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Nonlinear Dynamical Analysis of Cavitation in Anisotropic Incompressible
Hyperelastic Spheres under Periodic Step Loads

X.G. Yuan1,2 and H.W. Zhang1

Abstract: In this paper, a dynamic problem that
describes void formation and motion in an incom-
pressible hyperelastic solid sphere composed of a
transversely isotropic Valanis-Landel material is
examined, where the sphere is subjected to a class
of periodic step tensile loads on its surface. A mo-
tion equation of void is derived. On analyzing
the dynamical properties of the motion equation
and examining the effect of material anisotropy on
void formation and motion in the sphere, we ob-
tain some new and interesting results. Firstly, un-
der a constant surface tensile load, it is proved that
a void would form in the sphere as the tensile load
exceeds a certain critical value and that the mo-
tion of the formed void with time would present
a class of singular period oscillations, the oscilla-
tion center is also determined. Secondly, under
periodic step tensile loads, the existence condi-
tions for periodic oscillation of the formed void
are presented.

Keyword: Incompressible hyperelastic mate-
rial; motion equation of void; nonlinear periodic
vibration; constant load; periodic step loads

1 Introduction

In practice, it is commonly recognized that the
sudden formation and growth of voids (cavita-
tion) occur in engineering materials as precur-
sors to failure. These phenomena are mainly due
to instability of materials, and thus prediction of
void formation and its motion rule has long at-
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tracted extensive attention. Since Gent and Lin-
derly (1958) discovered experimentally the phe-
nomenon of sudden void formation in tensioning
the cylinder composed of vulcanized rubber for
the first time in 1958, many similar experiments
have been made, see the review article by Gent
(1990) on cavitation in rubber up to 1990. The im-
petus of the theoretical work was supplied by Ball
(1982), in which void formation and growth were
described as a class of static bifurcation prob-
lems in the context of nonlinear elasticity. There-
after, many significant works have been made for
static cavitation problems. Horgan and Polignone
(1995) presented a comprehensive review of re-
sults up to 1995 for hyperelastic materials. Fur-
ther references on static formation and growth
of void for both incompressible and compress-
ible hyperelastic materials in recent years may
be found in [Polignone and Horgan (1993); Mur-
phy and Biwa (1997); Ren and Cheng (2002a, b);
Shang and Cheng (2001); Yuan, et. al. (2004a,
2005)]. On the other hand, many numerical meth-
ods were employed to solve the differential equa-
tions which may be helpful, such as Atluri, et. al.
(2006), Ling and Atluri (2008), and so on.

However, while the static formation of voids
in hyperelastic materials is well understood, the
analogous dynamic problem is relatively unex-
plored due to the complexity of the governing
equations. Chou-Wang and Horgan (1989) in-
vestigated dynamical cavitation in an isotropic in-
compressible neo-Hookean sphere in the context
of elastodynamics, moreover, the authors con-
cluded that a void would form at the center of the
sphere as the surface tensile load exceeds a certain
critical value, and that the motion of the formed
void would present a nonlinear periodic oscilla-
tion. Based on the work of Chou-Wang and Hor-
gan, the similar dynamic problems were respec-
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tively studied by Ren and Cheng (2003) for the
transversely isotropic incompressible Ogden ma-
terial, by Yuan, et. al. (2004b) for a class of gen-
eralized incompressible neo-Hookean materials.

The earlier investigations are all focused on the
constant tensile load which is independent of
time, however, the loading types acting on struc-
tures are always dynamic loads in practice, for ex-
ample, periodic load, step loads relating to time,
and so on. Yuan, et. al. (2006) studied prob-
lems of cavity formation and motion in the in-
compressible neo-Hookean sphere under a class
of prescribed periodic step tensile loads, which is
also based on the work of Chou-Wang and Hor-
gan (1989), in particular, the existence conditions
for periodic oscillation of the formed cavity are
determined in Yuan, et. al. (2006). To better
understand the problem of cavitation, Yuan, et.
al. (2007) studied the periodic motion of a pre-
existing micro-void in the interior of the incom-
pressible hyperelastic spheres.

The purpose of this paper is to examine the
dynamical bifurcation problem of void forma-
tion and motion in an incompressible hyperelastic
solid sphere composed of a generalized Valanis-
Landel material which is transversely isotropic
about the radial direction, where the sphere is
subjected to a class of periodic step tensile loads
on its surface. The mathematical model of the
problem is formulated in the context of nonlinear
elastodynamics. The motion equation of void of
the dynamic problem is derived by using the in-
compressibility constraint and the boundary con-
ditions. The dynamical properties of the motion
equation are examined in detail, and then some
new and interesting results are obtained by using
and improving the theory of nonlinear dynamics.
Firstly, under a constant radial tensile load which
is independent of time, the classical periodic so-
lution and two kinds of generalized periodic solu-
tions are defined as the motion equation satisfies
different initial conditions. It is proved that the
nonzero solutions of the motion equation are all
periodic solutions for any nonzero initial condi-
tions and for any given parameters presented in
the equation. In particular, by using the method
of energy analysis, that the nonzero solutions be-

long to which kind of periodic solutions to the end
are discussed in detail as the material parameters
take different values. Correspondingly, if the so-
lution of the motion equation satisfies the zero ini-
tial conditions, it is shown that a void would form
at the center of the sphere as the surface dead-load
exceeds a certain critical value and that the motion
of the formed void with respect to time presents
a class of singular period oscillations. Secondly,
under periodic step tensile loads which are related
to time, the existence conditions of periodic solu-
tions are determined by using the phase diagrams
of the motion equation. In each section, numeri-
cal examples are also carried out.

2 Formulation and solutions

For a solid sphere with radius R0 composed of an
incompressible hyperelastic material, we are con-
cerned with the radially symmetric motion of the
sphere under a class of surface tensile loads p̂(t)
depending on time t, where p̂(t) is a step function
of period T = 2t0 +2t1, (k = 0,1,2, · · ·):

p̂(t) =

⎧⎪⎨
⎪⎩

p0, t ∈ [2kT, 2kT + t0),
p0 +ε , t ∈ [2kT + t0, 2kT + t0 +2t1),
p0, t ∈ [2kT + t0 +2t1, 2(k +1)T ].

(1)

Under the assumption of spherical deformation,
the position (R,Θ,Φ) of the particle in the un-
deformed configuration moves to the position
(r,θ ,φ ) at time t ≥ 0, where r = r(R, t) ≥ 0,
(0 < R < R0) is a radial deformation function to
be determined, and Θ = θ ,Φ = φ . The deforma-
tion gradient tensor is given by

F = diag

(
∂ r(R, t)

∂R
,
r(R, t)

R
,

r(R, t)
R

)
= diag(λ1,λ2,λ3) ,

(2)

where λi, (i = 1,2,3) are the principal stretches.
The differential equations that describe the radi-
ally symmetric motion of the sphere, in the ab-
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sence of body force, reduce to

∂σrr(r, t)
∂R

(
∂ r
∂R

)−1

+
2
r

[
R2

r2

∂W
∂λ1

− r
R

∂W
∂λ2

]

= ρ
∂ 2r
∂ t2 , t ≥ 0, (3)

where

σrr(r, t) = λ1
∂W
∂λ1

− p(r, t), (4)

is the radial Cauchy stress associated with
the incompressible hyperelastic materials, W =
W(λ1,λ2,λ3) is the strain energy function of the
material, p(r, t) is the unknown hydrostatic pres-
sure associated with the incompressibility con-
straint λ1λ2λ3 = 1, and ρ is the constant mass
density of the material. Obviously, Eq.(3) is a
class of nonlinear evolution equations of the ra-
dial deformation function r = r(R, t).

In this paper, assume that the sphere is com-
posed of a class of generalized incompressible
Valanis-Landel hyperelastic materials, for which
the form of the corresponding strain energy func-
tion is given byYuan, et. al. (2004a)

W = W(λ1,λ2,λ3) = 2μ
{ 3

∑
i=1

λi (lnλi −1)

+α [λ1(lnλ1 −1)]2 +β [λ1(lnλ1 −1)]3
}
,

(5)

where μ > 0 is the shear modulus for infinitesi-
mal deformations, α , β ≥ 0 are the dimensionless
material parameters which serve as the degree of
material anisotropy. As α = β = 0, Eq.(5) then
reduces to the isotropic incompressible hypere-
lastic material which is first proposed by Valanis
and Landel (1967). Moreover, Ren and Cheng
(2002a) investigated static cavitated bifurcation
for the isotropic incompressible Valanis-Landel
material. Polignone and Horgan (1993) discussed
in detail the forms of the strain energy functions
for anisotropic hyper-elastic materials and pre-
sented the first paper on void formation for trans-
versely isotropic incompressible materials.

From the incompressibility constraint λ1λ2λ3 = 1
and from Eq.(2) we have

r = r(R, t) =
[
R3 +k3(t)

]1/3
, t ≥ 0, (6)

where k(t) ≥ 0 is an undetermined function, and
presents the value of the void radius at time t,
namely, if r(0+, t) = k(t) = 0, then it means that
the sphere remains solid in the current configu-
ration; while if r(0+, t) = k(t) > 0, this implies
that a spherical void with radius k(t) forms at the
center of the sphere and then motions with re-
spect to time t. In this case, it is assumed that the
void surface is traction free. On the other hand,
from Eq.(6), it is easy to see that the motion of
the whole sphere can be determined completely
by k(t).

Since the surface of the sphere is subjected to a
class of periodic step loads p̂(t) given by Eq.(1),
we have the following boundary condition

σrr(r(R0, t), t) = p̂(t)
[

R0

r(R0, t)

]2

, t ≥ 0. (7)

At the center of the sphere, the boundary condi-
tion requires that

r(0+, t)σrr(r(0+, t), t)= 0, t ≥ 0, (8)

which means that if no void forms in the inte-
rior of the sphere, then r(0+, t) = 0; where as
r(0+, t) = k(t) > 0, namely, a void with radius
k(t) forms at the center of the sphere at time t, for
the traction free void, we have σrr(r(0+, t), t)= 0.

The sphere is assumed to be in an undeformed
state and at rest at time t = 0, so the initial con-
ditions are given by r(R,0) = R,∂ r(R,0)/∂ t = 0
and from Eq.(6) we have

k(0) = 0, k̇(0) = 0. (9)

Note. Dots over all letters in this paper denote the
derivative with respect to time.

Further, it is not difficult to show that

∂ 2r
∂ t2 =

∂
(−r−1(2kk̇2 +k2k̈)+ r−4k4k̇2/2

)
∂ r

. (10)

For convenience, we rewrite Eq.(6) as R =[
r3 −k3(t)

]1/3
, and let η = η(r,k) = (1− k3

r3 )1/3,
so λi, (i = 1,2,3) can be denoted by λ1 = η2,λ2 =
λ3 = η−1.
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Based on the above notations, we integrate Eq.(3)
with respect to r from k to r, and then obtain

σrr(r, t)−σrr(k, t)+4μ
∫ r

k
H(η(ξ ,k),α ,β )

dξ
ξ

= ρ
[(

k4

2r4 −
2k
r

+
3
2

)(
k̇
)2 +k

(
1− k

r

)
k̈

]
,

(11)

where η(ξ ,k) = (1− k3

ξ3 )1/3 and

H(η,α ,β ) = η2 lnη
(
2+4αη2(2lnη −1)

+6β η4(2lnη −1)2 +η−3) . (12)

Multiplying both sides of Eq.(11) by r(0+, t), and
using the boundary conditions (7) and (8), we
have

kp̂(t)
(

R0

S

)2

+4μk
∫ S

k
H(η(ξ ,k),α ,β )

dξ
ξ

= ρk

[(
k4

2S4 −
2k
S

+
3
2

)(
k̇
)2 +k

(
1− k

S

)
k̈

]
,

(13)

where S = r(R0, t) = (R3
0 +k(t)3)1/3.

In what follows, it is convenient to introduce the
following quantities

x(t) =
k(t)
R0

, ẋ(t) =
k̇(t)
R0

, P(t) =
p̂(t)
μ

. (14)

In this case, the initial conditions (9) become

x(0) = 0, ẋ(0) = 0. (15)

Further, from Eq.(14) and the relationship be-
tween η and ξ in Eq.(12), Eq.(13) can be written
as

ρR2
0

μ
x

[(
x− x2

(1+x3)1/3

)
ẍ

+
(

x4

2(1+x3)4/3
− 2x

(1+x3)1/3
+

3
2

)
(ẋ)2

]
= P(t)x(1+x3)−2/3

−4x
∫ (1+x3)−1/3

0
H(η,α ,β )

η2dη
η3 −1

. (16)

Eq.(16) is a second-order nonlinear differential
equation with respect to the dimensionless void
radius x(t) at time t, and describes the exact re-
lation between P(t) and x(t) ≥ 0 for the gener-
alized incompressible Valanis-Landel materials.
Thus Eq.(16) is called the formation and motion
equation of void.

3 Nonlinear dynamical properties of solu-
tions of Eq.(16)

Obviously, x(t) ≡ 0 is a solution of Eq.(16), and
it corresponds to the homogeneous deformation
of the sphere, i.e., r(R, t) = R, and thus it is called
the trivial solution of Eq.(16). Next we discuss the
existence conditions and the qualitative properties
of the nontrivial solutions, x(t)≥ 0, of Eq.(16).

3.1 Constant tensile load case: ε = 0

Let ε = 0 in Eq.(1), we then have P(t) ≡ P (or
p̂(t) ≡ p0), namely, the sphere is subjected to a
constant tensile load.

For the initial condition x(0) = 0, however, if we
set t → 0+, from Eq.(16) it is easy to show that

ẋ(0+) = ±
(

2μ(P−G(0,α ,β ))
3ρb2

)1/2

, (17)

that is to say, the first-order derivative of x(t) of
Eq.(16) occurs discontinuous at the initial time
t = 0 for P �= G(0,α ,β ), and thus Eq.(16) is called
the singular second-order nonlinear differential
equation for the initial condition x(0) = 0. On
the other hand, if the solutions satisfy the initial
condition x(0) = x0 �= 0, to determine the solu-
tions of Eq.(16) completely, another initial condi-
tion ẋ(0) = ẋ0 must also be presented.

Let y = ẋ, then Eq.(16) is equivalent to the follow-
ing first-order differential equations:

(
ẋ
ẏ

)
=

(
y

F(x,y)

)
, (18)
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where

F(x,y) =

(1+x3)1/3

x(1+x3)1/3−x2

{
μ

[
P(1+x3)−2/3−G(x,α ,β )

]
ρR2

0

−y2
[

x4

2(1+x3)4/3
− 2x

(1+x3)1/3
+

3
2

]}
, (19)

G(x,α ,β ) = 4
∫ (1+x3)−1/3

0
H(η,α ,β )

η2dη
η3 −1

.

(20)

Obviously, the equilibrium point of Eq.(18) is
given by (xi,0), where xi is a nonzero real root
of

P = (1+x3)2/3G(x,α ,β ). (21)

To discuss the relation between P and the number
of solutions of Eq.(21), as well as the effect of ma-
terial parameters α and β on the qualitative prop-
erties of solutions of Eq.(16), we now carry out
the Taylor expansion of the right hand of Eq.(21),
(1+x3)2/3G(x,α ,β ) at x = 0, as follows,

P = 2.0852−1.2777α +1.7421β
+(0.0568+0.9260α−1.5053β )x3 +O(x4),

(22)

where

Pcr = G(0,α ,β )= 2.0852−1.2777α +1.7421β
(23)

is the critical load that describes static formation
of void in the interior of the sphere composed of
the generalized Valanis-Landel material. Let

Ω1 = {0.0568+0.9620α−1.5053β > 0,

α ≥ 0,β ≥ 0}, (24a)

Ω2 = {0.0568+0.9620α−1.5053β < 0,

α ≥ 0,β ≥ 0}. (24b)

For the parameters (α ,β ) belonging to different
regions, we have:

Conclusion 1 (i) If (α ,β ) ∈Ω1, the nonzero
solution of Eq.(21) increases monotonously
with respect to x near x = 0; (ii) While if
(α ,β ) ∈Ω2, the nonzero solution of Eq.(21) de-
creases monotonously near x = 0, however, there
is a secondary turning point, written as (xn,Pn),
on the nonzero solution curve. As (α ,β ) belongs
to different regions, curves of P ∼ x are shown in
figure 1.

Conclusion 2 (i) If (α ,β ) ∈ Ω1, Eq.(21) has
a unique nonzero real solution x1 only when
P > Pcr, and the corresponding equilibrium point
(x1,0) of Eq.(18) (or Eq.(16) ) is a center; (ii)
While if (α ,β ) ∈ Ω2, then (a) for the given P ∈
(Pn,Pcr), Eq.(21) has two nonzero real solutions,
written as x2 and x3, where x2 < x3, moreover,
(x2,0) is a saddle point and (x3,0) is a center of
Eq.(18); (b) for P > Pcr, Eq.(21) has a unique
nonzero real solution x4 and (x4,0) is a center.

Here we only prove the case (α ,β ) ∈ Ω2, the
proof of the case (α ,β )∈ Ω1 is similar.

Proof. Consider the eingenvalues of the lin-
earized equation of Eq.(18) about (xi,0), as fol-
lows,

λ1 = −λ2

=
[ −μGx(xi,α ,β )

ρR2
0xi(1+x3

i )1/3[(1+x3
i )1/3−xi]

] 1
2

.

(25)

For the given P ∈ (Pn,Pcr), if x2 and x3 are
nonzero solutions of Eq.(21), from Gx(x2,α ,β )<

0, we know that λ1,λ2 given by Eq.(25) are two
real and equal eingenvalues with opposite sign,
and thus the equilibrium point (x2,0) is a saddle
point of the linearized equation of Eq.(18) and
also a saddle point of Eq.(18); However, from
Gx(x3,α ,β )> 0, we know that λ1,λ2 are two pure
imaginary eingenvalues with opposite sign, and
thus (x3,0) is a center of the linearized equation
of Eq.(18). On the other hand, since F(x,−y) =
F(x,y) and (x3,0) is a unique stable nonzero equi-
librium point of Eq.(18), we know that, from the
symmetry principle, (x3,0) is a center of Eq.(18).

Similarly, it is easy to show that (x4,0) is a center
of Eq.(18).
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To further study the properties of the solutions of
Eq.(16), we define three classes of periodic solu-
tions, as follows,

Definition 1 If x = x(t) is a periodic solution of
period T , and is smoothing enough at any time t,
we then call it the classical periodic solution.

Definition 2 If x = x(t) is a periodic solution of
period T , and if the left- and right-limit of ẋ =
dx/dt exist but do not equal each other at certain
times, we then call it the generalized periodic
solution of the first kind.

Definition 3 If x = x(t) is a periodic solution of
period T , and if at least a value of ẋ = dx/dt does
not exist at certain times, we then call it the gen-
eralized periodic solution of the second kind.

Multiplying both sides of Eq.(16) by xẋ, and then
integrating it with respect to t, we obtain the first
integral

E =
ρR2

0

μ
x3

[
1− x

(1+x3)1/3

]
ẋ2

−2P
(
(1+x3)1/3−1

)

−8
∫ x

0
δ 2

[∫ (1+δ3)−1/3

0
H(η,α ,β )

η2dη
1−η3

]
dδ ,

(26)

where E is a energy constant relating to the ini-
tial conditions. Further, it is easy to show that the
implicit solution of Eq.(16) is given by

±
∫ x

x0

⎛
⎝ ρR2

0
μ z3

(
1− z

(1+z3)1/3

)
E +E ′

⎞
⎠

1/2

dz = t − t0,

(27)

where and x0 = x(t0) is an arbitrary initial condi-
tion and

E ′ = 2P((1+ z3)1/3−1)

+8
∫ z

0
δ 2

[∫ (1+δ3)−1/3

0
H(η,α ,β )

η2dη
1−η3

]
dδ .

(28)

In particular, for x(0) = 0, we have E = 0. For
the given (α ,β ) ∈ Ω2, figures 2 and 3 respec-
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Figure 1: Curves of P ∼ x in Ω1 and Ω2

tively show the phase diagrams of Eq.(16) satis-
fying different initial conditions as Pn ≤ P < Pcr

and P ≥ Pcr.

From the above analyses, we have the following
conclusions (cf. figures 2 and 3):

Conclusion 3 If (α ,β ) ∈ Ω2, (i) For the initial
conditions x(0) = x0 �= 0, ẋ(0) = ẋ0, it can be
shown that ẋ → ∞ as x → 0+ from Eq.(26) and
that the improper integration (27) is convergent as
x → 0+, so Eq.(16) has only the generalized pe-
riodic solutions of the second kind as P < Pn and
has the classical periodic solutions and the gen-
eralized periodic solutions of the second kind as
P > Pn, where (xn,Pn) is the secondary turning
point (cf. Conclusion 1); (ii) For the initial con-
dition x(0) = 0, Eq.(16) has only zero solution as
P < Pcr and has the classical periodic solution as
P = Pcr, and has the generalized periodic solutions
of the first kind as P > Pcr.

Conclusion 4 If (α ,β ) ∈ Ω1, (i) For the initial
conditions x(0) = x0 �= 0, ẋ(0) = ẋ0, Eq.(16) has
only the generalized periodic solutions of the sec-
ond kind as P < Pcr and has the classical periodic
solutions and the generalized periodic solutions of
the second kind as P > Pcr; (ii) For the initial con-
dition x(0) = 0, Eq.(16) has only zero solution as
P < Pcr and has the generalized periodic solutions
of the first kind as P > Pcr.

Notably, if the solution of Eq.(16) satisfies the
initial condition x(0) = 0, then it can describe
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Figure 2: Phase trajectories of Eq.(16) as Pn <

P < Pcr in region Ω2

void formation and motion in the sphere under
the prescribed surface tensile constant load. fig-
ure 4 shows the phase diagrams of Eq.(16) satis-
fying the initial condition x(0) = 0 for P ≥ Pcr as
the parameters belong to different regions. From
the above Conclusions and the phase diagrams
shown in fig.4, we know that, for the initial con-
dition x(0) = 0, Eq.(16) has only the trivial solu-
tion x(t) ≡ 0 as P ≤ Pcr, that is to say, the sphere
remains solid; While as P > Pcr, Eq.(16) has the
generalized periodic solutions of the first kind,
namely, a void forms in the sphere and will ex-
pand till its radius reaches the maximum value
xm at time T0. However, the expanding veloc-
ity ẋ(t) of the void radius reaches directly to a

positive finite value ẋ(0+) =
(

2μ(P−G(0,α ,β))
3ρb2

)1/2

from 0 as a void forms suddenly, and will reduce
to zero as the void radius reaches the maximum
value at time T/2, i.e., ẋ(T/2) = 0. Thereafter,
the void will contract and the contracting velocity

will reach to −
(

2μ(P−G(0,α ,β))
3ρb2

)1/2
as the void re-

duces to zero at time t = 2T−
0 , i.e., x(T−) = 0,

ẋ(T−) = −
(

2μ(P−G(0,α ,β))
3ρb2

)1/2
, where T/2 can

be obtained by setting x0 = x(0) = 0 and x =
xm in Eq.(27). Along with the increasing time,
the expanding velocity will leap directly from

−
(

2μ(P−G(0,α ,β))
3ρb2

)1/2
to

(
2μ(P−G(0,α ,β))

3ρb2

)1/2
, and
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Figure 3: Phase trajectories of Eq.(16) as P ≥ Pcr

in region Ω2
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Figure 4: Phase diagrams of void oscillation as
P ≥ Pcr in region Ω1 or Ω2

then the cycle will repeat. Thus we can say that
a void forms at the center of the sphere as the
surface tensile load P exceeds Pcr, and the mo-
tion rule of the formed void with respect to time
presents a class of singular periodic oscillation.

Note. In figures.2, 3 and 4, ν = (ρ/μ)1/2R0y.

It is worth pointing out that, see Conclusions 3
and 4, as the prescribed P = Pcr, (i) if (α ,β )∈Ω1,
the value of x (dimensionless void radius) corre-
sponding to Pcr is zero, that is to say, no void
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forms in the sphere and the sphere is in the critical
state of void formation; (ii) however, if (α ,β ) ∈
Ω2, there are two values of x, i.e., 0+ and xc cor-
responding to Pcr, since P increases continuously,
we can conclude that a void has formed in the
sphere at the moment, and then takes a classical
nonlinear periodic oscillation, and xc is the oscil-
lation center.

Moreover, another interesting conclusion is that,
if the parameters α ,β satisfy

−2.0852 < −1.2777α +1.7421β < 0

(or −1.2777α +1.7421β > 0),

a void forms in the interior of the sphere com-
posed of the generalized Valanis-Landel material
(5) earlier (or later) than that for the isotropic
incompressible Valanis-Landel material, and the
formed void presents a class of singular nonlinear
periodic oscillations.

3.2 Dynamic inflation (I): Constant pressure
case

In this subsection, we only consider the existence
conditions of periodic solution of Eq.(16) satisfy-
ing the initial condition x(0) = 0, i.e., the sphere
is solid at the initial time t = 0. The periodic step
loads P(t) can be obtained by taking the dimen-
sionless form of Eq.(1), and (p0 +ε)/μ = P+ ε̃ .

From Subsection 3.1, we know that, for any given
parameters α and β , the sphere remains solid as
P < Pcr, however, a void occurs in the interior of
the sphere as P > Pcr and the motion of the formed
void presents a class of singular periodic oscilla-
tions, the corresponding minimal positive period
of periodic oscillation is denoted by T̂1. If P + ε̃
also exceeds Pcr, the corresponding minimal pos-
itive period is denoted by T̂2.

We will discuss the existence conditions of peri-
odic oscillation of void in the following cases:

(i). For the given P > Pcr, if it is found that
t0 = mT̂1, where m is a positive integer, that is to
say, a void forms in the sphere, and then oscillates
periodically m times as t ∈ [0, t0), moreover, we
have x(t0) = 0. While if P+ ε̃ where ε̃ < 0, does
not exceed Pcr, we know that the sphere remains
a solid one as t ∈ [t0, t0 + 2t1). In succession, as

t ∈ [t0 + 2t1,2t0 + 2t1], the tensile load is P again,
a void forms, and also oscillates periodically m
times. Further, in the following period T , the pro-
cess will be the same as the previous process. In
this case, the time t1 can be taken as an arbitrary
positive number. However, if P + ε̃ also exceeds
Pcr, and if 2t1 = nT̂2, where n is a positive integer,
that is to say, the void oscillates n times with pe-
riod T̂2 as t ∈ [t0, t0 + 2t1), and then oscillates m
times with period T̂1 as t ∈ [t0 + 2t1,2t0 + 2t1]. In
other words, Eq.(16) has the generalized periodic
solution of the first kind satisfying the initial con-
dition x(0) = 0. For the given parameters α and β
belonging to region Ω1 or Ω2, the example phase
diagrams of void oscillation are shown in figure 4.

(ii). As t0 is not equal to mT̂1, the types of void
motion are quite different.

(a). As mT̂1 < t0 < mT̂1 + T̂1/2, namely, a void
forms in the sphere and grows continuously to
time t0, Then the tensile load changes to P + ε̃ ,
and the initial conditions that Eq.(16) satisfies are
x(t0) = x0,ẋ(t0) = ẋ0 at the moment. Since ẋ0 > 0,
the void radius will not increase until ẋ = 0, i.e.,
the void radius attains the local maximum (written
as x̃m, and the inequality x̃m < xm must hold). If
the motion time that can be obtained by Eqs.(26)
and (27), written as t ′, of the void from x0 to
x̃m is exactly equal to t1, and then the void starts
contracting as t0 + t1 < t < t0 + 2t1. The tensile
load changes to P again at time t = t0 + 2t1, and
the corresponding initial conditions are given by
x(t0 + 2t1) = x0 and ẋ(t0 + 2t1) = −ẋ0. The void
contracts unceasingly to zero at time t = 2t0 +2t1.
Henceforth, the motion of the void will repeat as
above. In other words, the solution of Eq.(16)
satisfying the initial condition x(0) = 0 is still a
generalized periodic solution of the first kind with
period T . For the given (α ,β ) ∈ Ω2, the phase
diagrams are shown in figure 5. Otherwise, if
t1 �= t ′, along with the increasing time, the solution
of Eq.(16) will no longer be a periodic solution of
period T .

(b). As t0 = mT̂1 + T̂1/2, we have x(t0) = xm,
ẋ(t0) = 0, and the tensile load then changes to
P + ε̃ , where ε̃ > 0, in the following time. It
is noted here that, if 2t1 = nT̂ ′

2, where T̂ ′
2 is the

minimal positive period corresponding to P + ε̃
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Figure 5: Phase diagrams of Eq.(16) for periodic
oscillation case as mT̂1 < t0 < mT̂1 + T̂1/2
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Figure 6: Phase diagrams of Eq.(16) for periodic
oscillation case as t0 = mT̂1 + T̂1/2

with the initial conditions x(t0) = xm, ẋ(t0) = 0,
the tensile load will change to P again as t ∈
[t0+2t1,2t0+2t1] and the initial conditions will be
x(t0 + 2t1) = xm, ẋ(t0 + 2t1) = 0. In this case, the
solution of Eq.(16) is a generalized periodic solu-
tion of mix type, i.e., the first kind as t ∈ [0, t0)
and t ∈ [t0 + 2t1,2t0 + 2t1), the classical kind as
t ∈ [t0, t0 +2t1). See the combination of solid line
and dashed shown in figure 6. Otherwise, the so-
lution of Eq.(16) will no longer be a periodic so-
lution of period T .

(c). As mT̂1 + T̂1/2 < t0 < (m + 1)T̂1, in other
words, the void contracts gradually and the ten-
sile load changes to P + ε̃ as t > t0. It is easy to
show that the solution of Eq.(16) is not a periodic
solution of period T for any values of t1.

4 Conclusions

In this paper, the dependence of void forma-
tion and motion in an incompressible transversely
isotropic Valanis-Landel hyperelastic solid sphere
on material parameters and loading types is ex-
amined, and numerical results are also presented.
In particular, under a constant radial tensile load
which is independent of time, the parameters
which serve as material anisotropy are divided
into two regions, see Eq.(24a, b). For any given
material parameters, there exists a finite critical
value of tensile load, it is proved that a void would
form at the center of the sphere as the surface
tensile load exceeds the critical value and that
the motion of the formed void with time would
present a class of singular period oscillations.
However, as the prescribed tensile load is exactly
equal to the critical value, (i) for the given param-
eters belonging to region Ω1, no void forms in the
sphere and the sphere is in the critical state of void
formation; (ii) while for the parameters belonging
to region Ω2, it is shown that a void has formed in
the sphere at the moment, and then takes a classi-
cal nonlinear periodic oscillation. Under periodic
step tensile loads which are related to time, the
existence conditions for all possible periodic os-
cillations of the formed void are determined by
using the phase diagrams of the motion equation.
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