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Analysis of Transient Heat Conduction in 3D Anisotropic Functionally
Graded Solids, by the MLPG Method

J. Sladek1, V. Sladek1, C.L. Tan2 and S.N. Atluri3

Abstract: A meshless method based on the
local Petrov-Galerkin approach is proposed for
the solution of steady-state and transient heat
conduction problems in a continuously non-
homogeneous anisotropic medium. The Laplace
transform is used to treat the time dependence
of the variables for transient problems. The an-
alyzed domain is covered by small subdomains
with a simple geometry. A weak formulation for
the set of governing equations is transformed into
local integral equations on local subdomains by
using a unit test function. Nodal points are ran-
domly distributed in the 3D analyzed domain and
each node is surrounded by a spherical subdo-
main to which a local integral equation is applied.
The meshless approximation based on the Mov-
ing Least-Squares (MLS) method is employed for
the implementation. Several example problems
with Dirichlet, mixed, and/or convection bound-
ary conditions, are presented to demonstrate the
veracity and effectiveness of the numerical ap-
proach.

Keyword: meshless method, local weak form,
Heaviside step function, moving least squares in-
terpolation, Laplace transform

1 Introduction

Functionally graded materials are multi-phase
materials with the phase volume fractions vary-
ing gradually in space, in a pre-determined pro-
file. This results in continuously graded thermo-
mechanical properties at the (macroscopic) struc-
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tural scale. Often, these spatial gradients in mate-
rial behaviour render FGMs as superior to con-
ventional composites. FGMs possess some ad-
vantages over conventional composites because
of their continuously graded structures and prop-
erties [Suresh and Mortensen (1998); Miyamoto
et al. (1999)]. FGMs may exhibit isotropic or
anisotropic material properties, depending on the
processing technique and the practical engineer-
ing requirements. Recent progress in the devel-
opment and research of FGMs has also enhanced
interests in the development of numerical meth-
ods for the solution of heat conduction problems
in continuously non-homogeneous solids. The lit-
erature on heat conduction problems in FGM ma-
terials has focused mainly on problems with ex-
ponential variations of thermal properties, formu-
lated in Cartesian coordinates and under steady-
state boundary conditions [Noda and Jin (1993);
Erdogan and Wu (1996); Jin and Noda (1993)].
Transient heat transfer in FGMs with the expo-
nential spatial variation has also been examined,
but to a lesser extent [Jin and Batra, 1996; Noda
and Jin (1994); Jin and Paulino (2001); Sutradhar
et al. (2002); Jin (2002)].

Due to the high mathematical complexity of the
initial-boundary value problems, analytical ap-
proaches for the thermo-mechanics of FGMs are
restricted to simple geometries and boundary con-
ditions. Transient heat conduction analysis in
FGM demands accurate and efficient numerical
methods. The finite element method (FEM) can
be successfully applied to problems with an arbi-
trary variation of material properties by using spe-
cial graded elements [Kim and Paulino (2002)].
In commercial computer codes, however, mate-
rial properties are considered to be uniform on
each element. The boundary element method
(BEM) is also a suitable numerical tool for this
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purpose. The heat conduction problem in a ho-
mogeneous body with isotropic material proper-
ties has been successfully solved by the BEM very
frequently in the literature [Brebbia et al. (1984)].
A pure boundary formulation is also available for
anisotropic media [Chang et al. (1973)]. How-
ever, the fundamental solution for continuously
non-homogeneous bodies is not available in gen-
eral. If an exponential spatial variation of material
properties is considered, one can derive the fun-
damental solution for heat conduction problems
[Sutradhar et al. (2002)]. One possibility to ob-
tain a BEM formulation is based on the use of fun-
damental solutions for a fictitious homogeneous
medium, as has been suggested for the first time
by Butterfield (1978) for potential flow problems.
This approach, which is the basis of the global
BEM, however, leads to a boundary-domain in-
tegral formulation with additional domain inte-
grals for the gradients of primary fields to obtain a
unique formulation. Such an integral formulation
has been applied to the heat conduction analysis in
non-homogeneous media by Tanaka and Tanaka
(1980). The price to be paid in such an approach
is the loss of a pure boundary integral character of
the formulation; in addition, evaluation of the in-
tegrals on the global domain presents some com-
putational difficulties. Notwithstanding the great
success of the finite and boundary element meth-
ods as effective numerical tools for the solution
of boundary and initial value problems in engi-
neering applications, there remains shortcomings
of these methods. This has generated growing in-
terest in developing new advanced computational
methods.

Meshless formulations, in particular, are becom-
ing popular due to their high adaptivity and a low
cost to prepare input data for numerical analy-
ses. A significant number of such methods have
been proposed so far [Belytschko et al. (1996);
Atluri and Zhu(1998), Atluri and Shen (2002);
Atluri (2004)]. In conventional discretization
methods, there is a discontinuity of secondary
fields (gradients of primary fields) at the inter-
face of elements. For modeling continuously
non-homogeneous solids, the approach based
on piecewise continuous elements will introduce

some inaccuracies. Therefore, modeling based
on C1 continuity, such as using meshless meth-
ods, is expected to be more accurate than conven-
tional discretization techniques. The meshless lo-
cal Petrov-Galerkin (MLPG) method is a funda-
mental base for the derivation of many meshless
formulations, since the trial and the test functions
can be chosen from different functional spaces.
Recent successes of the MLPG methods have
been reported in the development of the MLPG
finite-volume mixed method [Atluri, Han, and Ra-
jendran (2004)], which was later extended to fi-
nite deformation analysis of static and dynamic
problems [Han et al (2005)]; in simplified treat-
ment of essential boundary conditions by a novel
modified MLS procedure [Gao et al. (2006)]; in
analysis of transient thermo-mechanical response
of functionally gradient composites [Ching and
Chen (2006)]; in the development of the mixed
scheme to interpolate the elastic displacements
and stresses independently [Atluri et al (2006a),
(2006b)]; in proposal of a direct solution method
for the quasi-unsymmetric sparse matrix arising
in the MLPG [Yuan et al. (2007)]; and, in the
development of the MLPG using the Dirac delta
function as the test function for 2D heat con-
duction problems in irregular domain [Wu et al.
(2007)]. The local integral formulations with the
use of a suitable fundamental solution have been
successfully applied to potential problems [Zhu et
al. (1998); Mikhailov (2002)], isotropic elasto-
statics [Atluri et al. (2000); Sladek et al. (2000)],
elastodynamics [Sladek et al. (2003a,b)], heat
conduction [Sladek et al. (2003c,d)], thermoe-
lasticity [Sladek et al. (2001)] and plate/shell
problems [Long and Atluri (2002); Sladek et al.
(2002)] in homogeneous and non-homogeneous
solids. Applicability of the MLPG is enhanced
if a simple unit function is used as the test func-
tion in the local weak form. The method has
been successfully applied to transient heat con-
duction problems in 2D with anisotropic and
continuously non-homogeneous solids [Sladek et
al. (2004a,b)], and to elasticity [Sladek et al.
(2004c); Sellountos et al. (2005)], plate and
shell structures [Soric et al. (2004); Sladek et
al. (2007c, 2008)] and smart materials [Sladek et
al. (2007b)]. In all the above- mentioned papers,
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the MLPG has been applied to 2D problems. The
application of meshless methods to 3D problems
has, hitherto, been very limited indeed. In this re-
gard, Han et al. (2004a,b) have applied MLPG
to elasticity and the present authors have recently
analyzed 3D axisymmetric heat conduction prob-
lems using the same MLPG approach [Sladek et
al. (2003d, 2007a)].

In this paper, the meshless local Petrov-Galerkin
(MLPG) method is applied to transient heat con-
duction problems in 3D solids with continuously
non-homogeneous and anisotropic material prop-
erties. The Laplace transform technique is ap-
plied to eliminate the time variable in the dif-
ferential equation. The original linear parabolic
differential equation is converted into a linear el-
liptic partial differential equation. Small spher-
ical subdomains surrounding the nodes are ran-
domly distributed over the analyzed domain. A
unit step function is chosen as the test function
to derive local integral equations on boundaries
of the chosen subdomains. For transient heat con-
duction problem the local integral equations (LIE)
have a boundary-domain integral form. Only for
a steady-state problem can a pure surface inte-
gral formulation on local boundaries be obtained.
However, the boundary-domain integral formula-
tion on simple subdomains does not imply any
difficulties. The local integral equations are non-
singular and take a very simple form. Spatial vari-
ation of the Laplace transforms and the heat flux
on the subdomain are approximated by means of
the moving least-squares (MLS) method. Several
quasi-static boundary value problems are solved
for various values of the Laplace transform pa-
rameter. The Stehfest (1970) numerical inversion
method is applied to obtain the time-dependent
solutions. Numerical examples are presented to
verify the proposed numerical method.

2 Local integral equations for transient heat
conduction problems

Consider a boundary value problem for heat
conduction in a continuously non-homogeneous
anisotropic medium, which is governed by the fol-

lowing equation:

ρ(x)c(x)
∂θ
∂ t

(x, t) = [ki j(x)θ, j(x, t)],i +Q(x, t),

(1)

where θ (x, t) is the temperature field, Q(x, t) is
the density of body heat sources, ki j is the thermal
conductivity tensor, ρ(x) is the mass density and
c(x) the specific heat.

The global boundary Γ consists of three parts
Γ = Γθ ∪Γq ∪Γ3 and the following boundary and
initial conditions are assumed

θ (x, t) = θ̃ (x, t) on Γθ

q(x, t) = ki j(x)θ, j(x, t)ni

(x) = q̃(x, t) on Γq

q(x, t) = h(x) [θe(t)−θ (x, t)] on Γ3

θ (x, t)|t=0 = θ (x,0)

(2)

where ni is the unit outward normal of the global
boundary, h(x) is the heat transfer coefficient,
θe(t)is the temperature of the fluid medium out-
side of solid body, Γθ is the part of the global
boundary with prescribed temperature and on Γq

the flux is prescribed (Fig. 1). The part Γ3 repre-
sents the surface where convective boundary con-
dition is prescribed.

Applying the Laplace transform

L [θ (x, t)] = θ (x, s) =
∞∫

0

θ (x, t)e−stdt,

to the governing equation (1), we have

[
ki j(x)θ , j(x, s)

]
,i −ρ(x)c(x)sθ(x, s) = −F(x, s),

(3)

where

F(x, s) = Q(x, s)+θ (x,0)

is the re-defined body heat source in the Laplace
transform domain with initial boundary condition
for temperature and s is the Laplace transform pa-
rameter.

Instead of writing the global weak form for the
above governing equation, the MLPG methods
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Figure 1: Local boundaries for weak formulation and support domain of weight function at node xi

construct the weak form over local subdomains
such as Ωs, which is a small region taken for
each node inside the global domain [Sladek et
al. (2004a)]. The local subdomains overlap each
other, and cover the whole global domain Ω. The
local subdomains could be of any geometric shape
and size. In this paper, the local subdomains are
taken to be of spherical shape. The local weak
form of the governing equation (2) can be written
as∫
Ωi

s

[(
ki j(x)θ , j(x, s)

)
,i −ρ(x)c(x)sθ(x, s)

+ F(x, s)
]
θ ∗(x)dΩ = 0 , (4)

where θ ∗(x) is a weight (test) function.

Applying the Gauss divergence theorem to eq. (4)
one can write∫
∂Ωi

s

q(x, s)θ ∗(x)dΓ−
∫
Ωi

s

ki j(x)θ , j(x, s)θ ∗
,i(x)dΩ

−
∫
Ωi

s

ρ(x)c(x)sθ(x, s)θ ∗(x)dΩ

+
∫
Ωi

s

F(x, s)θ ∗(x)dΩ = 0, (5)

where ∂Ωs is the boundary of the local subdomain
and

q(x, s) = ki j(x)θ , j(x, s)ni(x).

The local weak form, eq. (5), is a starting point to
derive local boundary integral equations if an ap-
propriate test function is selected. If a Heaviside
step function is chosen as the test function θ ∗(x)
in each subdomain

θ ∗(x) =

{
1 at x ∈ Ωs

0 at x /∈ Ωs

the Eq. (5) is transformed into a simple local
boundary integral equation

∫
∂Ωi

s

q(x, s)dΓ−
∫
Ωi

s

ρ(x)c(x)sθ(x, s)dΩ

= −
∫
Ωi

s

F(x, s)dΩ. (6)

Equation (6) is recognized as the flow balance
condition of the subdomain. In the steady-state
case there is no domain integration involved in the
left hand side of this local boundary integral equa-
tion. If the assumption of zero body heat sources
is made, the pure boundary integral formulation is
obtained.

3 Meshless approximation and numerical so-
lution

In general, a meshless method uses a local in-
terpolation to represent the trial function with
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the values (or the fictitious values) of the un-
known variable at some randomly located nodes.
The moving least-squares (MLS) approximation
[Atluri (2004)] is used in the present analysis. To
approximate the distribution of the Laplace trans-
form of temperature over a number of randomly
located nodes {xa}, a = 1,2, ...,n, the MLS ap-

proximant θ h(x, s) of θ , is defined by

θ h
(x, s) = pT (x)a(x, s), (7)

where pT (x) =
[
p1(x), p2(x), ..., pm(x)

]
is a com-

plete monomial basis of order m; and a(x) is
a vector containing the coefficients a j(x), j =
1,2, ...,mwhich are functions of the space co-
ordinates x = [x1,x2,x3]

T . In 3D problems, the
linear basis is defined as

pT (x) = [1,x1,x2,x3] , (8)

and the quadratic basis is defined as

pT (x) =[
1,x1,x2,x3, (x1)2, (x2)2, (x3)2,x1x2,x1x3,x3x2

]
.
(9)

The coefficient vector a(x) is determined by min-
imizing a weighted discrete L2-norm defined as

J(x) =
n

∑
a=1

wa(x)
[
pT (xa)a(x, s)− θ̂ a(s)

]2
, (10)

where wa(x) is the weight function associated
with the node a with wa(x) > 0. Recall that n
is the number of nodes in the support domain for
which the weight function wa(x) > 0 and θ̂ a(s)
are the fictitious nodal values, but not the nodal
values of the unknown trial function θ h(x, s) in
general. The stationary condition of J in eq. (10)
with respect to a(x, s),

∂J/∂a = 0,

leads to the following linear relation between
a(x, s) and θ̂ (s)

A(x)a(x, s)−B(x)θ̂(s) = 0, (11)

where

A(x) =
n

∑
a=1

wa(x)p(xa)pT (xa),

B(x) =[
w1(x)p(x1),w2(x)p(x2), ....,wn(x)p(xn)

]
.

(12)

The MLS approximation is well defined only
when the matrix A in eq. (11) is non-singular. A
necessary condition to satisfy this requirement is
that at least m weight functions are non-zero (i.e.
n ≥ m) for each sample point x ∈ Ω. The solution
of eq. (11) for a(x, s) and a subsequent substitu-
tion into eq. (7) lead to the following relation

θ h
(x, s) = ΦΦΦT (x) · θ̂(s) =

n

∑
a=1

φ a(x)θ̂ a(s), (13)

where

ΦΦΦT (x) = pT (x)A−1(x)B(x). (14)

In eq. (14), φ a(x) is usually referred to as the
shape function of the MLS approximation corre-
sponding to the nodal point xa. From eqs. (12)
and (14), it can be seen that φ a(x) = 0 when
wa(x) = 0. In practical applications, wa(x) is of-
ten chosen such that it is non-zero over the support
of the nodal point xi. The support of the nodal
point xa is usually taken to be a sphere of the ra-
dius ri centred at xa (see Fig. 1). The radius ri

is an important parameter of the MLS approxima-
tion because it determines the range of the inter-
action (coupling) between the degrees of freedom
defined at considered nodes.

A 4th-order spline-type weight function is applied
in the present work

wa(x) ={
1−6

(
da

ra

)2
+8

(
da

ra

)3 −3
(

da

ra

)4
0 ≤ da ≤ ra

0 da ≥ ra
,

(15)

where da = ‖x−xa‖ and ra is the radius of the
spherical support domain. With eq. (15), the C1-
continuity of the weight function is ensured over
the entire domain, therefore the continuity condi-
tion of the heat flux is satisfied.
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The partial derivatives of the MLS shape func-
tions are obtained as [Atluri (2004)]

φ a
,k =

m

∑
j=1

[
p j

,k(A−1B) ja + p j(A−1B,k +A−1
,k B) ja

]
,

(16)

wherein A−1
,k =

(
A−1

)
,k represents the derivative

of the inverse of A with respect to xk, which is
given by

A−1
,k = −A−1A,kA−1.

The directional derivatives of θ (x, s) are approxi-
mated in terms of the same nodal values as

∂θ h

∂n
(x, s) = nk(x)

n

∑
a=1

θ̂ a(s)φ a
,k(x). (17)

Then, the Laplace transform of the heat flux is ap-
proximated by

q(x, s) = ki j(x)ni(x)
n

∑
a=1

θ̂ a(s)φ a
, j(x). (18)

The local integral equation, eq. (6), for 3D prob-
lems if the source point xi is located inside Ω
yields the following set of equations:

n

∑
a=1

⎛
⎜⎝ ∫

∂Ωi
s

nT K(x)Pa(x)dΓ−
∫
Ωi

s

ρcsφ a(x)dΩ

⎞
⎟⎠

θ̂ a(s) = −
∫
Ωi

s

F(x, s)dΩ (19)

where

K(x) =

⎡
⎣k11 k12 k13

k12 k22 k23

k13 k23 k33

⎤
⎦ , Pa(x) =

⎡
⎣φ a

,1
φ a

,2
φ a

,3

⎤
⎦ ,

nT = (n1,n2,n3).

It should be noted that there are neither Lagrange
multipliers nor penalty parameters introduced into
the local weak form in eq. (4) because the essen-
tial boundary conditions on Γi

sθ can be imposed

directly using the interpolation approximation eq.
(13):

n

∑
a=1

φ a(x)θ̂ a(s) = θ̃(xi, s) for xi ∈ Γi
sθ (20)

where θ̃ (xi, s) is the Laplace transform of temper-
ature prescribed on the boundary Γi

sθ for boundary
conditions given in eq. (2).

Natural boundary conditions for the heat flux are
satisfied on Γi

sq by collocation of the approximate
expression eq. (18) at xi

n

∑
a=1

kl j(xi)nlφ a
, j(xi)θ̂ a(s) = q̃(xi, s) for xi ∈ Γi

sq.

(21)

If convective boundary conditions are consid-
ered and the temperature of the fluid medium
outside has Heaviside time variation, θe(x, t) =
θe0(x)H(t − 0), the collocation equation has a
form

n

∑
a=1

kl j(xi)nlφ a
, j(xi)θ̂ a(s)+

n

∑
a=1

h(x)φ a(xi)θ̂ a(s)

= h(xi)θe0(xi)/s for xi ∈ Γi
3 (22)

The final system of algebraic equations for un-
known Laplace transform temperature is created
from eq. (19) at interior nodes and the corre-
sponding collocation equation at boundary nodes.
The time-dependent values of the transformed
quantities in the previous consideration can be
obtained by an inverse transform. There are
many inversion methods available for the inverse
Laplace transform. In the present analysis, the so-
phisticated Stehfest’s algorithm [Stehfest (1970)]
for the numerical inversion is used. If f (s) is the
Laplace transform of f (t), an approximate value
fa of f (t) for a specific time t is given by

fa(t) =
ln2

t

N

∑
i=1

vi f

(
ln2

t
i

)
, (23)

where

vi = (−1)N/2+i

min(i,N/2)

∑
k=[(i+1)/2]

kN/2(2k)!
(N/2−k)!k!(k−1)!(i−k)!(2k− i)!

.

(24)
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In the numerical analysis here, N = 10 is used
for double precision arithmetic. This means that
for each time t, it is needed to solve N bound-
ary value problems for the corresponding Laplace
parameterss = i ln2/t, with i = 1,2, ...,N. If M
denotes the number of the time instants in which
we are interested to know f (t), the number of the
Laplace transform solutions f (s j) is then M×N.

4 Numerical examples

In this section, numerical results will be presented
to illustrate the implementation and effectiveness
of the MLPG method for transient heat conduc-
tion problems. First, homogeneous material prop-
erties and steady-state boundary conditions are
considered. An anisotropic cube as shown in Fig.
2 is analyzed; for the purpose of illustration, a
relatively coarse node distribution is shown here
, with typical mixed boundary conditions on the
surfaces.

5
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21

x2

x1

q=0

θ=0

q=0

θ =TH(t)

x3

25

125

105101

Figure 2: Mixed boundary conditions for ana-
lyzed cube

In the first example, Example (1), steady-state,
Dirichlet boundary conditions are prescribed over
the entire surface of the cube. The numerical val-
ues chosen are for a cube with side a = 10m and
thermal conductivity tensor components: k11 =
k22 = k33 = 1×10−4 and k23 = 0.2×10−4m2s−1;
the other terms in the thermal conductivity matrix
being zero. In the MLS approximation, a regular
node distribution with a total 1331 nodes is used

here. The radius of the spherical subdomain is
considered as rloc = 0.8m. This simple example
was considered as a verification of the accuracy
of the present method. It can be easily shown that
the analytical solution

θ = x2
2 +x2 −5x2x3 +x1x3

satisfies the governing equation (1) under steady-
state conditions for the thermal conductivity val-
ues considered. Essential boundary conditions are
prescribed on the surfaces, with the temperatures
as obtained from the analytical solution above.
The numerical results can be compared with an-
alytical ones. The Sobolev norm of the errors for
the temperatures obtained

rθ =
‖θ num −θ exact‖

‖θ exact‖ ×100% with ‖θ‖

=

⎛
⎝∫

Ω

θθ dΩ

⎞
⎠

1/2

is 0.37%. The temperature distributions at the
mid-plane of the cube x3/a = 0.5 and at two dif-
ferent coordinates x1/a = 0.5 and 0.9 along the
x2-coordinate direction are shown in Fig. 3. It can
be seen that there is excellent agreement between
the MLPG and analytical results.
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Figure 3: Temperature distribution in a homoge-
neous anisotropic cube –Ex. (1)
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In the second numerical example, Example (2),
mixed steady-state boundary conditions are con-
sidered. A homogeneous anisotropic cube do-
main (10× 10× 10) with vanishing heat flux on
lateral walls, and prescribed temperature θ = 0
and θ = 1 on the bottom and top surfaces, re-
spectively, is considered (Fig. 2). The values
of the thermal conductivity tensor components
are: k11 = k33 = 1, k22 = 1.5, k23 = k32 = 0.5,
k13 = k12 = 0. In the stated 3D boundary value
problem, the temperature distribution is not de-
pendent on x1-coordinate. Therefore, it can be an-
alyzed as a 2D problem as has been carried out by
Sladek et al. (2004a) on the same problem; the
results can thus be compared. The temperature
variations along the x3 coordinate direction on the
left (x2/a = 0) and right (x2/a = 1) lateral sides
are given in Fig. 4, where again, very good agree-
ment between the 2D and 3D results is observed.
It should be noted that in an isotropic cube under
the same boundary conditions, a linear variation
of the temperature with x3 coordinate will be ob-
tained. Nonlinear variation of temperature in Fig.
4 is due to the anisotropic properties of the heat
conduction parameters.
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Figure 4: Temperature variations with x3 coordi-
nate in a homogeneous anisotropic cube – Ex. (2)

In Example (3), the same geometry and boundary
conditions as in Example (2) are considered for a
non-homogeneous (FGM) cube, where k33(x3) =

1+x3/a, k22 = 1.5, k11 = 1.,k23 = 0.5, k13 = k12 =
0. Again, the temperature distribution is not de-
pendent on the x1 coordinate and the 2D prob-
lem has been tested in the authors’ previous work
[Sladek et al. (2004a)]. The results for the tem-
perature variations along the x3 coordinate direc-
tion on the left (x2/a = 0.) and right (x2/a = 1.)
lateral sides are given in Fig. 5, where the very
good agreement of the results obtained from 2D
and 3D analyses is observed once again. Also
shown in this figure are the corresponding results,
in dashed lines, for the homogeneous case. If
the thermal conductivity k33 is increasing linearly
with x3 coordinate, a higher temperature distri-
bution is to be expected for the FGM than for a
homogeneous material. This is reflected by the
curves corresponding to the former case being
shifted to the left with respect to those for the lat-
ter case.
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Figure 5: Temperature variations with x3/a in an
anisotropic FGM cube – Ex. (3)

After having tested the present MLPG method
above, it will now be applied to problems of an
anisotropic body with more general variations of
the material properties with respect to the Carte-
sian coordinates, which cannot be solved as 2D
problems as was possible in the previous two
numerical examples. Consider, in Example (4),
a homogeneous anisotropic cube domain (10 ×
10 × 10) with vanishing heat flux on its lateral
walls, and prescribed temperature θ = 0 and θ =
1on the bottom and top surfaces, respectively;
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the domain has the following heat conductivities:
k11 = k33 = 1, k22 = 1.5, k12 = k13 = k23 = 0.5. In
this case, it is clear that the temperature distribu-
tion will not be independent of the x1-coordinate.
Figure 6 shows the computed temperature varia-
tion along the x3 coordinate at left and right lateral
sides of two planes x1/a = 0. and 1, respectively.
The qualitative features of the trends are similar to
those seen in the previous case where some sym-
metry of material properties has been considered.
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Figure 6: Temperature variations with x3/a in a
homogeneous anisotropic cube – Ex.(4)

A functionally graded material is treated next,
in Example (5). The same cube geometry and
boundary conditions as in Example 4 is consid-
ered, but with thermal conductivities of the do-
main having the following values:k11 = 1., k22 =
1.5, k33(x3) = 1 + x3/a, k12 = k13 = k23 = 0.5.
Figures 7 and 8 show the computed variations of
the temperature in the cube with the x3 coordinate
direction at = 0 and x2/a= 1 on the two lateral
sides, x1= 1 and x1= 0, respectively. Also shown
for comparison are the corresponding results for
the homogeneous case seen in the previous exam-
ple; the effects of non-homogeneity of the mate-
rial property are clearly evident.

Numerical examples of the application of the
present method to transient heat conduction are
presented next. Homogeneous isotropic material
property is considered first, in Example (6), with
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Figure 7: Temperature variations with x3/a in
plane x1/a = 1. of an anisotropic FGM cube – Ex.
(5)
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Figure 8: Temperature variations with x3/a in
plane x1/a = 0. of an anisotropic FGM cube – Ex.
(5)

k11 = k22 = k33 = 1, k12 = k13 = k23 = 0. The same
boundary conditions as in the previous case are
considered but with a thermal shock θ0H(t − 0)
represented by the Heaviside time step function
applied on the top surface of the cube (Fig. 2).
The temperature distribution has to be indepen-
dent on x1 and x2 coordinates. Due to this in-
dependence, the problem can also be analyzed in
2D, so that the numerical results can be compared.
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The MLPG method is used to solve the boundary
value problems in the Laplace transform domain.
The Stehfest inversion method is applied to ob-
tain the time-dependent solutions at three various
planes x3/a = 0.1, 05, 0.8. The time variations
of the temperature are shown in Fig. 9 where one
can observe the very good agreement of the re-
sults obtained from 2D and 3D analyses.

In Example (7), an anisotropic analysis of the
cube with the same set of heat conductivities for
the domain used earlier: k11 = k33 = 1, k22 = 1.5,
k12 = k13 = k23 = 0.5, is carried out. Time varia-
tions of temperature at x3/a = 0.8 and x2/a = 0.5
on the front and back surfaces of the cube are pre-
sented in Fig. 10. Note that at large time instants,
the temperatures approach the steady-state values,
as to be expected.
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Figure 9: Time variations of the temperature in an
isotropic cube – Ex. (6)

In the next example, Example (8), the cube in Ex-
ample (7) is treated as being an anisotropic FGM
with the following set of thermal conductivities:
k33(x3) = 1+x3/a, k22 = 1.5, k11 = 1., k23 = 0.5,
k13 = k12 = 0.. Figure 11 shows a comparison of
the time variations of temperatures in the homo-
geneous anisotropic and FGM cubes; the temper-
ature values are computed at x3/a = 0.2, the val-
ues of the two x1 coordinate positions are given in
the figure. The temperature on the front surface,
x1/a = 1, is higher than that on the back surface,
x1/a = 0. At large time instants, the temperature
approach the steady-state values given in Fig. 7
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Figure 10: Time variations of the temperature in
a homogeneous anisotropic cube – Ex. (7)

and 8. Very good agreement between the com-
puted quantities is observed.
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Figure 11: Time variations of the temperature in
an anisotropic cube – Ex. (8)

Finally, in Example (9), a convection bound-
ary condition on the cube is considered. On
the bottom and lateral surfaces of the cube there
is vanishing heat flux, and on the top surface,
heat convection with the heat transfer coefficient
h = 1.0W/m2K, occurs. The temperature of the
fluid medium outside has Heaviside time varia-
tion, θe(x, t) = θ0(x)H(t − 0). Isotropic mate-
rial property is considered here, with k11 = k22 =
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k33 = 1, k13 = k12 = k23 = 0., since analytical so-
lution in a layer is available for comparison. The
cube with vanishing heat fluxes on lateral surfaces
can be considered as a layer with the thickness
L = a = 10m; the analytical solution for this prob-
lem is [Carslaw and Jaeger (1959)]

θ (x3, t) = θ0⎧⎨
⎩1−2m

∞

∑
i=1

sinβi cos
(

βix3
L

)
exp

(−β 2
i αt

L2

)
βi

[
m+ sin2 βi

]
⎫⎬
⎭ ,

(25)

where α = k33/ρc = 1 and the eigenvalues βi are
the roots of the transcendental equations β sinβ

cosβ −
m = 0 with m = hL

k33
.
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Figure 12: Time variations of the temperature in
an isotropic cube with heat convection – Ex. (9)

Figure 12 shows the time variation of the temper-
ature in the analyzed cube at x3/a = 0 and x3/a
= 1. The numerical results are compared with the
analytical ones and it can be seen that there is very
good agreement indeed.

5 Conclusions

A local boundary integral equation formulation
in Laplace transform-domain with meshless ap-
proximation has been successfully implemented
to solve 3D initial-boundary value problems for

transient heat conduction in anisotropic, continu-
ously non-homogeneous solids.

The Heaviside step function is used as test func-
tions in the local symmetric weak form, leading to
the derivation of the local boundary-domain inte-
gral equations. In contrast to conventional bound-
ary integral equation methods, all the integrands
in the present formulation are regular. Thus, no
special integration techniques are required to eval-
uate the integrals.

The analyzed domain is divided into small over-
lapping spherical subdomains on which the lo-
cal boundary integral equations are applied. The
proposed methods are truly meshless methods,
wherein no elements or background cells are in-
volved in either the interpolation or the integra-
tion. The Moving Least-Squares (MLS) scheme
is adopted for approximating the physical quanti-
ties.

The main advantage of the present method is its
simplicity and generality in comparison to, say,
the conventional BEM. The method is particularly
promising for problems which cannot be solved
by the conventional BEM when the fundamental
solutions are not available. However, in its current
development, the computational time in the pro-
posed method is larger since there are many more
nodes involved and the shape functions in the
MLS approximation are significantly more com-
plex than in BEM or FEM using simple polynomi-
als. By employing a mixed formulation [Atluri et
al. (2004), (2006b)], the radius of the support do-
main can be reduced to obtain the same accuracy
as in the traditional approximation. A smaller size
of the support domain decreases the bandwidth of
the final system matrix and the computational ef-
fort is thus significantly reduced. It is proposed as
a future work, that a mixed formulation be applied
to the present 3D heat conduction analysis.

The proposed method can be further extended to
nonlinear problems, where meshless approxima-
tions may have certain advantages over the con-
ventional domain-type discretization approaches.
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