method (FEM),
for instance, is well suited for modelling inho-
mogeneous and anisotropic media, as well as for
dealing with non-linear behaviour. For systems
with infinite extension and regions of high lo-
cal concentrations and/or field variations, how-
ever, the use of the Boundary Element Method
(BEM) is more advantageous. In fact, it did not
take long until some researchers started to com-
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bine the FEM and the BEM in order to profit from
their respective advantages and try to avoid their
disadvantages. Up to now, although a consider-
able amount of publications is available concern-
ing FEM-BEM coupled analysis, few publications
concentrate on the topic when time-domain elec-
tromagnetic modelling is focused.

According to Jiao et al. (2001), the first works
on the theme seems to date from the begin-
ning of the decade. Jiao et al. (2001) pre-
sented a time-domain finite element – bound-
ary integral method to analyse electromagnetic
scattering from two-dimensional inhomogeneous
objects. Later on, alternative approaches have
been proposed and three-dimensional analyses
have been considered (e.g., Jiao et al., 2002;
McCowen et al., 2003; Qiu et al., 2007 etc.).
Taking into account transformed-domain analyses
(especially frequency-domain analyses), FEM-
BEM coupling techniques are well established,
and several works are currently available consid-
ering electromagnetic modelling, namely: Stupfel
(2001), Liu and Jin (2001, 2002), Volakis et al.
(2004), Tzoulis and Eibert (2005), Botha and Jin
(2005), Eibert (2007) etc. (for further related top-
ics, the reader is referred to Edelvik and Ledfelt,
2002; Bleszynski et al., 2004; Jose et al., 2004;
Young et al., 2005; Frangi et al., 2006 etc.).

For most FEM-BEM coupling procedures, a cou-
pled system of equations is established, which af-
terwards has to be solved at each time-step of the
time-domain analysis. Due to the coupling of usu-
ally large FEM matrices with fully populated non-
symmetric BEM matrices, the matrices involved
in these coupled analyses are large and not banded
or sparsely populated. This presents a combi-
nation of drawbacks, which drastically increases
the complexity and the computational costs of the
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methodology (optimised solvers can no longer be
employed etc.). In order to avoid this severe dis-
advantage of standard FEM-BEM coupled formu-
lations, iterative coupling procedures have been
developed.

Taking into account time-domain hyperbolic ap-
plications, an iterative FEM-BEM coupling algo-
rithm was introduced by Soares et al. (2004), in
order to analyse dynamic two-dimensional elasto-
plastic models. Later on, the procedure was ex-
tended, being applied to model solid-fluid inter-
action (Soares et al., 2005), as well as to simu-
late three-dimensional and axisymmetric mechan-
ical applications (von Estorff and Hagen, 2005;
Warszawski et al., 2008). As reported in these
previous works, iterative FEM-BEM coupling al-
gorithms exhibit several advantages when com-
pared to standard coupling schemes, as for in-
stance: (i) FEM and BEM sub-domains can
be analysed separately, leading to smaller and
better-conditioned systems of equations (differ-
ent solvers, suitable for each sub-domain, may
be employed); (ii) only interface routines are re-
quired when one wishes to use existing codes to
build coupling algorithms; (iii) non-linearities can
be taken into account in the same iterative loop
needed for the coupling, thus, consideration of
non-linear models (within the FE sub-domains)
does not introduce a relevant CPU time increase;
etc..

Recently, Yılmaz et al. (2007) presented a time-
domain FEM-BEM coupling methodology based
on an outer-inner iterative scheme to analyse elec-
tromagnetic waves. In that work, the so-called
“outer” iterative process was adopted in order to
more efficiently deal with the FEM-BEM cou-
pled system of equations, uncoupling it, and the
“inner” iterative process was related to the solu-
tion of the uncoupled systems of equations that
arose by iterative solvers. As reported by the au-
thors, the technique provided an efficient and sta-
ble methodology. The current work is an advance
on the topic: here, optimised iterative procedures
are proposed, rendering a more effective and ro-
bust technique.

In the present work, a time-domain FEM-BEM it-
erative coupling algorithm to analyse the propaga-

tion of electromagnetic waves through inhomoge-
neous media is described. Two-dimensional mod-
els are focused and the suggested procedures can
be easily extended to more general applications
(e.g., three-dimensional analyses etc.). In the text
that follows, first, the electromagnetic wave prop-
agation governing equations are presented and,
next, the basic FEM and BEM discretization tech-
niques are discussed. In the sequence, the it-
erative FEM-BEM coupling methodology is de-
scribed and an expression for an optimal relax-
ation parameter is introduced. At the end of the
paper, numerical applications are considered, il-
lustrating the accuracy and potentialities of the
proposed technique.

2 Governing equations

Maxwell’s equations in differential form can be
written as follows:

ei jkEk, j = −Ḃi (1a)

ei jkHk, j = Ḋi +Ji (1b)

Di,i = ρ (1c)

Bi,i = 0 (1d)

where indicial notation for Cartesian axes is con-
sidered and ei jk stands for the permutation symbol
(also known as alternator tensor). Inferior com-
mas and overdots indicate partial space and time
derivatives, respectively (i.e., Vi, j = ∂Vi/∂x j and
V̇i = ∂Vi/∂ t, where Vi(X , t) stands for a generic
vector field representation and X and t denote its
spatial and temporal arguments, respectively).

In equations (1), Ei and Hi are the electric
and magnetic field intensity components, respec-
tively; Di and Bi represent the electric and mag-
netic flux density, respectively; and Ji and ρ stand
for the electric current and electric charge density,
respectively. The constitutive relations between
the field quantities are specified as follows:

Di = ε Ei (2a)

Bi = μ Hi (2b)

Ji = σ Ei (2c)

where the parameters ε , μ and σ denote, respec-
tively, the permittivity, permeability and conduc-
tivity of the medium.
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Combining equations (1) and (2), vectorial wave
equations describing the electric and the magnetic
field can be obtained, as is indicated below:

emni(μ−1ei jkEk, j),n +ε Ëm = −J̇m (3a)

emni(ε−1ei jkHk, j),n + μ Ḧm = emni(ε−1Ji),n (3b)

where the wave propagation velocity of the
medium is specified as c = (εμ )−1/2.

Taking into account two-dimensional applica-
tions, equations (3) can be simplified and written
in a unique general form:

(κ−1φ,i),i −ν φ̈ = γ (4)

where φ is a generic representation for an electric
(Ek) or magnetic (Hk) field intensity component
(e.g., i = 1, 2 and k = 3) and γ stands for a generic
source term. κ and ν represent μ or ε , according
to the case of analysis.

Once the governing differential equation is estab-
lished, temporal and spatial boundary conditions
must be defined. The spatial boundary conditions
for the model in focus are:

φ = φ (5a)

θ = φ,ini = θ (5b)

where equation (5a) stands for essential (or
Dirichlet) boundary conditions and equation (5b)
stands for natural (or Neumann) boundary condi-
tions (ni represents an outward unit vector normal
to the boundary). In equations (5), overbars indi-
cate prescribed values.

At the interface between two media, field conti-
nuity conditions are defined as follows:

(φ )+ = (φ )− (6a)

(κ−1θ )+ = −(κ−1θ )− (6b)

which are of great importance in a FEM-BEM
coupling context.

In the sections that follow, the numerical dis-
cretization of the above-presented governing
equations is briefly discussed, taking into account
finite element and boundary element techniques.
In the sequence, the FEM-BEM coupling algo-
rithm is presented.

3 Finite element modelling

In a finite element approach, the incognita field is
spatially interpolated within the element, as indi-
cated below:

φ (X , t) = Nα(X)φα(t) (7)

where N represents element spatial interpola-
tion functions and greek subscripts stand for an
element internal numeration (element nodes or
edges).

Taking into account electromagnetic wave prop-
agation phenomena, the time-domain system of
equations that arises, once finite element spa-
tial discretization is considered (equation (7)), is
given by:

MΦ̈ΦΦn +KΦΦΦn = Fn (8)

where ΦΦΦ is a generic vector describing electric or
magnetic field components and F is a vector of
generalized applied sources. The superscript n
stands for the current time of analysis. The ma-
trix and vector entries involved in equation (8) are
defined, at element level, as follows:

Mαβ =
∫

Ωe

νNα Nβ dΩ (9a)

Kαβ =
∫

Ωe

κ−1 (N,i)α(N,i)β dΩ (9b)

Fα =
∫

Γe

Nα κ−1θdΓ−
∫

Ωe

Nα γdΩ (9c)

where Γe and Ωe stand for the boundary and the
domain of the element, respectively.

In order to discretize equation (8) in the time do-
main, the Newmark method is here employed. In
the Newmark method, the following relations are
considered:

Φ̈ΦΦn = (1/(η1Δt2)) (ΦΦΦn−ΦΦΦn−1)−(1/(η1Δt))Φ̇ΦΦn−1

− (1/(2η1)−1)Φ̈ΦΦn−1
(10a)

Φ̇ΦΦn = Φ̇ΦΦn−1 +(Δt(1−η2))Φ̈ΦΦ
n−1 +(η2Δt)Φ̈ΦΦn

(10b)
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where η2 ≥ 0.5 and η1 ≥ 0.25(0.5+η2)2 are the
newmark parameters and Δt is the selected time-
step.

After introducing equations (10) into the system
of equations (8), as well as considering the bound-
ary conditions of the problem, the following sys-
tem of equations arises, which enables the com-
putation of the transient FEM response at time tn:

AXn = Bn (11)

where A and B are the FEM effective matrix and
vector, respectively, and the entries of X are the
unknown variables (one should observe that vec-
tor B accounts for boundary prescribed conditions
and domain sources, as well as some previous step
contributions).

4 Boundary element modelling

In a boundary element approach, the incognita
fields (mixed formulation) are temporally and
spatially interpolated within the element, as indi-
cated below:

φ (X , t) = Nα(X)Mm(t)φ m
α (12a)

θ (X , t) = Nα(X)Mm(t)θ m
α (12b)

where, once again, N represents element spatial
interpolation functions and greek subscripts stand
for an element internal numeration. M represents
temporal interpolation functions (one should keep
in mind that different interpolation functions may
be considered regarding the φ and θ incognita
fields).

Taking into account electromagnetic wave prop-
agation phenomena, the system of equations that
arises, once time-domain boundary element spa-
tial and temporal discretization is considered
(equation (12)), is given by:

CΦΦΦn = GnmΘΘΘm −HnmΦΦΦm +Sn (13)

where m = 1, . . . , n; C is a geometric matrix and
G and H are influence matrices. once again, equa-
tion (13) stands for a general expression: ΦΦΦ is
a generic vector describing electric or magnetic
field components and ΘΘΘ is related to the spatial
derivatives of these components. S is a vector ac-
counting for generalized source terms.

The entries of the influence matrices involved in
equation (13), as well as of the source vector, are
given by:

Gnm
αβ =

∫

Γ

Nβ

tn∫

0

Φn
α Mm dτ dΓ (14a)

Hnm
αβ =

∫

Γ

Nβ

tn∫

0

Θn
α Mm dτ dΓ (14b)

Sn
α =

∫

Ω

tn∫

0

Φn
α γ dτ dΩ (14c)

where Φ and Θ are the fundamental solutions of
the time-domain two-dimensional model. Φ is de-
fined as follows (Θ = Φ,ini):

Φn
α = Φ(X , tn;Xα ,τ)

=
c

2π
(c2(tn−τ)2 − r2)−1/2H [c(tn−τ)− r]

(15)

where r = |X − Xα | is the distance between
the observation and the collocation point and H
stands for the heaviside function.

After considering the boundary conditions of the
problem, the following system of equations arises
from expression (13), which enables the compu-
tation of the transient BEM response at time tn:

AXn = Bn (16)

where A and B are the BEM effective matrix and
vector, respectively, and the entries of X are the
unknown variables (one should observe that vec-
tor B accounts for boundary prescribed condi-
tions, domain discretized terms and time convo-
lution contributions).

5 Finite element – boundary element cou-
pling

In the present work, the finite element – bound-
ary element coupling is carried out by means of
an iterative procedure. In this iterative approach,
each sub-domain of the model is analysed inde-
pendently and a successive renewal of the vari-
ables at the common interfaces is performed, un-
til convergence is achieved. In order to maximize
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the efficiency and robustness of the proposed it-
erative coupling algorithm, the evaluation of an
optimised relaxation parameter is introduced, tak-
ing into account the minimisation of a square error
functional.

The notation (k)
F/BV is here adopted in order to bet-

ter explain the iterative coupling method: accord-
ing to this notation, a variable V, computed by
FEM or BEM techniques (F/BV), is at a common
interface, at an iterative-step k ((k)V).

Initially, in the FEM-BEM iterative coupling, the
FEM sub-domains are analysed and the FEM
electromagnetic field components at the common
interfaces are evaluated ((k+ϕ)

F ΦΦΦn), as described in
section 3. In the sequence, a relaxation parameter
ϕ is introduced in order to ensure and/or to speed
up convergence, such that:

(k+1)
F ΦΦΦn = (ϕ)(k+ϕ)

F ΦΦΦn +(1−ϕ)(k)
F ΦΦΦn (17)

Once (k+1)
F ΦΦΦn is computed, the field continuity

equation (equation (6a)) is considered, providing
the following relation:

(k+1)
B φn = (k+1)

F φ n (18)

which enables the computation of the BEM essen-
tial prescribed boundary conditions at the com-
mon interfaces. In the sequence, the BEM sub-
domains are analysed, as described in section 4,
and vector (k+1)

B ΘΘΘn is evaluated at the common in-
terfaces.

Once (k+1)
B ΘΘΘn is computed, the field derivative

continuity equation (equation (6b)) is considered,
providing the following relation:

(k+1)
F θ n

= − (k+1)
B θ n(Bκ−1/Fκ−1) (19)

which enables the computation of the FEM natu-
ral prescribed boundary conditions at the common
interfaces. In the sequence, the FEM sub-domains
are once again analysed, repeating the whole pro-
cess until convergence is achieved.

As can be observed, the iterative coupling ap-
proach allows BEM and FEM sub-domains to
be analysed separately, leading to smaller and
better-conditioned systems of equations (differ-
ent solvers, suitable for each sub-domain, may be

employed). Moreover, the proposed procedure is
easy to implement and only interface routines are
required when one wishes to use existing codes to
build coupling algorithms.

The effectiveness of the iterative coupling
methodology is intimately related to the relax-
ation parameter selection: an inappropriate se-
lection for ϕ can drastically increase the num-
ber of iterations in the analysis or, even worse,
make convergence unfeasible. Once appropriate
ϕ values are considered, convergence is usually
achieved in quite few iterative steps, providing
an efficient and robust FEM-BEM coupling tech-
nique. In the next sub-section, an expression for
an optimal relaxation parameter is deduced.

5.1 Optimal relaxation parameter

In order to evaluate an optimal relaxation param-
eter, the following square error functional is here
minimized:

f (ϕ) = ||(k+1)
B ΦΦΦn(ϕ)− (k)

B ΦΦΦn(ϕ)||2 (20)

Taking into account the relaxation of the electro-
magnetic field components for the (k +1) and (k)
iterations, equations (21a) and (21b) may be writ-
ten, regarding equations (17)-(18):

(k+1)
B ΦΦΦn = (ϕ)(k+ϕ)

F ΦΦΦn +(1−ϕ)(k)
F ΦΦΦn (21a)

(k)
B ΦΦΦn = (ϕ)(k+ϕ−1)

F ΦΦΦn +(1−ϕ) (k−1)
F ΦΦΦn (21b)

Substituting equations (21) into equation (20)
yields:

f (ϕ) = ||ϕ (k+ϕ)W+(1−ϕ) (k)W||2
= ϕ2|| (k+ϕ)W||2 +2ϕ(1−ϕ) ((k+ϕ)W, (k)W)

+(1−ϕ)2|| (k)W||2
(22)

where the inner product definition is employed
(e.g.,(W,W) = ||W||2) and new variables, as de-
fined in equation (23), are considered.

(k+λ)W = (k+λ)
F ΦΦΦn − (k+λ−1)

F ΦΦΦn (23)

To find the optimal ϕ that minimizes the func-
tional f (ϕ), equation (22) is differentiated with
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Figure 1: Sketch of the model and adopted spatial discretization for the homogeneous medium analysis: (a)
case 1 – one wire; (b) case 2 – two wires.

respect to ϕ and the result is set to zero, as de-
scribed below:

ϕ|| (k+ϕ)W||2 +(1−2ϕ) ((k+ϕ)W, (k)W)

+ (ϕ −1)|| (k)W||2 = 0 (24)

Re-arranging the terms in equation (24) yields:

ϕ = ((k)W, (k)W− (k+ϕ)W)/|| (k)W− (k+ϕ)W||2
(25)

which is an easy to implement expression that
provides an optimal value for the relaxation pa-
rameter ϕ , at each iterative step.

It is important to note that the relation 0 < ϕ ≤ 1
must hold. In the present work, the optimal relax-
ation parameter is evaluated according to equation
(25) and if ϕ /∈ (0.01;1.00) the previous iterative-
step relaxation parameter is adopted. For the first
iterative step, ϕ = 0.5 is selected.

6 Numerical Applications

In the next sub-sections, some numerical applica-
tions are presented, illustrating the potentialities
of the proposed methodology. In the first appli-
cation, the electromagnetic fields associated to in-

finitely long wires carrying polynomial-like time-
dependent currents are analysed. In the second
example, a three media model is considered and
the electromagnetic wave propagation through the
different materials, due to a time-sinusoidal cur-
rent, is analysed.

For all the applications that follow, within the
FEM sub-domains, the trapezoidal rule (η1 =
0.25 and η2 = 0.50) is considered for time in-
tegration and linear finite elements are adopted.
For the BEM sub-domains, spatial discretization
based on linear boundary elements is adopted and
linear and piecewise constant time interpolation
functions are considered for the electromagnetic
field components and their directional derivatives,
respectively. The convergence of the iterative
coupling process is analysed based on the FEM
computed fields and residual norms (in the present
work, a tolerance error of 10−3 is selected).

6.1 Homogeneous medium

In the present application, the electromagnetic
fields surrounding infinitely long wires are stud-
ied (Soares and Vinagre, 2008). Two cases of
analysis are focused, namely: (a) case 1, where
one wire is considered; (b) case 2, where two
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Figure 2: Time history results for the electric inten-
sity field at points A and B considering I(t) = t: (a)
case 1; (b) case 2.
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Figure 3: Time history results for the electric inten-
sity field at points A and B considering I(t) = t2:
(a) case 1; (b) case 2.

wires are employed. For both cases, the wires are
carrying time-dependent currents (i.e., I(t) = t or
I(t) = t2) and they are located along the adopted
z-axis. A sketch of the model is depicted in Fig.1.

The adopted spatial discretization is also de-
scribed in Fig.1: 2344 triangular finite elements
and 80 boundary elements are employed in the
analyses (the radius of the FEM-BEM interface
is defined by R = 1m). For temporal discretiza-
tion, the selected time-step is given by Δt = 5 ·
10−11s. The physical properties of the medium
(air) are: μ = 1.2566 ·10−6H/m and ε = 8.8544 ·
10−12F/m.

Fig.2 shows the modulus of the electric field in-
tensity obtained at points A and B (see Fig.1) con-
sidering the proposed methodology and I(t) = t.
Analytical time histories (Machado, 2006) are
also depicted in Fig.2, highlighting the good ac-
curacy of the numerical results. In Fig.3 analo-
gous results are presented considering I(t) = t2.
In Fig.4, charts are displayed, indicating the per-
centage of occurrence of different relaxation pa-
rameter values (evaluated according to expression
(25)), in each analysis. As can be observed, for
all considered cases, optimal relaxation parame-
ters are mostly in the interval 0.7 ≤ ϕ ≤ 0.8.
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Figure 4: Percentage of occurrence of different relaxation parameter values during the analysis: (a) case 1 -
I(t) = t; (b) case 2 - I(t) = t; (c) case 1 - I(t) = t2; (d) case 2 - I(t) = t2.
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Figure 5: Sketch of the model and adopted spatial discretization for the heterogeneous medium analysis.

In fact, an optimal relaxation parameter selection
is extremely case dependent. It is function of
the physical properties of the model, geometric
aspects, adopted spatial and temporal discretiza-
tions etc. Equation (25) provides a simple expres-
sion to evaluate this complex parameter easily and
properly.

6.2 Heterogeneous medium

In this numerical application, two close walls, sur-
rounded by air (material 1), are considered. The
first wall is made of concrete (material 2: ε =
4.427 · 10−11F/m) and the second wall (which
is thinner) is made of steel (material 3: μ =
875 · 10−6H/m). A long wire, carrying a time-
sinusoidal current (i.e., I(t)= Asin(wt)) is located
between the walls, as indicated in Fig.5. In Fig.5,
the adopted spatial discretization is also depicted:
both FEM and BEM meshes are horizontally ex-
tended according to the time duration of the anal-
ysis in focus (causality). The geometry of the
model is defined by: L = 0.1m. The adopted time-
step is Δt = 5 ·10−12s.

Fig.6 shows the modulus of the electric field in-
tensity obtained at points A and B (see Fig.5)
considering the proposed methodology. FEM
time history results (computed considering a large
enough mesh) are also depicted in Fig.6, as a ref-
erence. In Fig.7, the spatial and temporal evo-

lution of the electric field intensity is illustrated,
considering the central part of the FEM-BEM
coupled mesh and part of the mesh related to the
FEM analysis (the FEM-BEM results are plotted
over the FEM mesh, in Fig. 7). As can be ob-
served, results are in good agreement, in spite of
the relative poor spatial discretization adopted.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-1.5

-1.2

-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

1.2

1.5

Point B Point A

  FEM
 FEM-BEM

E
le

ct
ric

al
 F

ie
ld

 In
te

ns
ity

 E
z (

10
3 V

/m
)

Time (10-9s)

Figure 6: Time history results for the electric in-
tensity field at points A and B.

In the present analysis, the average value for the
computed optimal relaxation parameters is 0.93
and the average number of iterations per time step
is 3.6 (which is a typical value).
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Figure 7: Electric intensity field temporal and
spatial evolution considering FEM and FEM-
BEM coupled analysis: (a) t = 0.3·10−9 s; (b) t
= 0.6·10−9 s; (c) t = 1.0·10−9 s.

7 Conclusions

In this work, a time-domain FEM-BEM itera-
tive coupling procedure is discussed. The pro-
posed formulation is very attractive since it al-
lows each sub-domain of the global model to be
independently and optimally treated. As another
advantage, the formulation allows existing codes
or computer programs to be employed in cou-
pled analyses once simple interface routines are
implemented. As a consequence, quite complex
electromagnetic phenomena can be properly anal-
ysed, taking into account the benefits of different
numerical methods.

In order to improve the efficiency and robustness
of the time-domain iterative coupling algorithm,
the evaluation of optimal relaxation parameters is
discussed and an easy to implement expression
is presented. In fact, the effectiveness of the it-
erative algorithm is closely related to a proper
relaxation parameter selection: an inappropriate
value can drastically increase the number of itera-
tions in the analysis or, even worse, make conver-
gence unfeasible. Once suitable parameters are
employed, convergence is achieved in quite few
iterative steps (mostly, less than four iterations per
time-step are necessary).

At the end of the paper, numerical applications
are considered, illustrating the good level of ac-
curacy of the proposed formulation, as well as its
flexibility and applicability to model electromag-
netic wave propagation through infinite-domain
media, taking into account scattering from inho-
mogeneous objects.
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