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Force State Maps Using Reproducing Kernel Particle Method and Kriging
Based Functional Representations
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Abstract: The problem of identification of
nonlinear system parameters from measured time
histories of response under known excitations is
considered. Solutions to this problem are ob-
tained by using the force state mapping tech-
nique with two alternative functional representa-
tion schemes. These schemes are based on the
application of reproducing kernel particle method
(RKPM) and kriging techniques to fit the force
state map. The RKPM has the capability to re-
produce exactly polynomials of specified order at
any point in a given domain. The kriging based
methods represent the function under study as a
random field and the parameters describing this
field are optimally determined based on available
observations. The present study investigates the
performance of RKPM and kriging based fits to
the force state maps for a variety of nonlinear dy-
namical systems. The study also examines the
application of force state maps in (a) determin-
ing the fixed points limit cycles of the system and
their stability, (b) determining the properties of
the linear system which would result if nonlinear-
ity were to be absent, and (c) dealing with nonlin-
earities that are continuous but not differentiable
and nonlinearities that are discontinuous at a set
of points within the domain of interest. Illustra-
tive examples on single and multi-degrees of free-
dom nonlinear systems are presented to demon-
strate the scope of the proposed procedures.
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1 Introduction

Problems of nonlinear dynamical system identifi-
cation are presently one of the most challenging
problems in structural mechanics. Currently there
exists wide ranging methods that work in time or
frequency domains to tackle this problem (Ker-
schen et al., 2006). Force state mapping is one
of the time domain methods for nonlinear sys-
tem identification that can be viewed as a non-
parametric method for system identification and
this method constitutes the focus of the present
study. The essence of the method can be ex-
plained by considering the dynamics of a single
degree of freedom (SDOF) nonlinear system

mẍ+G(x, ẋ) = g(t) ; x(0) = x0, ẋ(0) = ẋ0 (1)

Assuming that the mass of the system is known
and that we are able to measure the applied force
g(t) and the response acceleration ẍ(t), an expres-
sion for the unknown restoring force G(x, ẋ) can
be obtained as

G [x(t), ẋ(t)] = g(t)−mẍ(t) (2)

Furthermore, if x(t) and ẋ(t) are also measured,
the function G [x(t), ẋ(t)] can be plotted as a sur-
face over the phase plane plot of x(t) versus ẋ(t)
and this surface is called the restoring force sur-
face. It is of interest to note that the nature of
restoring force surface G(x, ẋ) remains unchanged
if excitation g(t) or the initial conditions x(0) and
ẋ(0) are changed. Figure 1 shows a typical restor-
ing force surface for a nonlinear system along
with the associated phase plane plot. The idea
of force state map method is to fit the above sur-
face using suitable set of known functions which,
in turn, lead to the characterization of the sys-
tem. Figure 1 also shows the restoring force sur-
face that has been fitted numerically based on



124 Copyright c© 2008 Tech Science Press CMES, vol.32, no.3, pp.123-159, 2008

(a)

(b) 

Figure 1: Illustration of a typical force state map;
(a) phase plane plot; (b) the associated force state
map.

observed x(t), ẋ(t) and computed G [x(t), ẋ(t)].
The idea of force state map was originally pro-
posed by Masri and Caughey (1979), Crawley
and Aubert (1986), and Crawley and O’Donnell
(1986,1987a,b). Masri and Caughey (1979) pro-
posed that the restoring force surface be fitted us-
ing Chebychev polynomials as

G [x(t), ẋ(t)] =
m

∑
i=0

n

∑
j=0

Ci jTi(x)Tj (ẋ) (3)

Crawley and Aubert (1986) advocated the use of
measured force state maps, either as plain look-up
tables, or, as a mathematically fitted surface, to
characterize nonlinear behavior of joints. These
authors also noted the versatility of the approach
to handle arbitrary strong nonlinearity. Crawley

and O’Donnell (1987) considered the force state
mapping method as a three step procedure involv-
ing (a) selection and application of the excitation
force, (b) processing of the system response to
construct the force state map, and (c) extraction
of the pertinent system parameters from the map.
These authors note the need to measure simul-
taneously the quantities x(t), ẋ(t), ẍ(t) and g(t)
and have discussed the possible use of state es-
timation methods to consistently estimate all the
states when measurements are fewer than what is
needed. Furthermore, assuming that the form of
the nonlinearity is known, the authors used the
least squares algorithm to fit the restoring force
surface.

Masri et al., (1982, 1987a, b) considered the
problem of identification of parameters of multi-
degree of freedom (MDOF) systems using force
state mapping techniques. Here the normal modes
of the linear system are used to expand the re-
sponse of the nonlinear system. The result-
ing equations in the generalized coordinates are
clearly expected to be mutually coupled. The au-
thors, however, make an ad hoc simplifying as-
sumption that the coupling terms in the gener-
alized equations can be ignored, which, in turn,
enables the construction of a set of force state
maps for the resulting uncoupled dofs. The dif-
ficulties associated with the simultaneous mea-
surement of displacement, velocity and acceler-
ation, as is required in the implementation of the
force state mapping method, has been discussed
by Worden (1990a, b). The author discusses nu-
merical strategies for estimating two of the re-
quired quantities in terms of measurement on the
remaining one and also examines the issues re-
lated to the choice of the test signals in achiev-
ing this. In a series of papers, Al-Hadid and
Wright (1989,1990,1992) have examined the fol-
lowing issues: (a) the performance of the method
when ordinary polynomials are used to for the
force state map instead of the orthogonal poly-
nomials such as the Chebychev polynomials, (b)
identification of location of discrete nonlineari-
ties, (c) examination of the performance of the
method when applied to the study of a T-beam,
and (d) the performance of the method vis-à-vis
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the need for the knowledge of the mass or the
modal mass. The possibility of developing the
force state map method in frequency domain for
identification of nonlinearities at joints has been
explored by Kim and Park (1994). The study by
Duym and Schoukens (1996) consider the errors
in force state map method arising out of measure-
ment noise and incompleteness of model and pro-
pose a method for optimal points of grid points
in fitting the force state map. The application of
the force state mapping method to identify a sys-
tem with double well potential has been investi-
gated by Shin and Hammond (1998a). Experi-
mental data from a beam oscillating under the in-
fluence of two symmetrically placed magnets are
employed in this study and the authors investi-
gate the performance of the method in its linear
and chaotic response regimes. The same authors
(Shin and Hammond 1998b), in a separate study,
note the possibility of construction of phase por-
trait form a single measured state variable by us-
ing delay coordinates and the resulting pseudo-
phase portrait is subsequently used in construc-
tion of force state map. An analysis of the errors
in the parameter estimates obtained using force
state mapping has been discussed by Meskell and
Fitzpatrick (2002). These authors employ phasor
notations to investigate parameter identification
problems associated with linear SDOF systems.
The applications of force state mapping method
to specific applications have been discussed by a
few authors. Thus Meskell et al., (2001) discuss
the application of the method for identification of
damping in fluid-structure interaction problems.
The parameters associated with fluid-elastic insta-
bilities in a triangular tube array have been inves-
tigated by Meskell and Fitzpatrick (2003). Phani
and Venkatraman (2003) have used the method
in their study on damping behavior of sandwich
beam with electro-rheological fluid.

One of the issues in the implementation of the
force state mapping method has been the choice of
functional representation of the restoring surface.
The Chebychev polynomials proposed by Masri
and Caughey (1979), and, used subsequently by
several authors, are a set of orthogonal polyno-
mials. Consequently, one need not re-estimate

the coefficients if a lower order model is accept-
able (Worden and Tomlinson, 2001). However
they obscure the meaning of the system param-
eters and their use is computationally intensive.
The polynomial models discussed by Al-Hadid
and Wright (1989, 1990, 1992) are not best suited
if the restoring surface is non-differentiable or dis-
continuous at a set of points. In fact, Worden and
Tomlinson (2001) note: “. . . In the family of poly-
nomial approximations to a given function over
a given interval, there will be one which has the
smallest maximum deviation from the function
over the interval. This approximating polynomial-
the minimax polynomial- has so far eluded dis-
covery. . . ”.

In this context it is of interest to note that in
the area of computational mechanics that em-
ploys meshfree and particle methods, several
functional representation schemes have been de-
veloped. Overviews on these developments are
available in the works of Li and Liu (2002) and
Atluri (2004,2005). These methods include repro-
ducing kernel particle method (RKPM), moving
least squares (MLS) method, radial basis function
(RBF), and multi-quadratic radial basis function
(MQ-RBF) method. There exists a wide range
of literature on the application of these methods
for representing field variables in meshfree com-
putational methods: see, for instance, the works
of Liu 1995, Li and Liu 2002, Liu 2003, Atluri
(2004, 2005), Choi and Marcozzi 2004, Han et
al., 2005, Hon et al., 2005, La Rocca et al., 2005,
Atluri et al., 2006a,b, Nie et al., 2006, Sladek et
al., 2006, Shaw and Roy 2007, Yuan et al., 2007,
Long et al., 2008, Libre et al., 2008, Ma 2008,
Orsini et al., 2008, and Le et al., 2008, A discus-
sion on the possible mutual equivalence of these
methods is also available (Li and Liu 2002).Yet
another class of methods for functional represen-
tation, known as kriging, is widely used in design
analysis of computer experiments (Santner et al.,
2003). The present authors believe that these de-
velopments have important bearing on develop-
ment of force state maps in the context of non-
linear system identification. With this in view,
we consider, in the present paper, the problem
of exploring the usefulness of RKPM and kriging
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based methods for force state map construction.

The RKPM methods have been developed in the
context of representing field variables in mesh-
free computational methods (see, for instance, Liu
1995, Li and Liu 2002, Liu 2003, and Shaw and
Roy 2007). The RKPM based functions have the
capability to represent polynomials of a given or-
der exactly at any point within a specified domain.
The method also possesses attributes such as ca-
pabilities for space or time localization, hp-like
adaptivity, and multi-resolution analysis. More
importantly, the methods have the capabilities to
satisfactorily represent functions that have points
of non-differentiability and (or) discontinuities
within the domain of interest. To the best of
the authors’ knowledge, the usefulness of RKPM
based functional representations for the restoring
surface in the context of the force state mapping
method has not been explored in the existing lit-
erature. It is proposed in the present study to
address this issue. Specifically the present study
aims to answer the following questions:

(a). How do the RKPM based methods per-
form in the context of force state mapping
method? Can these methods be used to
model nonlinearities that are either not dif-
ferentiable or continuous at a set of points
within the domain of interest?

(b). Is qualitative analysis of nonlinear system
possible with FSM? Can we determine fixed
points and limit cycles of the system and in-
vestigate their stability using force state map-
ping method?

(c). Using the force state mapping method, un-
der what conditions would it be possible to
determine the properties of the linear system
that would result if nonlinearity were to be
absent?

(d). How do restoring force surface fit methods
perform if nonlinearities are not known and
are not of polynomial type?

Another functional representation scheme which
has met with success in engineering applica-
tions (Sacks et al., 1989, Santner et al., 2003,

Lophaven et al., 2003, Kaymaz 2005 and Panda
and Manohar 2008) but not explored in the con-
text of force state map construction is the krig-
ing based approximation. These representations
adopt a probabilistic approach and the essential
idea is to treat the function to be represented as
nonstationary Gaussian random field with a pos-
tulated form of the nonstationary mean term and
a homogeneous random field term having a spec-
ified covariance functional form. The functional
form of the covariance function is taken to be
known while its parameters are considered to be
unknowns. Based on the available data these un-
known parameters are estimated using the method
of maximum likelihood estimation. In a subse-
quent step, the values of the function at points
where its values are unknown are estimated us-
ing the criterion of minimization of mean square
error of prediction. In the context of force state
map construction, the advantage of application of
kriging based approximation is that these methods
are capable of taking into account the effect of
the measurement noise in the observations. The
present study explores the performance of krig-
ing based force state map construction in nonlin-
ear structural system identification.

As a prelude to developing answers to these ques-
tions we first present a brief overview of func-
tional representations using RKPM and kriging
technique.

2 Reproducing Kernel Particle Method
(RKPM)

2.1 Representation of smooth functions

The exposition of the basics of RKPM has been
provided by several authors: see for example, the
papers by Liu et al., (1995a,b), Belytschko et al.,
1996, Chen et al., (1996), Aluru, (2000), Chen et
al., (2003), and Shaw and Roy (2007). We briefly
summarize here the essence of the procedure. For
this purpose we consider a one-dimensional func-
tion u(x) which is sufficiently smooth and defined
over x ∈ Ω ⊂ R1. Let us consider the transforma-
tion

ν(x) = Tu(x) =
∫
Ω

φ (x, s)u(s)ds (4)
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Here T is a linear transformation, φ (x, s) is known
as the kernel function, and ν(x) is the kernel ap-
proximation to the function u(x). If φ (x, s) =
δ (s− x), it follows that ν(x) = u(x) ∀x ∈ Ω, that
is,

ν(x) =
∫
Ω

δ (x− s)u(s)ds = u(x) (5)

When the condition φ (x−s) = δ (x−s) is not sat-
isfied, the representation ν(x) of u(x) could suffer
from phase and amplitude distortion and distor-
tions near the boundary. Liu et al., (1995a, b)
proposed a correction and introduced the kernel
approximation as

ua(x) =
∫
Ω

φ a (x;x− s)u(s)ds (6)

with the modified kernel function φ a(x;x − s)
given by

φ a(x;x− s) = C(x;x− s)φa(x− s) (7)

where C(x;x− s) is the correction function, to be
determined; and φa(x− s) is the kernel function.
Furthermore, the kernel function φa(x−s) is taken
to be known and, typically, assumed to be given
by a cubic spline function, that is,

φ (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 z < −2
(z+2)3

6 −2 ≤ z ≤ −1
2
3 − z2(2+z)

2 −1 ≤ z ≤ 0
2
3 − z2(2−z)

2 0 ≤ z ≤ 1

− (z−2)3

6 1 ≤ z ≤ 2
0 z > 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

with z = x−s
a . The parameter a appearing in this

equation is termed as the dilational parameter.
Its choice ensures that the support of φa(x − s)
is compact. Figure 2 illustrates typical plots of
φa(x− s) for s = 2 and for different values of a.

The determination of the correction function
C(x;x− s) is based on the condition that ua(x) re-
produces the function u(x) exactly at all x ∈ Ω
whenever u(x) is a polynomial. If u(x) is not
a polynomial, ua(x) is conditioned to reproduce
Taylor’s expansion of u(x) up to a specified order.

Figure 2: Plots of kernel function φa(x− s) at s =
2 for different values of the dilational parameter
a.

For computational purposes it is assumed that the
domain Ω is discretized by a set of grid points
{xi}N

i=1 with the associated nodal values of func-
tion u(x) given by ui = u(xi); i = 1,2, . . .,N. The
integral representation of equation (6) can now be
replaced by a summation of the form (Liu et al.,
1995a,b)

ua(x) =
N

∑
i=1

C (x−xi)φa (x−xi)ui (9)

where
{

φa (x−xi) = 1
aφ
( x−xi

a

)}
is the known

kernel function centered at x = xi. According
to Liu et al., (1995a,b) the correction function
C (x−xi) is taken as

C (x−xi) =b0(x)+(x−xi)b1(x)+ . . .

+(x−xi)
Np bNp(x)

=HT (x−xi)b(x)

(10)

with

HT (x−xi) ={
(x−xi)

0 (x−xi)
1 · · · (x−xi)

}Np

1×(Np+1)

being the set of monomial basis functions and

b(x) =
{

b0(x) b1(x) · · · bNp(x)
}T

being the (Np +1)×1 set of unknown functions to
be determined. Equation (9) may now be written
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as,

ua(x) =
N

∑
i=1

ψi(x)ui (11)

The functions ψi(x); i = 1,2, . . .,N are the RKPM
shape functions. In terms of the correction and
kernel functions, the shape functions are given by

ψi(x) = HT (x−xi)b(x)φa (x−xi) (12)

To determine the unknown vector b(x), we now
impose the condition that ua(x) reproduces u(x)
exactly up to a desired order as mentioned before.
To develop this notion, we begin by consider the
problem of exact reproduction of a constant. The
requisite condition is clearly given by

N

∑
i=1

ψi(x)x0
i = 1 (13)

It also follows that

N

∑
i=1

ψi(x) (x−xi)
0 = 1 (14)

Similarly, the reproduction of function x is given
by

N

∑
i=1

ψi(x)xi = x (15)

and this can be re-written as

x−
N

∑
i=1

ψi(x) (x−xi) = 0 (16)

Noting that
N
∑

i=1
ψi(x) = 1, the above equation can

also be written as

x
N

∑
i=1

ψi(x)−
N

∑
i=1

ψi(x)xi = 0 (17)

from which it follows

N

∑
i=1

ψi(x) (x−xi) = 0 (18)

Extending this logic to the reproduction of x2, one
gets

N

∑
i=1

ψi(x)x2
i = x2 (19)

This can be re-written as

N

∑
i=1

ψi(x)
(
x2

i −x2
)

=
N

∑
i=1

ψi(x)
(
x2

i −2x2 +x2)

=
N

∑
i=1

ψi(x)x2
i −2x2

N

∑
i=1

ψi(x)+x2
N

∑
i=1

ψi(x)

=
N

∑
i=1

ψi(x)x2
i −2x

N

∑
i=1

ψi(x)xi +x2
N

∑
i=1

ψi(x)

=
N

∑
i=1

ψi(x)(x−xi)
2

(20)

Similarly, it can be shown that the reproduction
condition for the function xNp is given by

N

∑
i=1

ψi(x)xNp
i = xNp (21)

leading to

N

∑
i=1

ψi(x) (x−xi)
Np = 0 (22)

Equations (14), (18), (20) and (22) can be written
in a compact form as,

N

∑
i=1

ψi(x)H (x−xi) = H(0) (23)

where

H(0) =
{

1 0 · · · 0
}

(Np+1)×1

Now using equations (12) and (23), we obtain

N

∑
i=1

HT (x−xi)b(x)φa (x−xi)H (x−xi) = H(0)

(24)
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Noting that the product HT (x−xi)b(x)φa (x−xi)
is a scalar and b(x) is independent of the indexi,
the above equation can be re-written as

[
N

∑
i=1

H (x−xi)HT (x−xi)φa (x−xi)

]
b(x) = H(0)

(25)

This can further be written in a compact form as

M(x)b(x) = H(0) (26)

where the (Np + 1)× (Np + 1) matrix M(x) =
N
∑

i=1
H (x−xi)HT (x−xi)φa (x−xi) is called the

moment matrix. Consequently, the unknown vec-
tor b(x) is obtained as

b(x) = M−1(x)H(0) (27)

Using equations (12) and (27), the RKPM shape
function, ψi(x) can be written as

ψi(x) = HT (x−xi)M−1(x)H(0)φa (x−xi) (28)

The determination of b(x) requires the inversion
of the moment matrix M(x) for every value of x
that is of interest.

2.2 RKPM with reproduction of derivatives

The RKPM formulation can be extended to
achieve reproduction of derivatives up to a desired
order and these issues have been studied by a few
authors (Chen et al., 1996, Jun et al., 1998, Aluru
2000, and Shaw and Roy 2007). The scheme for
derivative reproduction of a given function u(x)
is based on the assumption that the β th deriva-
tive of the RKPM representation ua(x) will ex-
actly reproduce the β th derivative of u(x) when-
ever u(x) is a polynomial of degree Np. Moreover,
the RKPM representation for the derivative is ob-
tained in terms of the nodal values ui = u(xi); i =
1,2, . . .,N of the function u(x). The method pro-
posed by Shaw and Roy (2007) has been demon-
strated to be computationally advantageous and
we follow this procedure in the present study. Let
Hβ (x) represent the β th derivative of monomial

basis function H(x). It follows

H0(x) = H(x) =
{

1 x x2 · · · xNp
}

H1(x) =
{

0 1 2x · · · NpxNp−1
}

...

HNp(x) =
{

0 0 0 · · · Np!
}

(29)

For the purpose of illustration we restrict the dis-
cussion to the case of β = 1. We derive the mo-
ment equation for this case and then subsequently
extend the formulation to the β th order derivative
reproduction of a given function. For this purpose
we introduce a new family of RKPM shape func-
tions denoted by θ β

i (x) which reproduce the β th

order derivative of the function u(x). We con-
sider the case of the function to be a constant
and clearly the condition for the reproduction of
the first derivative by the RKPM representation is
given by

N

∑
i=1

θ 1
i (x) = 0 (30)

where θ 1
i (x) represents the derivative of θi(x)

with respect to x. The above equation can also
be written as

N

∑
i=1

θ 1
i (x) (x−xi)

0 = 0. (31)

Similarly, the derivative reproduction condition
for a function x, is given by

N

∑
i=1

θ 1
i (x)xi = 1 (32)

Noting that
N
∑

i=1
θ 1

i (x) = 0, the above equation can

be re-written as

x
N

∑
i=1

θ 1
i (x)−

N

∑
i=1

θ 1
i (x)xi = −1 (33)

from which it follows

N

∑
i=1

θ 1
i (x) (x−xi) = −1 (34)
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Similarly, the condition for reproduction of first
derivative of the function x2 leads
N

∑
i=1

θ 1
i (x)x2

i = 2x (35)

The above equation can be re-written as

N

∑
i=1

θ 1
i (x)x2

i −2x

= x2
N

∑
i=1

θ 1
i (x)−2x

N

∑
i=1

θ 1
i (x)xi +

N

∑
i=1

θ 1
i (x)x2

i

=
N

∑
i=1

θ 1
i (x)x2−

N

∑
i=1

θ 1
i (x)2xxi +

N

∑
i=1

θ 1
i (x)x2

i

=
N

∑
i=1

θ 1
i (x) (x−xi)

2

(36)

The above formulation can be generalized to show
that the derivative reproduction condition for the
function xNp is given by

N

∑
i=1

θ 1
i (x)x

Np
i = NpxNp−1 (37)

leading to

N

∑
i=1

θ 1
i (x) (x−xi)

Np = 0 (38)

Equations (31), (34), (36) and (38) can be written
in a compact form as

N

∑
i=1

θ 1
i (x)H (x−xi) = (−1)H1(0) (39)

where

H1(0) =
{

0 1 0 · · · 0
}

(Np+1)×1

Clearly, in equation (39) θ 1
i (x) can be written in

terms of corrected kernel function as follows,

θ 1
i (x) = C̃1 (x−xi)φa (x−xi) (40)

where C̃1 (x−xi) = HT (x−xi) b̃(x) is the correc-
tion function for the first-order derivative repro-
duction. Now, using equations (39) and (40), one
gets,

N

∑
i=1

HT (x−xi) b̃(x)φa (x−xi)H (x−xi)

= (−1)H1(0) (41)

where b̃(x) =
{

b̃0(x) b̃1(x) · · · b̃Np(x)
}T

is
the vector of unknown coefficients. Equation (41)
may be written as,

[
N

∑
i=1

H (x−xi)HT (x−xi)φa (x−xi)

]
b̃(x)

= (−1)H1(0) (42)

This can be written in a compact form as

M(x)b̃(x) = (−1)H1 (0) (43)

from which it follows

b̃(x) = (−1)M−1(x)H1(0) (44)

Using equations (40) and (44), the shape function
for the first-order derivative reproduction of an ar-
bitrary function can be written as,

θ 1
i (x) =

(−1)HT (x−xi)M−1(x)H1(0)φa (x−xi) (45)

The shape function for β th order derivative repro-
duction of an arbitrary function using similar pro-
cedure as we described above, one can write as

θ β
i (x) =

(−1)β HT (x−xi)M−1(x)Hβ (0)φa (x−xi) (46)

Clearly, the above formulation does not require
the differentiation of the kernel function φa(x)
and requires the inversion of moment matrix M(x)
only once.

2.3 Representation of non-smooth functions

In the context of developing force state maps us-
ing RKPM representations, it is crucial to be able
to obtain satisfactory representations for maps
with points of discontinuities and (or) points of
non-differentiabilities. Thus, for example, in
modeling energy dissipation due to friction, rep-
resentation for signum function, that is, functions
of the form sgn(x−a), need to be obtained; simi-
larly, in modeling piecewise linear systems, repre-
sentation for modulus functions of the form |x−a|
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becomes necessary. The RKPM provides power-
ful tools to achieve these difficult goals. Thus, the
problem of RKPM models for functions (in more
than one variables) which possess either points of
discontinuities and (or) points at which the func-
tion is non-differentiable in one or more indepen-
dent variables, has been studied by a few authors
(Krongauz et al., 1998, Zhang et al., 2004, Lu et
al., 2005, Joyot et al., 2006 and Shaw and Roy,
2007). The essence of the idea here is to ‘enrich’
the RKPM representation by deliberately intro-
ducing discontinuities so that discontinuity either
in the function or its derivative(s) could be mod-
eled.

1 2

Ld

Figure 3: The division of the domain Ω into Ω1

and Ω2 which are separated by a line of disconti-
nuity.

We illustrate the idea by considering a domain
Ω and a function u(x) with x ∈ Ω such that the
domain Ω is divided in to two sub-domains Ω1

and Ω2 such that Ω1 ∪Ω2 = Ω and Ω1 ∩Ω2 = Φ
where Φ = null set (Figure 3). For the pur-
pose of simplicity we assume Ω ⊂ R1 and de-
fine {ui}N

i=1 to be the nodal values of u(x) at
x = xi; i = 1,2, . . .,N. Furthermore, we group the
nodal values into two groups, namely,

{
uI

i(x)
}NI

i=1

with x ∈ Ω1 and
{

u′II
i (x)

}NII

i′=1 with x ∈ Ω2 such
that NI + NII = N. The nodal co-ordinates are
also grouped as xI

i and x′II
i such that xI

i ∈ Ω1 and
x′II

i ∈ Ω2 with i = 1,2, . . .,NI and i′ = 1,2, . . .,NII .
We wish to obtain a RKPM based model for u(x)
which allows for the presence of discontinuity in
u(x). To achieve this, we write the kernel approx-

imation ua(x) as

ua(x) =
NI

∑
i=1

ψ I
i (x)uI

i if x ∈ Ω1

=
NII

∑
i′=1

ψ ′II
i (x)u′II

i if x ∈ Ω2

(47)

Furthermore, using the indicator function IΩi(x),
given by

IΩi(x) = 1 if x ∈ Ωi

= 0 if x /∈ Ωi
(48)

and, also noting that,

ψ I
i (x) = HT (x−xI

i

)
bI(x)φa

(
x−xI

i

)
ψ ′II

i (x) = HT (x−x′II
i

)
bII(x)φa

(
x−x′II

i

) (49)

we obtain

ua(x) =[
NI

∑
i=1

HT (x−xI
i

)
bI(x)φa

(
x−xI

i

)
uI

i

]
IΩ1(x)

+

[
NII

∑
i′=1

HT (x−x′II
i

)
bII(x)φa

(
x−x′II

i

)
u′II

i

]
IΩ2(x)

(50)

It is clear that, the RKPM representation has been
enriched with functions that allow for possible ex-
istence of discontinuity in u(x) within x ∈ Ω. The
determination of the functions bI(x) and bII(x)
now follows exactly the same procedure as has
been described in the previous section with the
provision that bI(x) are determined based on the
knowledge of u(x) at xi = Ω1; i = 1,2, . . .,NI and
bII (x) based on u(x) at x′i = Ω2; i′ = 1,2, . . .,NII .
The details of this procedure are best illustrated
by considering a few examples.

Example 1: Consider f (x) = 0.5sgn(x−6) with
4 ≤ x ≤ 7. Here f (x) has a discontinuity at x = 6.
Accordingly, we divide 4 ≤ x ≤ 7 into two inter-
vals Ω1 : 4 ≤ x < 6 and Ω2 : 6 ≤ x ≤ 7. Note that,
x = 6 is included in Ω2 and excluded in Ω1. Fig-
ure 4 shows the RKPM shape functions valid for
Ω1 and Ω2 respectively. Figure 5 compares the
RKPM representations of f (x) using enrichment
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(a)

(b) 

Figure 4: Shows RKPM shape functions ψi(x) for
the function f (x) at and near the point of discon-
tinuity.

and without using enrichment. In the latter case
the RKPM representation can be observed to be
unsatisfactory.

Example 2: Here we consider f (x) = 0.8 |x−6|
with 4 ≤ x ≤ 7. Here f (x) is continuous every
where in 4 ≤ x ≤ 7 but its derivative has a dis-
continuity at x = 6. To implement RKPM we de-
fine Ω1 : 4 ≤ x < 6 and Ω2 : 6 ≤ x ≤ 7. Within
Ω1 and Ω2 we construct RKPM approximation to
f (x) with provisions for exact reproduction of the
first derivative. Figure 6 shows the RKPM shape
functions ψi(x)&θ 1

i (x) and the resulting represen-
tations are shown in Figure 7. The superior per-
formance of the enriched RKPM is again evident
from the Figures.

(a)

(b) 

Figure 5: (a) RKPM representation of a function
f (x); (b) shows enlarged view of a fig. 5(a) at the
point of discontinuity x = 6.

Example 3: Here we consider f (x) = 0.5sgn(x−
5) + 0.8 |x−6| with 4 ≤ x ≤ 7. This function
has discontinuity at x = 5 and a point of non-
differentiability at x = 6. We define three regions,
Ω1 : 4 ≤ x < 5, Ω2 : 5 ≤ x < 6 and Ω3 : 6 ≤ x ≤ 7
and represent f (x) in three regions as

f (x) = −0.5−0.8(x−6) ; 4 ≤ x < 5

= 0.5−0.8(x−6) ; 5 ≤ x < 6

= 0.5+0.8(x−6) ; 6 ≤ x ≤ 7

(51)

The RKPM representations obtained are shown in
Figure 8. The RKPM with enrichment is shown
to perform better especially around x = 5 and x =
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(a)

(b) 

(c)

(d) 
Figure 6: (a)-(b) Shows RKPM shape functions ψi(x) for the function f (x) at and near the point of non-
differentiability; (c)-(d) shows RKPM derivative shape functions θ 1

i for the function f (x) at and near the
point of discontinuity.

6, where the RKPM (without enrichment) show
relatively large errors. In obtaining these results
it is assumed that u(x) is available at an interval
of Δx = 0.01. The dilational parameter a = 6 is
considered for the above case (explanation for this
choice is provided in later section).

Remark: The generalization of the formulations
in the preceding subsections (equations 28, 46 and
50) for the case of vector of multi-dimensional
functions is conceptually straightforward and we
do not present these details here. The details can
be found in the thesis by Namdeo (2007).

3 Functional representation using kriging

Here we begin by considering a function g(x) de-
fined with respect to a l-dimensional input vector
x. Let

{
x1 x2 · · · xn

}T
be such that xi ∈ Rl

(i = 1, 2, · · ·n) denote the n × l matrix of input
points at which the output g(xi), i = 1, 2, · · ·n are
available. In the context of force state map con-
struction, x represents the state vector consisting
of displacement and velocity components, while
g(x) represents the restoring force (as in equation
2). We model the function using the representa-
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       (a) 

          (b) 

       (c) 

        (d) 
Figure 7: (a) RKPM representation of a function f (x); (b) shows enlarged view of fig. 7(a), having non-
differentiability at x = 6; (c) shows RKPM derivative reproduction of f (x); (d) shows enlarged view of fig.
7(c).

tion

g(xi) =
p

∑
j=1

f j(xi)β j +Z(xi) = f T (xi)β +Z(xi);

i = 1, 2, . . .n (52)

Here the superscript T denotes matrix transpo-
sition,

{
f j (xi)

}p
j=1 is a set of known functions,{

β j
}p

j=1 a set of unknown constants to be de-
termined and Z(x) is a homogenous, zero mean,
Gaussian random field evolving in x with an un-
known covariance function. Thus, for example,
with l=3 and quadratic basis functions, at the ith

sampling point we get

g
[
x(1)

i ,x(2)
i ,x(3)

i

]
= β1 +β2x(1)

i +β3x(2)
i +β4x(3)

i

+β5

(
x(1)

i

)2
+β6

(
x(1)

i x(2)
i

)
+β7

(
x(1)

i x(3)
i

)
+β8

(
x(2)

i

)2
+β9

(
x(2)

i x(3)
i

)
+β10

(
x(3)

i

)2

+ Z

[(
x(1)

i ,x(2)
i ,x(3)

i

)T
]

(53)

so that, in this approximation, p = 1+ l + l(l+1)
2 =

10. The covariance function is taken to be of the
form

Cov [Z (xr)Z (xs)] = σ2R(xr −xs,θ) (54)
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        (a) 

(b) (c)
Figure 8: (a) RKPM representation of a function f (x); (b) shows enlarged view of a fig. 8(a) at the point of
discontinuity x = 5; (c) shows enlarged view of a fig. 8(a) at the point of non-differentiability x = 6.
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Here σ2 is the unknown variance of the random
field Z (xi) and R(xr −xs,θ) is the (r, s)th ele-
ment of the n × n matrix of correlation coeffi-
cients with θ being a q × 1 vector of unknown
parameters in the covariance model. The func-
tional form of the correlation matrix R(xr −xs,θ)
is taken to be known but the function itself is con-
sidered to be dependent on the unknown param-
eters θ . Some of the choices for the functional
form of R(xr −xs,θ) employed in the existing lit-
erature include the following (Sacks, et al., 1989,
Lophaven et al., 2003)

R(θrs,xr −xs) = exp [−θrs|xr −xs|] (55)

R(θrs,xr −xs) = exp
[
−θrs|xr −xs|θn+1

]
; (56)

0 < θn+1 < 2

R(θrs,xr −xs) = exp
[
−θrs (xr −xs)

2
]

(57)

R(θrs,xr −xs) = max{0,1−θrs|xr −xs|} (58)

R(θrs,xr −xs) = 1−1.5ξrs +0.5ξ 3
rs; (59)

ξrs = min(1,θrs|xr −xs|)
R(θrs,xr −xs) = 1−3ξ 2

rs +2ξ 3
rs; (60)

ξrs = min(1,θrs|xr −xs|)
R(θrs,xr −xs) = ς (ξrs) ; (61)

ς (ξrs) =

⎧⎪⎨
⎪⎩

1−15ξ 2
rs +30ξ 3

rs for 0 ≤ ξrs ≤ 0.2

1.25(1−ξrs)
3 for 0.2 ≤ ξrs < 1

0 for ξrs ≥ 1

The work of Santner et al., (2003) discusses
the issues related to smoothness of the func-
tional representation in equation (52) vis-à-vis
the choice of the form of R(xr −xs,θ) and
values of parameters θ . In the present study
we employ the third of the above correlation
coefficient model. It may be noted that the
function g(·), as in equation (52), constitutes
a non-homogeneous Gaussian random field
with mean E [g(x)] = f T (x)β and covariance
E
[{

g(xr)− f T (xr)β
}{

g(xs)− f T (xs)β
}]

=
σ2R(xr −xs,θ). The non-homogeneity of the
random field here arises due to the dependence
of mean value of g(x) on the parameter x. Thus,
the set of unknowns to be determined in equation
(52) are

{
β j
}p

j=1, σ2 and {θi}q
i=1. Corresponding

to the points x =
{

x1 x2 · · · xn
}T

, we can

re-write equation (52) as

g(x) = F(x)β +Z(x) (62)

Here g(x) is a n× 1 vector of random variables,
F(x)is a n× p matrix of deterministic functions
with (i, j)th element given by Fi j(x) = f j(xi) and
Z(x) is a n×1 vector of zero mean Gaussian ran-
dom variables. Thus the probability distribution
function (PDF) of g(x) is given by

g(x) = N
[
F(x)β ,σ2R(xr −xs,θ )

]
(63)

where N denotes the normal PDF with mean vec-
tor F(x)β and covariance matrix σ2R(xr −xs,θ ).
In order to determine the unknown model param-
eters

{
β j
}p

j=1, σ2 and θ we invoke the method of
maximum likelihood estimation. Accordingly, we
construct the negative log-likelihood function

L
(
β ,σ2,θ

)
=

1
2

{
n lnσ2 + ln |R|

+(g−F(x)β )t 1
σ2 R−1 (g−F(x)β)+n ln2π

}
(64)

and minimize this function with respect to the pa-
rameters

{
β j
}p

j=1, σ2 and {θi}q
i=1. The minimiza-

tion with respect to
{

β j
}p

j=1 can be shown to lead
to the condition

β̂ =
(
FT R−1F

)−1
FT R−1g (65)

Similarly, the minimization with respect to σ2

leads to

σ̂2 =
1
n

(g−Fβ )T R−1 (g−Fβ ) (66)

Now by substituting equations (65) and (66) into
equation (64) we get the objective function only
in terms of parameter vector θ as

L
(

β̂ , σ̂2,θ
)

=

1
2

{
n ln σ̂2(θ )+ ln |R(θ )|+n ln2π

}
(67)

The minimization of this function, with respect
to the remaining variables {θi}q

i=1, can now be
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carried out using numerical optimization meth-
ods. The conditions θi > 0; i = 1,2, · · · ,q are im-
posed as constraints in this optimization problem.
These constraints are needed given that the cor-
relation function that we are using is as given by
the third of the models listed in equation (57). A
penalty function to artificially enforce very high
value of the given function is used to avoid nega-
tive values of θ . The resulting predictor g(x) with
β = β̂

(
θ̂
)
, σ2 = σ̂2

(
θ̂
)

and θ = θ̂ is designated
as the maximum likelihood empirical best linear
unbiased predictor for the force state map. At this
stage we have determined the values of all the un-
knowns in the model in equation (63). Now we
consider the question of predicting the output at a
point x0 at which the function g(x) has not been
measured.

3.1 Prediction of g(x) at an unmeasured point

Let x0 be a point in the input space at which
we now aim to estimate g(x0) and from equation
(52), we get g(x0) = f T (x0)β + Z(x0). It is clear
that, g(x0) is a Gaussian random variable and the
vector

{
g(x0) g(x)

}T
forms a (n+1)×1 vector

of Gaussian random variables with PDF given by

{
g(x0)
g(x)

}
=

N

([
f T (x0)
F(x)

]
β̂ (θ̂), σ̂2(θ̂)

[
1 rT

0 (θ̂)
r0(θ̂ ) Rr0(θ̂)

])
(68)

Here, r0 =
[
R(x0 −x1) · · · R(x0 −xn)

]T
. The

estimate ĝ(x0) of g(x0) that minimizes the mean

square error E
{
[g(x0)− ĝ(x0)]

2
}

is well known

to be given by (Papoulis and Pillai, 2001)

ĝ(x0) =E [g(x0) |g(x)]

= f T (x0) β̂
(
θ̂
)

+ rT
0

(
θ̂
)

R−1 (θ̂)[g(x)−F β̂
(
θ̂
)] (69)

This expression constitutes the kriging model and
this forms the model for the force state map in
characterizing the nonlinear dynamical system. In
implementing this model we still need to choose
the functions

{
f j(x)

}p
j=1 and, in the present study,

we take quadratic functions (as illustrated in equa-
tion 53 for l=3) so that p = 1+ l + l(l+1)

2 . If cross
terms are ignored, one getsp = 2l +1.

4 RKPM for force state map construction

As has been mentioned already, the objective of
the present investigation is to explore the perfor-
mance of RKPM based models for force state
maps. We consider the following cases which are
sequenced in the order of increasing complexity
(in terms of number of dofs and treatment of dis-
continuities and non-differentiable restoring force
surface).

Case 1: Here we consider SDOF systems with
restoring force surface being a smooth function of
displacement and velocity variables. This would
mean that f [x(t), ẋ(t)] in equation (2) is continu-
ous and differentiable in x and ẋ over the domain
of interest. The construction of RKPM based
force state map involves the following steps:

1. Estimate mass m.

2. Measure g(t) and ẍ(t) at ti = iΔt; i =
1,2, . . .,N and derive f [x(t), ẋ(t)] = g(t)−
mẍ(t) at ti = iΔt and i = 1,2, . . .,N.

3. Measure x(t) and ẋ(t) at ti = iΔt; i =
1,2, . . .,N. It may be noted that the evalu-
ation of f [x(t), ẋ(t)] in the preceding step re-
quires already the measurement of ẍ(t). This
would mean that at every dof of interest it is
required to measure x(t), ẋ(t) and ẍ(t). This
may not be often possible. In case only one
of the quantities x(t) and ẋ(t) is measured,
one could estimate the unmeasured quantity
using Kalman filter Crawley and O’Donnell
(1987). Thus for the purpose of illustration,
if we assume that it has been possible to
measure only ẋ(t) and ẍ(t), an estimate of
x(t) can be obtained by considering the pro-
cess and measurement equations given re-
spectively by[

ẋ
ẍ

]
=
[

0 1
0 0

][
x
ẋ

]
+
[

0
1

]
ẍm +

[
0
1

]
ξ

y = ẋm =
[
0 1

][x
ẋ

]
+ χ

(70)
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where ẍm denote measured acceleration, ẋm

denote the measured velocity, ξ represents
noise associated with the measured accelera-
tion, and χ represents noise associated with
the measured velocity. The above equation
can be written in the standard state space
form as,

Ẋ = AX +Bud +Bξ
y = HX + χ

(71)

where X =
{

x ẋ
}T

, ud = ẍm (driving input),

H =
[
0 1

]
, B =

[
0 1

]T
, B =

[
0 1

]T
,

and A =
[

0 1
0 0

]
. One could now apply the

Kalman filter to carry out the state estima-
tion problem leading to the estimate of x(t).

4. The above measurements lead to the dis-
cretized values xi, ẋi and fi (xi, ẋi) for i =
1,2, . . .,N. Plot fi (xi, ẋi) versus xi&ẋi.

5. The points (xi, ẋi) define the nodes in the
RKPM representation and with the corre-
sponding f (xi, ẋi) being the nodal-values of
the restoring force. It should be noted that
the points (xi, ẋi); i = 1,2, . . .,N would not
be equi-spaced in the x− ẋ plane. In the im-
plementation of RKPM we divide the range
of values of x and ẋ into a set of equi-spaced
grid points and determine the approximation
f a (x, ẋ) at these grid points. The value of the
dilational parameter a needs to be selected
at every grid point so that an acceptable ap-
proximation to f (xi, ẋi) is obtained locally at
every grid point. To achieve this, at any grid
point, n∗ number of particles in the neighbor-
hood are selected where

n∗ =
(nd +Np)!

nd!Np!
(72)

Here nd = dimension of the problem (= 2 for
the SDOF systems) and Np = order of the
polynomial (to be chosen). Thus, if nd = 2
and Np = 3, one gets n∗ = 10. At any given
grid point, the parameter a is selected such
that a = the distance from the grid to the far-
thest among n∗ particles in the neighborhood

of the grid point. Once the parameter a is
chosen the RKPM shape functions are eval-
uated at the specified grid point by invert-
ing the moment matrix M(x) (equation 28).
This exercise needs to be repeated at all the
chosen grid points. In the numerical work it
was observed that the inversion of M (x) at
certain grid points became erroneous due to
poor conditioning of M(x). A remedy to this
difficulty lied in increasing n∗ in the evalua-
tion of a, and, hence, the size of matrix M(x)
increases.

6. The representation in the previous step pro-
vides the complete solution in the sense
that the RKPM based force state map
f a [x(t), ẋ(t)] could be used to predict numer-
ically the system response to any excitation
different from g(t) for any prescribed initial
conditions x(0) and ẋ(0).

7. The fixed points of the dynamical system
(equation 1) given by ẋ = 0 and f (x,0) = 0.
Thus by constructing f a (x, ẋ = 0), one could
determine the fixed points by determining
the zeros given by f a (x, ẋ = 0) = 0. Let[
x∗j ,0

]
; j = 1,2, . . . denote there fixed points.

The stability of the fixed points could be ex-
amined by constructing the Jacobian matrix

Jj =

[
0 1

− ∂ f
∂x1

− ∂ f
dx2

]
(x∗j ,0)

(73)

and determining the eigenvalues of this ma-
trix. As is well known, if the real points of
the eigenvalues are nonzero, the linear stabil-
ity analysis is conclusive (Simmons, 1972).
It is of interest to note that the gradients ∂ f

∂x

and ∂ f
∂ ẋ required in the above analysis can be

accurately established by employing RKPM
with derivative reproduction at ẋ = 0 and
x = x∗j ; j = 1,2, . . ..

8. The knowledge of f a(x, ẋ) could also be em-
ployed to study the possible existence of
limit cycles. This could be achieved by em-
ploying some of the existing theorems for
verification of existence (or otherwise) of
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limit cycles or by numerical simulations of
free vibration trajectories.

9. If a parametric form of f (x, ẋ) is known, and
is taken to be a polynomial, the coefficients
of this polynomial could be established by
examining the gradients of f (x, ẋ) typically
at origin. Here again, the gradient reproduc-
tion capabilities of RKPM representations
offer powerful means to arrive at accurate es-
timates of unknown parameters.

10. By linearizing the function f a(x, ẋ) around
the origin, it is possible to establish proper-
ties of the linear system that would result if
nonlinearities were to be absent.

The procedure described in this sub-section is il-
lustrated by considering the following oscillators.

1. Linear SDOF system:

mẍ+cẋ +kx = g(t);

x(0) = 0, ẋ(0) = 0
(74)

2. Duffing’s oscillator:

mẍ+cẋ +kx+αx3 = g(t);

x(0) = 0, ẋ(0) = 0
(75)

3. Duffing’s oscillator with negative linear stiff-
ness:

mẍ+cẋ−kx+αx3 = g(t);

x(0) = 0, ẋ(0) = 0
(76)

4. Van der Pol’s oscillator:

mẍ−ε ẋ
(
1−x2)+kx = g(t);

x(0) = 0, ẋ(0) = 0
(77)

It may be noted that in all these examples, the
restoring force is a polynomial in x and ẋ. In
all these examples it is assumed that m = 1kg,
k = 9N/m and

g(t) = P
N

∑
s=1

(as cosωst +bs sinωst) (78)

with P = 10N, ωs = sω0; s = 1,2, . . .,N, N = 15,
ω0 = 2.4rad/s. The parameters as and bs,

(a)

(b) 

(c)

Figure 9: Studies on linear SDOF system; (a)
phase plane plot; (b) restoring force surface based
on RKPM; (c) plot of f [x, ẋ = 0].
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s = 1,2, . . .,N are taken to be realizations of
zero mean, Gaussian, mutually independent dis-
tributed random variables with unit standard devi-
ations. The measurements data are generated syn-
thetically by using the ODE 45 routine of Matlab-
7.0.1 with relative tolerance reltol = 1.0e-12 and
absolute tolerance abstol = 1.0e-12. The program
outputs the results at a uniform time interval of
Δt = 2π

80ωnat
s, where ωnat =

√
k/mrad/s.

The results on the force map models obtained us-
ing RKPM are shown in Figures 9-12. Figure 9
shows the results for the linear SDOF system with
c = 0.12Ns/m. The measured response is depicted
in Figure 9(a) in the form of a phase plane plot
and the RKPM based force state map is shown in
Figure 9(b). The coefficients ∂ f a

∂x and ∂ f a

∂ ẋ are eval-
uated at x = 0&ẋ = 0, which represents the values
for k and c respectively. The values of k and c are
obtained as k = 9.00N/m and c = 0.12Ns/m and
this matches very well with the corresponding ref-
erence values. The plot of f a [x, ẋ = 0] versus x is
shown in Figure 9(c) from which the linear depen-
dence for spring force on displacement is inferred.
Also, from Figure 9(c) it is concluded that x = 0
and ẋ = 0 is a fixed point and it is verified that this
point is stable.

Results shown in Figure 10(a)-(f) correspond to
the case of Duffing’s oscillator with α = 10 N/m3

and m,c,k as in the previous example. Based
on the measurements shown in Figure 10(a), the
force state map as in 10(b) is obtained which,

in turn, leads to the coefficients c = ∂ f a

∂ ẋ

∣∣∣
x=0,ẋ=0

,

k = ∂ f a

∂x

∣∣∣
x=0,ẋ=0

, and 6α = ∂3 f a

∂x3

∣∣∣
x=0,ẋ=0

. The val-

ues of k = 9.00 N/m, c = 0.12Ns/m, and α =
10.00N/m3 so found, compare very well with the
corresponding reference values of k = 9N/m, c =
0.12Ns/m, and α = 10N/m3. Figure 10(c) show
the plot of f a [x, ẋ = 0] versus x withNp = 3, from
which it emerges that x = 0 is the fixed point
which is further verified to be stable. It must be
noted that withNp = 3, the RKPM representation,
in principle, permits the presence of quadratic
nonlinear terms and also cubic terms involving
products of x(t) and ẋ(t) and the term ẋ3(t) in the
restoring force surface representation. It has been
verified in the numerical work that the coefficients

(a)

(b) 

(c)

Figure 11: Studies on Duffing’s oscillator with
negative linear stiffness; (a) phase plane plot; (b)
restoring force surface based on RKPM; (c) plot
of f [x, ẋ = 0].
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(a)

(b) 

(c)

Figure 12: Studies on Van der Pol’s oscillator;
(a) phase plane plot; (b) restoring force surface
based on RKPM; (c) free vibration characteristic
obtained from the original system and from the
identified system; full line: results from the ref-
erence system; cycle line: results from identified
system.

of these terms turn out to be close to zero. It is also
to be noted that the choice of Np = 3 would not
be apparent at the outset. One could begin with
Np = 1 and increase its value progressively. This,
in fact has been done in the present case: Figures
10(d)-(f) show the RKPM force state maps for the
cases of Np = 1,2, and 4 respectively. Based on
the examination of errors associated with each of
these representations it may be concluded that the
choice of Np = 3 is the most appropriate for this
example.

Results from studies on the Duffing’s oscillator
with negative linear stiffness (equation 76) are de-
picted in Figure 11 (a)-(c). The fact that this sys-
tem has an unstable fixed point at the origin, and
two stable points at x =−0.88&0.89m and ẋ = 0,
is borne out by the RKPM based force state map
(Figure 11c). Here, again, the model for the force
state map leads to the estimates k = −9.00N/m,
c = 0.12Ns/m, and α = 10.00N/m3, which agree
well with the corresponding reference values of
k = −9N/m, c = 0.12Ns/m, and α = 10N/m3.

Figure 12 shows the results of studies on the Van
der Pol’s oscillator with ε = 10. Based on the
phase plane plot shown in Figure 12(a) and the
RKPM based force state map shown in Figure
12(b), it is not obvious that the system possesses
a limit cycle. However, a stability analysis of
the fixed point reveals the presence of an unsta-
ble fixed point at the origin. A subsequent simu-
lation of free oscillations (Figure 12c) indeed re-
veals the presence of a stable limit cycle. It may
also be noted that once the model f a(x, ẋ) for the
force state map is obtained, it is possible to apply
criterion such as Poincare-Bendixson’s criterion
to investigate the possible existence of limit cy-
cle. The values of k = 9.00N/m, and ε = 10.00 so
found, compare very well with the corresponding
reference values of k = 9N/m and ε = 10.

4.1 Case 2: Linear MDOF systems

Here we assume that the vibrating system under
study can be modeled as a n-dof linear system
governed by the equation

MẌ +CẊ +KX = g(t);

X (0) = X0, Ẋ(0) = Ẋ0
(79)
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Based on the assumption that the n×n mass ma-
trix M is known, it becomes possible to express
the n×1 vector of force state maps as

f
[
X(t), Ẋ(t)

]
= g(t)−MẌ(t) (80)

Each element of is expected to be functions of
the n × 1 variables X(t) and Ẋ(t). The imple-
mentation of force state map thus requires RKPM
models for in 2n-dimensions. This obviously is a
computationally demanding task. Also, the study
would need elaborate measurements to be made
on elements of vectors X(t) and Ẋ(t). Clearly,
the elements Ci j and Ki j of damping matrix C and
stiffness matrix K are respectively given by

Ci j =
∂ fi

[
X , Ẋ

]
∂ Ẋ j

∣∣∣∣∣X=0
Ẋ=0

& Ki j =
∂ fi

[
X , Ẋ

]
∂Xj

∣∣∣∣∣X=0
Ẋ=0

(81)

If the focus of study is limited to determination
of Ci j andKi j , it is enough to obtain RKPM fit
to the force state map only near the origin. This
would reduce the computational effort involved in
parameter identification.

For the purpose of illustration we consider the
frame structure shown in Figure 13. This frame
structure consists of a rigid slab mounted on three
aluminum columns and a steel column. This
would mean that the structure has planar asym-
metry and under the action of horizontal base mo-
tion, the frame not only translates along the hori-
zontal axes but also twists about the vertical axis.
This structure has been studied experimentally by
Manohar and Venkatesha (2006). Based on the
free body diagram shown in Figure 14, the equa-
tion of motion for this structure can be obtained
as

mz̈+k1(z−v1θ )+c1(ż−v1θ̇ )+k4(z−v1θ )
+c4(ż−v1θ̇ )+k8(z+v2θ )+c8(ż−v2θ̇ )

+k5(z+v2θ )+c5(ż+v2θ̇ ) = −mẍs(t)

mÿ+k2(y+u1θ )+c2(ẏ+u1θ̇ )+k3(y−u2θ )
+c3(ẏ−u2θ̇ )+k7(y+u1θ )+c7(ẏ+u1θ̇ )

+k6(y−u2θ )+c6(ẏ−u2θ̇ ) = 0

Iθ̈ +u1
[
(k2 +k7)(y+u1θ )+(c2 +c7)(ẏ+u1θ̇ )

]
−u2

[
(k3 +k6)(y−u2θ )+(c3 +c6)(ẏ−u2θ̇ )

]
+v2

[
(k5 +k8)(z+v2θ )+(c5 +c8)(ż+v2θ̇ )

]
−v1

[
(k1 +k4)(z−v1θ )+(c1 +c4)(ż−v1θ̇ )

]
= 0

z(0) = 0; y(0) = 0; θ (0) = 0; ż(0) = 0;

ẏ(0) = 0; θ̇ (0) = 0

(82)

where k1 = k2 = k3 = k4 = k7 = k8 = Ka repre-
sents the stiffness coefficients for the aluminum
columns and k5 = k6 = Ks represents the stiffness
coefficients for the steel column. The stiffness co-
efficients for the aluminum and steel columns are
given by

Ka =
12EaIa

h3
c

; Ks =
12EsIs

h3
c

(83)

where EaIa = flexural rigidity of aluminum col-
umn and EsIs = flexural rigidity of steel column.
The location of mass center of the frame structure
(see Figure 15) is evaluated using the relation as
given by

z =

mS
bs
2 +(m1 +m4)

(
bs−bs1

2

)
+(m2 +m3)

(
bs+bs1

2

)
ρstbsds +m1 +m2 +m3 +m4

y =

mS
ds
2 +(m4 +m3)

(
ds−ds1

2

)
+(m1 +m2)

(
ds+ds1

2

)
ρstbsds +m1 +m2 +m3 +m4

m1 = m2 = m3 = Aaρa(hc/2)
m4 = Asρs(hc/2), mS = ρstbsds

(84)

where ρs = mass density of steel, ρa = mass den-
sity of aluminum, Aa,As = areas of cross-section
of aluminum and steel columns respectively, and
hc = height of the columns. The torsional stiff-
ness of the frame structure due to shear rigidity of
individual columns can be written as

k∗ =
3GaJa

hc
+

GsJs

hc
;

Ja =
πD4

a

32
; Js =

πD4
s

32

(85)
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Figure 13: Details of the frame structure made up of a steel slab supported on one steel column and three
aluminum columns.

where GaJa = torsional rigidity of aluminum col-
umn, GsJs = torsional rigidity of steel column,
and Da, Ds = diameter of the aluminum and steel
columns respectively. The mass m of the rigid
slab and mass moment of inertia I of the frame
structure is given by

m =mslab +mcolumns

=ρstbsds +3
ρaAahc

2
+

ρsAshc

2

I =
ρstbsds

12

(
b2

s +d2
s

)
+ρstbsds

[(
z− bs

2

)2

+
(

y− ds

2

)2
]

+
ρaAahc

2
(u2

1 +v2
1 +u2

2 +v2
1 +u2

1 +v2
2)

+
ρsAshc

2

(
u2

2 +v2
2

)
+3

ρaAahc

2
(ra)

2

2
+

ρsAshc

2
(rs)

2

2

(86)

Here ra, rs = radii of the aluminum and steel

columns respectively. It may be noted that the
mass moment of inertia I is being computed with
respect to the mass center of the frame struc-
ture. For the numerical analysis, we compute the
damping matrix C using the modal damping ratios
as given by the relation, C =

[
ϑ t
]−1 [κ ]

[
ϑ
]−1

where, κ is a diagonal matrix with entry on the
nth row being 2ηnωn and ϑ is the modal matrix for
the system. The forcing function xs(t) is taken to
be a single frequency sinusoidal excitation given
by

xs(t) = Δcosλ t (87)

where Δ is taken to be an amplitude of support
motion and λ is a frequency of excitation. For
the reference system, we take λ = 2π f with f =
5.86 Hz, Δ = 0.001 m, Ea = 6.90× 1010N/m2,
Es = 20.0× 1010N/m2, Ga = 2.594× 1010N/m2,
Gs = 7.692× 1010N/m2, ρa = 2.70× 103kg/m3,
and ρs = 7.70× 103kg/m3. The measurements
data are generated synthetically for 0 ≤ t f ≤ 15s
with a time increment of Δt = 2π

80ωn3
s, where ωn3 =
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Figure 14: (a) Rigid mass-damper-spring model representation of the frame structure subjected to harmonic
base motion xs(t); (b) free body diagram showing the forces acting on the frame.
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Figure 15: Location of the mass center.

the third natural frequency of the system. Now,
for the identification of system parameters we use
equation (81), to estimate the elements of damp-
ing matrix C and stiffness matrixK. In doing so,
we utilize the derivative reproduction capabilities
of RKPM based force state maps. It is observed
that the identified damping matrix C and stiffness
matrix K compare very well with the correspond-
ing reference matrices as shown below: (units of
[K] is N/m and

[
C
]

is Ns/m)

Kre f . =

⎡
⎣1.9539 0 0.0366

0 1.9539 −0.0766
0.0366 −0.0766 0.0792

⎤
⎦×104;

Kest. =

⎡
⎣1.9539 0 0.0366

0 1.9539 −0.0766
0.0366 −0.0766 0.0792

⎤
⎦×104

Cre f . =

⎡
⎣11.3388 −0.2256 0.0034
−0.2256 11.7035 −0.0072
0.0034 −0.0072 0.1306

⎤
⎦ ;

Cest. =

⎡
⎣11.3389 −0.2256 0.0035
−0.2256 11.7035 −0.0072
0.0034 −0.0072 0.1306

⎤
⎦

4.2 Case 3: MDOF systems with smooth non-
linearities

The procedure described in the preceding sub-
section can be extended in a straight forward man-
ner. To illustrate this we consider a 2-dof system
with cubic nonlinearity (see Figure 16 assuming
μ = 0):

m1ẍ1 +c1ẋ1 +c2 (ẋ1 − ẋ2)+k1x1 +k2 (x1 −x2)

+αx3
1 = g1(t)

m2ẍ2 +c2 (ẋ2 − ẋ1)+k2 (x2 −x1) = g2(t)
x1(0) = 0; x2(0) = 0; ẋ1 (0) = 0; ẋ2(0) = 0

(88)

x (t)

c

m

k , α

g (t)

x (t)

c

m
k

μ

g (t)

1 1

1

1

1

2

2

2

2

2

Figure 16: 2-dof system having cubic nonlinearity
α and frictional damping μ .

The system parameters considered are m1 = m2 =
1kg, k1 = 120N/m, k2 = 240N/m; the damping



Force State Maps 147

parameters are selected in such a way that, when
α = 0, the two modes of oscillations have damp-
ing ratios η1 = η2 = 0.02. The excitations g1(t)
and g2(t) are taken to be similar to g(t) as in
examples considered in section 4.0 with ω0 =
0.1ωn1, where ωn1 = the first natural frequency of
the system when α = 0. The measurements data
are synthetically generated for 0 ≤ t f ≤ 15s with
Δt = 2π

80ωn2
s, where ωn2 = the second natural fre-

quency of the system when α = 0. If the problem
of system identification is now viewed within the
framework of parametric identification methods,
the task is now to determine c1,c2,k1,k2 and α
from the RKPM based force state maps f a

i [x, ẋ];
i = 1,2. Thus, one gets

c11 = c1 +c2 =
∂ f a

1

∂ ẋ1

∣∣∣∣ xi=0
ẋi=0; i=1,2

,

c12 = −c2 =
∂ f a

1

∂ ẋ2

∣∣∣∣ xi=0
ẋi=0; i=1,2

,

c21 = −c2 =
∂ f a

2

∂ ẋ1

∣∣∣∣ xi=0
ẋi=0; i=1,2

,

c22 = c2 =
∂ f a

2

∂ ẋ2

∣∣∣∣ xi=0
ẋi=0; i=1,2

,

k11 = k1 +k2 =
∂ f a

1

∂x1

∣∣∣∣ xi=0
ẋi=0; i=1,2

,

k12 = −k2 =
∂ f a

1

∂x2

∣∣∣∣ xi=0
ẋi=0; i=1,2

,

k21 = −k2 =
∂ f a

2

∂x1

∣∣∣∣ xi=0
ẋi=0; i=1,2

,

k22 = k2 =
∂ f a

2

∂x2

∣∣∣∣ xi=0
ẋi=0; i=1,2

;

α =
1
6

∂ 3 f a
1

∂x3
1

∣∣∣∣ xi=0
ẋi=0; i=1,2

(89)

The results so obtained by evaluating the gradi-
ents of the RKPM based force state maps in the
neighborhood of x = 0 and ẋ = 0 are shown be-
low:

Kest. =
[

360.00 −240.00
−240.00 240.00

]
N/m;

Cest. =
[

0.6913 - 0.3132
- 0.3132 0.5347

]
Ns/m.

It may be noted that in evaluating these gradients
the derivative reproduction capabilities of RKPM
are used. It was noted that the accuracy of iden-
tification is influenced by choice of n∗ in deter-
mining the RKPM shape functions. A choice of
n∗ = 80 was found to provide satisfactory results.
It is observed that the identified values of sys-
tem parameters compare very well with the cor-
responding reference values. The nonlinearity pa-
rameter obtained using RKPM approximation is
α = 1000.00N/m3, which coincides with the ref-
erence value of α .

4.3 Case 4: SDOF systems with non-smooth
nonlinearities

We exemplify this class of problems by consider-
ing the system

mẍ+cẋ +kx+ksxU (x−0)+ μsgn(ẋ) = g(t);

x(0) = 0, ẋ(0) = 0

(90)

This system has a piecewise linear restoring
force characteristics resulting from a tension-only
spring ks and the Coulomb’s damper with coeffi-
cient μ . Specifically, the restoring force surface is
discontinuous at the origin in both x and ẋ. The
starting point in developing models for restoring
force is the measured restoring force surface data
such as those shown in Figures 17-19. Based on
a careful inspection of these plots, it is possible
to anticipate the possible existence of non-smooth
characteristics in the restoring force surface or its
derivatives. It is apparent that the dilemma of de-
ciding if the restoring surface, or its derivative,
have discontinuities would not exist if the form
of the nonlinearity is taken to be known a pri-
ori and we limit the identification problem to the
determination of the assumed model. For pur-
pose of illustration, the system parameters con-
sidered are m = 1.77Kg, k = 2500N/m, ks = 1.5k,
μ = 1.5N, g(t) = Pcosλ t, P = 10N, λ = 2π f
with f = 5.86Hz, and the damping parameter c
is selected in such a way that, when ks = 0 and
μ = 0, the system has damping ratioη = 0.02.
The response is determined for 0 ≤ t f ≤ 10s with
Δt = 2π

200ωn
s, whereωn =

√
k/m. A visual inspec-

tion of this force state map reveals the possible
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(a)

(b) 

(c)

(d) 
Figure 17: SDOF system with only bilinear stiffness: ks = 1.5kN/m (Case 4a); (a) phase plane plot; (b)
measured restoring force surface; (c) projection of the surface along ẋ = 0; (d) projection of the surface
along x = 0.

discontinuities in the restoring force surface at
the origin. Following this finding, the domain
Ω : −∞ < x, ẋ < ∞ could be divided into sub do-
mains Ωi ; i = 1,2, . . . and an enriched RKPM
representation (section 2.3) is used subsequently
to construct the refined force state maps. We con-
sider, for the purpose of illustration, three cases:

Case 4(a): ks �= 0, μ = 0;

Ω1 : −x ≤ x < 0; −ẋ ≤ ẋ ≤ ẋ

Ω2 : 0 ≤ x ≤ x; −ẋ ≤ ẋ ≤ ẋ

Case 4(b): ks = 0, μ �= 0;

Ω1 : −x ≤ x ≤ x; −ẋ ≤ ẋ < 0

Ω2 : −x ≤ x ≤ x; 0 ≤ ẋ ≤ ẋ

Case 4(c): ks �= 0, μ �= 0;

Ω1 : 0 < x ≤ x; 0 < ẋ ≤ ẋ

Ω2 : −x ≤ x ≤ 0; 0 < ẋ ≤ ẋ

Ω3 : −x ≤ x ≤ 0; −ẋ ≤ ẋ ≤ 0

Ω4 : 0 < x ≤ x; −ẋ ≤ ẋ ≤ 0

For each of these cases we develop the enriched
RKPM based force state map and there results
are shown in Figures 20(a)-(c). In fitting the en-
riched RKPM based force state map, it is assumed
that n∗ = 50. The determination of system pa-
rameters could now be achieved by examining the
restoring force surface. Thus, from Figure 20(a)
it can be observed that the restoring force surface
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(a)

(b) 

(c)

(d) 
Figure 18: SDOF system with only Coulomb’s friction damper: μ = 1.5N (Case 4b); (a) phase plane plot;
(b) measured restoring force surface; (c) projection of the surface along ẋ = 0; (d) projection of the surface
along x = 0.

is continuous and differentiable in ẋ for all val-
ues of x. Conversely, the surface is not differen-
tiable at x = 0 although, it is continuous for all
values of x and ẋ. This clearly, points towards
the bilinear characteristics of the system and a lin-
ear damping characteristic in its velocity. This is
borne out by results shown in Figures 21(a,b) in
which the sections of the restoring force surface
along x = 0 (Figure 21a) and along ẋ = 0 (Fig-
ure 21b) are shown. Based on these Figures the
value of damping coefficient c and stiffness coef-
ficients k&ks are determined, and are found to be
matched the corresponding reference values very
well. Similar results for the case 4(b) and 4(c)

are shown in Figures 22 and 23. Here again, the
system parameters identified from the sections of
restoring force surface agree very well with the
corresponding values.

4.4 Case 5: MDOF systems with non-smooth
nonlinearities

This class of problems perhaps offers the greatest
challenge in nonlinear structural system identifi-
cation. Here again we discuss the RKPM based
strategy within the framework of a specific exam-
ple. Accordingly, we consider a modified version
of example considered in section 4.2 (see Figure



150 Copyright c© 2008 Tech Science Press CMES, vol.32, no.3, pp.123-159, 2008

(a)

(b) 

(c)

(d)  
Figure 19: SDOF system with bilinear stiffness: ks = 1.5kN/m and Coulomb’s friction damper: μ = 1.5N
(Case 4c); (a) phase plane plot; (b) measured restoring force surface; (c) projection of the surface along
ẋ = 0; (d) projection of the surface along x = 0.

16) given by

m1ẍ1 +c1ẋ1 +c2 (ẋ1 − ẋ2)+k1x1 +k2 (x1 −x2)

+αx3
1 + μsgn(ẋ1) = g1(t)

m2ẍ2 +c2 (ẋ2 − ẋ1)+k2 (x2 −x1) = g2(t)
x1(0) = 0; x2(0) = 0; ẋ1 (0) = 0; ẋ2(0) = 0

(91)

The system parameters, excitation, and initial
conditions are selected as in example considered
in section 4.2 with μ = 5N. A value of n∗ = 120
was found to be necessary to obtain satisfactory
RKPM representations. To simplify the analysis
we assume that the functional form of the restor-

ing force surfaces is known a priori. The phase
space is divided in to two regions Ω1 and Ω2

which are separated by a line of ẋ1 = 0. The
RKPM representation is accordingly enriched to
allow for this discontinuity. The system parame-
ters are again estimated by examining the sections
of restoring force surface and its derivatives and
following estimates of system parameters are ob-
tained:

Kest. =
[

360.00 - 238.09
−240.00 240.00

]
N/m;

Cest. (1, 2) = −c2 = −0.9359Ns/m;

Cest. (2, 1) = −c2 = −0.9359Ns/m;
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(a)

(b) 

(c)

Figure 20: Enriched RKPM based force state
maps for Case 4; (a) case 4a: ks �= 0; μ = 0; (b)
case 4b: ks = 0; μ �= 0; (c) case 4c: ks �= 0; μ �= 0.

Cest. (2, 2) = c2 = −0.9359Ns/m;

αest. = 1000.00N/m3

The parameters μ and C (1, 1) = c1 + c2 are de-

(a)

(b) 

Figure 21: Sections of enriched RKPM based
force state map (Case 4a); (a) section along x = 0;
(b) section along ẋ = 0.

duced from the sections of restoring force surface
(see Figure 24).

5 Kriging based models for force state maps

Here we re-consider the examples considered in
section 4.0 (equations 74-77) and obtain the krig-
ing based force state maps (based on equations
52-69). The numerical values of the system pa-
rameters and excitation are retained as before.
Steps 1-4 for force state map construction remain
as in section 4.0. Based on the knowledge of
x(t), ẋ(t) and g(t) and, in conjunction with co-
variance model (third of the models in equation
57) we determine the unknown model parameters
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(a)

(b) 

Figure 22: Sections of enriched RKPM based
force state map (Case 4b); (a) section along x = 0;
(b) section along ẋ = 0.

{
β j
}p

j=1, σ2 and {θi}q
i=1 by optimizing the max-

imum likelihood function L (equation 67). The
constrained nonlinear optimization here is solved
numerically using the genetic algorithm subrou-
tine ga solver available on the Matlab platform.
In the numerical work it is assumed that p=10
and attention focused on cases in which q=2. The
ga solver was run for 100 generations. Once
the model parameters are thus determined, we
divide the x − ẋ space into a set of equi-spaced
grid points, and at each of these points the val-
ues of force state map are estimated using equa-
tion 69. The procedure for investigation of fixed
points and limit cycles follows the approach sim-
ilar to what has been used in section 4.0. Fig-

(a)

(b) 

Figure 23: Sections of enriched RKPM based
force state map (Case 4c); (a) section along x = 0;
(b) section along ẋ = 0.

ures 25-27 respectively show the numerical re-
sults obtained for the cases of Duffing’s oscilla-
tor with positive linear stiffness, Duffing’s oscil-
lator with negative linear stiffness and for Van der
Pol’s oscillator. In each of these cases the mea-
sured x(t), ẋ(t), ẍ(t) and g(t) are seeded by syn-
thetically generate Gaussian noise (with flat broad
band spectra) with zero mean and specified stan-
dard deviation. The standard deviations are cho-
sen to be 2% and 5% of maximum values of the
respective signals in the absence of noise. A se-
lection of the numerical results for the three cases
is as follows:

1. Duffing’s oscillator with positive linear stiff-
ness (equation 75):
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Figure 24: Studies on 2-dof system having dis-
continuous and polynomial-type nonlinearities;
section of enriched RKPM based force state map
along x = 0.

a. Standard deviation of noise (at 5% of
deterministic maxima): displacement:
0.1439 m, velocity: 1.3917 m/s, accel-
eration: 28.657 m/s2, and applied force:
4.494 N.

b. Estimates of model parameters: θ ={
51.203, 30.653

}
, σ̂2 = 1.637 × 103,

and

β̂ =
{

−2.24, 10.50, 0.39, 0.37,

0.10, 0.00, 9.78, −0.01 −0.03

0.00
}

2. Duffing’s oscillator with negative linear stiff-
ness (equation 76):

a. Standard deviation of noise (at 5% of
deterministic maxima): displacement:
0.1439 m, velocity: 1.3917 m/s, accel-
eration: 28.657 m/s2, and applied force:
4.494 N.

b. Estimates of model parameters: θ ={
51.203, 30.653

}
, σ̂2 = 1.637 × 103,

and

β̂ =
{ −5.90, −3.75, −0.01, 0.90,

0.10, 0.01, 9.57, 0.00, 0.05,

0.00
}

(a)

(b) 

(c)

Figure 25: Force state maps using kriging model;
Example of Duffing’s oscillator with positive k;
(a) observed noisy data on system response; (b)
force state map based on kriging model; (c) restor-
ing force at ẋ = 0.
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(a)

(b) 

(c)

Figure 26: Force state maps using kriging model;
Example of Duffing’s oscillator with negative k;
(a) observed noisy data on system response; (b)
force state map based on kriging model; (c) restor-
ing force at ẋ = 0; the inset shows the details of
the curve near the origin illustrating the influence
of noise.

3. Van der Pol’s oscillator (equation 77):

a. Standard deviation of noise (at 5% of
deterministic maxima): displacement:
0.0812 m, velocity: 0.835 m/s, acceler-
ation: 11.764 m/s2, and applied force:
4.494 N.

b. Estimates of model parameters: θ ={
32.789, 41.352

}
, σ̂2 = 2.114 × 103,

and

β̂ =
{

3.93, 9.40, −9.29 −0.98,

−0.22, 0.04, −0.85 −0.09 0.90

−0.00
}

Figures 25a-c show the results for the case of
Duffing’s oscillator with positive stiffness (equa-
tion 75). Based on the data shown in figure 25a,
the kriging based force state map is obtained in
figure 25b and the cross section of this surface
along ẋ = 0 (that is, the section Ĝ(x, ẋ = 0)) is
shown in figure 25c for noise levels of 0%, 2%
and 5%. Based on the results shown in figure 25c
it may be concluded that the kriging based force
state map construction works satisfactorily when
measurements are corrupted by reasonably large
levels of noise. Again, based on Ĝ(x, ẋ = 0) (fig-
ure 25c) it may be inferred that the origin is a sta-
ble fixed point and it is verified that it is stable. It
may be noted that in the representation of the krig-
ing surface (equation 53) terms up to order three
have been retained in the study. Similar results
for the case of Duffing’s oscillator with negative
linear stiffness term (equation 76) are shown in
figures 26a-c. Again, as may be inferred from fig-
ure 26c, the force state map construction is shown
to perform satisfactorily in this case also for noise
levels of 0%, 2% and 5%. In the numerical work
it was observed that at higher levels of noise, for
some realizations of force state map, there were
minor fluctuations in the section Ĝ(x, ẋ = 0) and
this is depicted in the inset in figure 25c. Such
fluctuations could potentially lead to misleading
conclusions about the nature of the nonlinearity
but however could be correctly interpreted cor-
rectly by repeated fits to the force state maps.
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(a)

(b) 

(c)

(d)
Figure 27: Force state maps using kriging model; Example of Van der Pol’s oscillator; (a) observed noisy
data on system response; (b) force state map based on kriging model; (c) restoring force at ẋ = 0; (d) Limit
cycle oscillation constructed using kriging based force state map and the observed data.

Results on the models for force state maps for Van
der Pol’s oscillator (equation 77) are shown in fig-
ure 27a-d. The prediction on linear stiffness term
is observed to be satisfactory from the results in
figure 27c for the three noise levels considered.
To examine the nonlinear nature of energy dissi-
pation, the free vibration characteristic of the sys-
tem was studied using the kriging surface fitted
using forced vibration data. This results has been
compared with the known limit cycle behavior of
the system in figure 27d. The departure of the
shape of the limit cycle from a circle clearly point
towards the strong nature of nonlinearity present
and the results presented also point towards suc-
cessful performance of kriging based force state
maps for strongly nonlinear systems even in the

presence of significant measurement noise levels.

6 Closing remarks

Force state maps offer powerful solutions to prob-
lems of nonlinear system identification. The
construction of these maps constitutes a non-
parametric method for system identification. The
method could also be used to determine the pa-
rameters of models when the functional form of
the restoring force surface is postulated. This
typically involves evaluation of gradients of the
force state map and (or) exploration of the force
state map in specific regions of phase space. The
present study has investigated the performance
of force state map technique when the restoring
force surface is modeled using two hitherto unex-
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plored options namely RKPM and kriging based
functional representations. The RKPM potential
has several advantages:

a). The method is capable of representing poly-
nomials exactly at all points within a domain
of interest. The numerical results on identifi-
cation presented in sections 4.0, 4.1 and 4.2
bear testimony to this advantage: the model
parameters here are identified very accurately.

b). The method with suitable enrichment strate-
gies provides powerful means for modeling
non-smooth restoring force surfaces. This
has been illustrated in sections 4.3 and 4.4
where the enriched RKPM based force state
maps are shown to lead to accurate estimation
of model parameters in systems with bilinear
stiffness and damping characteristics.

The study has also demonstrated the determina-
tion of fixed points and their stability (within
the framework of linear stability analysis) using
force state maps for simple oscillators. One of
the limitations of RKPM based methods as out-
lined in this study is that the method performs
poorly when the measurement data are corrupted
by relatively large levels of noise. The kriging
based methods adopt a probabilistic outlook to-
wards constructing the force state maps and con-
sequently, have the inherent ability to take into ac-
count random errors in the map construction. The
numerical results presented in section 5.0 have
provided evidence for the successful application
of the method for a class of sdof nonlinear oscil-
lators and for relatively large levels of noise.

The following aspects of the problem need further
research:

a). Application of the proposed procedures for
data emanating from laboratory and field ex-
periments.

b). Treatment of mdof systems using kriging
based approximations. Here the problem of
developing vector version of kriging models
for representing a set of restoring force state
maps needs to be tackled.

c). The application of numerical denoising tech-
niques to mitigate the effects of measurement
noise needs to be developed in conjunction
with force state map development.

d). In real life studies on mdof systems the mea-
surement models are often spatially complete
and more often a combination of sensors such
as strain gauges, displacement transducers
and accelerometers are used during measure-
ments. The incorporation of these features
into force state map constructions requires
further development of the method.

e). Finally, as has been noted in the introductory
section of this paper, there exist several other
alternatives for functional representations that
have been developed in the context of mesh-
free and particle methods, such as, moving
least squares method and radial basis func-
tions, and exploring the usefulness of these
representations for force state map construc-
tion remains as an useful avenue for further
research.

The present authors are currently exploring some
of these questions.
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