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Integration of Shell FEA with Geometric Modeling on
NURBS Surface Representation for Practical Applications

Maenghyo Cho1, Jinbok Choi2 and Hee Yuel Roh3

Abstract: The framework for the linkage between geometric modeling and an
analysis based on the NURBS technology is developed in this study. In the present
study, The NURBS surfaces were generated by interpolating a given set of data
points or by extracting the necessary information to construct the NURBS surface
from the IGES format file which was generated by the commercial CAD systems.
Numerical examples showed the rate of displacement convergence for the various
parameter-izations of the NURBS surface. Quadric surface, which is generated ex-
actly by NURBS representation, was considered. One of the important advantages
of the NURBS equation is its ability for exact mathematical expression of quadric
shape curves or surfaces. A trimmed surface, which is often encountered during
a modeling process in the CAD systems is also presented in this study. The per-
formance of the shell element that is based on Naghdi shell theory integrated with
exact geometric representations by the NURBS equation were compared to that of
a previously reported FE shell elements in the selected benchmark problems.

Keyword: Shell, NURBS, Finite element method, Geometric modeling.

1 Introduction

The shell finite element can be classified into two categories: the three-dimensional
solid-based elements and shell theory-based elements. A degenerated shell element
is one of the elements which are based on a three- dimensional solid model[Ahmad
S, Irons BM, Zienkiewicz OC (1970)]. This element has been very popular over
the past several decades because it is not based on complicated shell theories. Sur-
face geometric properties such as those described by a curvature tensor do not have
to be introduced in this formulation. A degenerated shell element can be used to
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model an arbitrary shape of a shell surfaces because the surface can be constructed
by interpolating nodal values through the iso-parametric mapping, whereas a shell
theory-based element can handle the bending-stretching coupling properly, but it
cannot easily be applied to model an arbitrary shape of a shell surfaces. So, a shell
theory-based element can be applied only for specific shell surfaces with relatively
simple geometry. But in practical problems, usually, shell surfaces are not pre-
sented in a closed analytical form. For this reason, a shell theory-based element
has difficulties in application to the general shell surfaces. And recently, there is an
alternative way of using the meshless computational method in the analysis of shell
structure.[Sladek,J.et al. (2006); T.Jarak et al. (2007)].

Surfaces can be identified by several ways for shell finite element analysis. First,
exact analytical surface expressions such as cylinder or hemisphere can be given. In
this case, shell surface geometric quantities can be directly extracted in the analysis
without any geometric errors. But, as mentioned above, it is not always possi-
ble to represent general surfaces in an exact closed form. Second, surfaces can
be generated by interpolating or approximating a set of given points. Generally,
we can obtain the digitized coordinate values of points by scanning. Because the
NURBS equation provides interpolation or approximation methods, the fitting sur-
faces which we want for the analysis can be easily obtained. For the more practical
applications, geometric surface generation can be generated by the modeling pro-
cess provided by the CAD system. Most current commercial CAD systems employ
the NURBS technology to model and manipulate surfaces. The NURBS is the
generalized form of a non-rational B-spline and rational and non-rational Bezier
curves and surfaces. In addition, it can generate and manipulate surfaces, for ex-
ample, by providing a mathematical basis for representing analytical shapes such as
conic sections and quadratic surfaces. That is, it can exactly express the quadratic
(or quadric)surfaces such as cylindrical, conical, spherical, paraboloidal and hyper-
boloidal surfaces. More details about the NURBS technology [Les Piegl, Wayne
Tiller (1997), G. Farin (1993) and C. De Boor (1972)]. Furthermore, the NURBS
algorithms are fast and stable and they enable us to design surfaces intuitively. Be-
cause of these merits of the NURBS, it has been the industrial standard for design
and data exchange of geometric information. Many national or international stan-
dards, for example, IGES, STEP etc., recognize the NURBS as a powerful tools for
geometric design.

The shell theory-based element which was developed by Manenghyo Cho, Hee
Yuel Roh (2003) has a two-parameter representation in the surfaces. And all the
geometric computations can be performed in a local surface patch. So, if a shell sur-
face such as the Cosserat surface[J.C. Simo, D.D. Fox (1989), J.C. Simo, D.D. Fox,
S. Rafai (1989)] used in shell theory-based element are represented by two param-
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eters, the shell theory-based element may be used in the analysis of an arbitrary-
shape shell structure. This developed element also employed the assumed strain
method to avoid locking problems and the performance was improved by using
bubble function displacements. [Keejoo Lee et al. (2002), Y. Basar and O.Kintzel
(2003)]

The NURBS surfaces are usually represented by two parameters in the parametric
domain. As mentioned above, the surfaces in CAD systems are usually generated
by using NURBS representation and the blending functions of NURBS surfaces
are composed by two parameters defined in a local region. A general tensor-based
shell element has a two-parameter representation in the shell surfaces, and all ge-
ometric computations can be performed in the local surface patch. Naturally, the
NURBS surface function could be directly linked to the shell analysis routine. We
can obtain more “geometrically-exact” surface quantities for the analysis by using
the shell theory-based element than by using the solid-based element. The concept
for integrating the shell FE analysis with CAD geometric modeling was proposed
in our previous works [Hee Yuel Roh and Maenghyo Cho, (2004, 2005)]. And the
r-adaptivity refinement was also implemented.[Maenghyo Cho and Seongki Jun
(2004)].

But, in our previous study, B-spline surface functions were used to generate the
surfaces. Of course, B-spline surfaces provide more control flexibility than other
surface equations such as Bezier equations. But B-spline surfaces are still poly-
nomial functions so it’s impossible to represent the quadric surfaces exactly. On
the other hands, NURBS surface can represent the quadric surfaces exactly in a
mathematical point of view. And the definition of NURBS surface function is from
ratios of polynomials so permits much better control over the curvature of surfaces
than polynomial alone. NURBS surface function also gives much more flexibility
than B-spline functions by introducing weighting factors. So it is known that the
NURBS surface equation is the most general form of surface equations. This is the
reason why the most current commercial CAD systems adopt the NURBS technol-
ogy to generate the surfaces. Therefore, in this study, NURBS surface equations
are employed instead of B-spline surface equations and all necessary geometric
quantities are calculated directly from them.

Other approaches integrating finite element with B-spline or NURBS equations
and utilizing the advantages of them can be found lately in a variety of fields. Xi-
ang.Jiawei et al. (2008) suggested flat shell element using B-spline wavelet which
has high performance in shell structure analysis especially for folded plate struc-
tures. The generalization of a NURBS based parametric mesh-free method was
also studied by Amit Shaw et al. (2008).

The outline of this paper is as follows. First, we review the definition of NURBS
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surface and its properties are briefly summarized. And then, the procedure and ad-
vantages of our approach for the computation of geometric quantities for the shell
finite element analysis will be described, followed by the NURBS surface gen-
eration and data exchange, which is related to the implementation of the linkage
framework of geometric modeling and geometrically exact shell finite element. Fi-
nally, several numerical examples are given to assess the accuracy of the numerical
performances and the capability of our proposed linkage framework to handle the
various kinds of shell surfaces represented by the NURBS equation. The NURBS
surface was generated by interpolating a given set of data points and analytically
exact NURBS surface as well as trimmed NURBS surface.

2 NURBS Surface Representation

Over the past several decades, many curves and surfaces representation forms have
been proposed. Presently, the most popular mathematical forms are B-splines and
NURBS(non-uniform rational B-splines). Especially, the NURBS offers a unified
mathematical form not only for the representation of free-form surfaces but also
for the precise representation of close-form surfaces such as lines, conics, quadrics
and surfaces of revolution. Further, the NURBS offers flexible surface modeling
by allowing many degrees of freedom through the modification control points and
weights. Therefore, the NURBS has been an IGES standard since 1983, and many
commercial CAD systems are based on the NURBS representation. The NURBS
representation is adopted to link the developed geometrically exact shell element to
the geometric modeling in CAD systems in our study. The definition and important
properties of NURBS surfaces are briefly outlined here. The detailed contents can
be found in references [Les Piegl, Wayne Tiller (1997), G. Farin (1993), C. De
Boor (1972)].

2.1 Definition of NURBS Surfaces

The NURBS surface S(u,v) of degree (p,q) is defined as

S(u,v) =

n
∑

i=0

m
∑
j=0

Ni,p(u)Nj,q(v)wi, jPi, j

n
∑

i=0

m
∑
j=0

Ni,p(u)Nj,q(v)wi, j

0 ≤ u,v ≤ 1 (1)

where the Pi, j is a bidirectional control net, and the wi, j are weights. And the ith
B-spline basis function of degree p, denoted by Ni,p(u), is defined by the recurrence
formula as follows.

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 if otherwise
(2)
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Ni,p(u) =
u−ui

ui+p −ui
Ni,p−1(u) +

ui+p+1 −u

ui+p+1 −ui+1
Ni+1,p−1(u) (3)

where Ni,p and Nj,q are the non-rational B-spline basis functions defined on the
knot vectors

U = {0, . . .,0,up+1, . . .,ur−p−1,1, . . .1} (4a)

V =
{

0, . . . ,0,vq+1, . . .,vr−q−1,1, . . .,1
}

(4b)

The degree(p or q), the number of knots(r or s) of the surface and the number of
control points(n or m) are related by the formula: r = n+ p+1, s = m+q+1. The
surface defined by Eq.(1) becomes a B-spline surface if all weights are equal. If the
weights are not equal and there are no interior knots, the surface defined by Eq.(1)
becomes a rational Bezier surface: that is, the NURBS surface equation is a general
form that includes the B-spline and Bezier surface equations.

2.2 Computation of Geometric Quantities for the Shell FEA from NURBS Equa-
tion

Some geometric quantities of the shell surface, which are required in implementing
the geometrically exact shell element for the shell finite element analysis, are as
follows: covariant base vectors �aα , normal vector �a3, covariant metric tensor aαβ ,
surface curvature tensor bαβ and 2nd kind of Christtoffel symbols Γγ

αβ
etc. If we

know the exact analytical expression for the position vector�r(θ 1,θ 2) of the surface,
then all the geometric quantities which are mentioned above can be easily calcu-
lated from the position vector. But it is almost impossible to obtain the position
vector of the general surface except for some simple surfaces such as cylindrical
surfaces or spherical surfaces and so on. Otherwise, the NURBS equation can rep-
resent the general surfaces, and we can extract the necessary geometric quantities
directly from the NURBS equation and compute the values of the metric tensor
or curvature tensor because the NURBS surface can be differentiated p− k(q− k)
times in the u ,v directions, as mentioned in the previous section. For this rea-
son, we employ the NURBS equation for the general shell surface analysis and this
property of the NURBS surface is one of the major advantages. Especially, the
derivatives of the surface at a specific point (actually, at gauss points) are needed
to generate for the geometrically exact shell element because the computation of
surface curvature tensor bαβ , metric tesnor aαβ and the 2nd kind of Christtoffel
symbols Γγ

αβ
requires the base vectors�aα and�a3 as shown in Fig.1(a). The surface

curvature tensor and 2nd kind of Christtoffel symbols can be calculated from the
following relationships

bαβ =�a3 ·�aβ ,α
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Γγ
αβ = aγλ�aλ ·�aα ,β (5)

                                                         
   (a)                                                             (b) 

Figure 1: (a) Configuration of shell surface (b) Parametric domain of NURBS sur-
face

If analytical closed form of the position vector is available, for example, in the case
of a cylindrical surface,�r(θ 1,θ 2) = r cos(θ 1)�ex + r sin(θ 1)�ey +θ 2�ez, the analytical
calculations of the geometric quantities become straightforward. The base vectors
�aα can be computed by the following expression.

�aα =
∂�r

∂θ α , (α = 1,2) �a3 =
�a1×�a2

|�a1×�a2| (6)

And all other necessary geometric quantities can be obtained from the base vectors
and their first derivatives. But, when the analytical closed form of position vector
is not known, the derivatives of position vector cannot be calculated directly from
Eq.(6).

However, if the surface is represented by the NURBS equation as shown Eq.(1),
the derivatives of the surface S(u,v) can be computed assuming that (u,v) is fixed.
There are two partial derivatives: one with respect to u and one with respect to v.
Generally, all partial derivatives of the surface S(u,v) up to and including order d
are computed as,

∂ k+l

∂uk∂vl S(u,v) 0 ≤ k + l ≤ d (7)
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where k and l represent the orders of the derivative of S(u,v) with respect to u and
v.

In the more detailed form, the derivatives of the surface can be written as

∂S(u,v)
∂u

=

(
n

∑
i=0

m

∑
j=0

∂Ni,p(u)
∂u

Nj.q(v)wi. jPi, j

)
(

n
∑

i=0

m
∑
j=0

Ni,p(u)Nj,q(v)wi, j

)
(

n
∑

i=0

m
∑
j=0

Ni,p(u)Nj,q(v)wi, j

)2

−
(

n

∑
i=0

m

∑
j=0

Ni,p(u)Nj.q(v)wi. jPi, j

)
(

n
∑

i=0

m
∑
j=0

∂Ni,p(u)
∂u Nj,q(v)wi, j

)
(

n
∑

i=0

m
∑
j=0

Ni,p(u)Nj,q(v)wi, j

)2

(8a)

∂S(u,v)
∂v

=

(
n

∑
i=0

m

∑
j=0

Ni,p(u)
∂Nj.q(v)

∂v
wi. jPi, j

)
(

n
∑

i=0

m
∑
j=0

Ni,p(u)Nj,q(v)wi, j

)
(

n
∑

i=0

m
∑
j=0

Ni,p(u)Nj,q(v)wi, j

)2

−
(

n

∑
i=0

m

∑
j=0

Ni,p(u)Nj.q(v)wi. jPi, j

)
(

n
∑

i=0

m
∑
j=0

Ni,p(u) ∂Nj,q(v)
∂v wi, j

)
(

n
∑

i=0

m
∑
j=0

Ni,p(u)Nj,q(v)wi, j

)2

(8b)

As shown in Eq.(8a), we need to obtain the derivatives of the B-spline basis func-
tion. Let N(k)

i,p denote the kth derivative of the B-spline basis function N(
i,pu), then,

N(k)
i,p (u) = p

⎛
⎝ N(k−1)

i,p−1

ui+p −ui
− N(k−1)

i+1,p−1

ui+p+1 −ui+1

⎞
⎠ (9)

N(l)
j,q is also represented in the same manner.

Therefore, the derivatives of the NURBS surface in the u,v direction can be com-
puted if the corresponding (u,v) parameter values are given. Because there is one-
to-one mapping relationship between a specific point on the surface in the Cartesian
coordinates and a point in the (u,v) parametric domain as shown Fig.1, the basis
vectors needed for the geometrically exact shell finite element analysis can be com-
puted directly from the NURBS equation if we specify the u and v values. Fig.2
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shows the computed results of the basis vector at the Gauss points in each element.

Figure 2: The basis vector at gauss points (red line: u direction, green line: v
direction, blue line: normal direction)

The geometric errors can be reduced dramatically in this approach. Generally, in
the case of a flat facet element, the necessary geometric quantities at Gauss points
are computed by interpolating the nodal values (Fig.3). It is very difficult to avoid
the inherent geometrical errors, but, in the present approach, all geometric quanti-
ties can be computed directly at Gauss points from the NURBS equations without
interpolation. As shown in Fig.4, there is a difference between the normal vector
which is computed by interpolating nodal values and the normal vector which is
computed directly from the NURBS equation. Therefore, we can expect a very
small geometric error even though a coarse mesh is used for the analysis.

3 Linkage Framework : The NURBS Surface Generation and Data Exchange

The present study aims at the development and implementation of the linkage
framework between the geometrically exact shell finite element and the NURBS
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(a) Normal vectors of each elements 

(b) Normal vectors at nodes          
 
 
 
 
 
 
 
 
 
 

       (c) Normal vectors at gauss points 

Figure 3: Normal vectors of flat facet element

Figure 4: Difference between the directly computed normal vectors and normal
vectors of flat facet shell element
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surface representation. Our developed program can import two kinds of data for
the NURBS surface generation: one is the surface scanning data and the other is
the geometric data which are modeled and saved in IGES file format in the CAD
systems.

After the surface scanning data are imported, NURBS surface is generated by fit-
ting a given set of data points. Generally, there are two types of fitting, interpolation
and approximation. In the case of interpolation, a surface satisfying the given data
precisely is constructed, but, in approximation, surfaces do not necessarily satisfy
the given data precisely, but only approximately. In some actual applications, such
as the generation of point data by use of a coordinate measurement device or dig-
itizing scanner, a large number of points can be generated. So, we often need to
make the surface with a given set of data points by the interpolation or approxima-
tion methodologies.

In NURBS technology, the desirable NURBS surface can be generated by appropri-
ate fitting, interpolation or approximation. Usually, the input of the fitting problem
consists of geometric data, such as points and derivatives, and the output consists of
a NURBS surface, that is, the control points, knots and weights. The degree (p,q)
for surfaces also must be specified in advance or selected automatically by the algo-
rithm. Our developed program supports these two types of fitting method, but this
study focuses on the interpolation methodology. Fig.5 shows the NURBS surfaces
generated by interpolating surface geometry data points. The methods for generat-
ing the interpolated NURBS surfaces can be classified into three types according
to the type of parameterization, namely, uniform, chord length and centripetal pa-
rameterizations. When the knot spacing is uniform, that is, the difference between
successive knots is the same regardless of the actual length of the curve segment in
the u, v direction on the surfaces, we call it uniform parameterization; this method
works best for an evenly-spaced surface of u, v rows and columns. With chord
length parameterization, the difference between successive knot values is related to
the actual length of each segment, that is, the knot values are not equal. When the
surface spacing is not uniform, this would be an adequate method. With the cen-
tripetal parameterization, the knot spacing is related to the square root of the length
of each curve segment. In some cases, this may make smoother objects. On the
surfaces of very unevenly spaced control points, the centripetal parameterization
may give slightly better results than the chord length. In Fig.6, the point spacing
is un-evenly distributed. The smoother curve is defined by using centripetal knot
spacing. In the later section, the difference of analysis results according to the
parameterization methods will be shown.

Generally, most fitting algorithm can be classified into two categories: global or
local. In this study, the interpolated NURBS surface is generated by using the
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Figure 5: NURBS surface generation by interpolating geometry data points

Figure 6: Difference between uniform (unfair) and centripetal (smooth) knot spac-
ing

global algorithm. If a given set of data points {Qk,l}, k = 0, . . . ,n and l = 0, . . .,m,
and we want to construct a non-rational (p,q)th–degree B-spline surface interpol-
ating these points, the control points of the desired surface can be obtained from
the following relation.

Qk,l = S(ūk, v̄l) =
n

∑
i=0

m

∑
j=0

Ni,p(ūk)Nj,q(v̄l)Pi, j (10)

First, reasonable values for (ūk, v̄l) and the knot vectors U and V must be computed.
The selection of the coordinate value of the surface parameter (ūk, v̄l) affects the
shape and parameterization of the surface. As mentioned above, there are three
common methods of choosing the parameter coordinate values (ūk, v̄l). The first
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one is the uniform method. But this method is not recommended because it can
produce undesirable surfaces when the data are unevenly spaced. Here the calcu-
lation of ūk is only explained for convenience. the v̄l is also computed in the same
manner.

ū0 = 0, ūn = 1, ūk =
k
n

k = 1, . . .,n−1 (11)

The second one is the chord length method. This is the most widely used method,
appropriate for most cases. It gives a good parameterization to the curve or surface.
The total chord length (d) is

d =
n

∑
k=1

|Qk −Qk−1| (12)

And then, we can calculate ūk as follows

ū0 = 0 ūn = 1

ūk = ūk−1 +
|Qk −Qk−1|

d
k = 1, . . .,n−1

(13)

The third one is the centripetal method. The total chord length is given as

d =
n

∑
k=1

√
|Qk −Qk−1| (14)

And the corresponding ūk is obtained from the following equations

ū0 = 0 ūn = 1

ūk = ūk−1 +

√|Qk −Qk−1|
d

k = 1, . . .,n−1
(15)

This is a new method [Lee, E.T.Y.(1989)] which gives better results than the chord
length method, when the data points are very unevenly spaced or take very sharp
turns.

From these calculated ūk values, we can compute the knots by using the average
method. The knots obtained with this averaging technique reflect the distribution
of the ūk, properly.

u0 = . . . = up = 0 um−p = . . . = um = 1

u j+p =
1
p

j+p+1

∑
i= j

ūi j = 1, . . . ,n− p
(16)
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Moreover Eq.(16) combined with Eq.(13) and Eq.(15) gives a totally positive and
banded system with a bandwith of less than p,q, that is,

Ni,p(ūk) = 0 if |i−k| ≥ p,

Nj,q(v̄k) = 0 if | j− l| ≥ q

[ De Boor, C.(1978)].

Therefore it can be easily solved by a simple linear solver.

The other way to generate the NURBS surface is to obtain the necessary geometric
data from the surfaces which is modeled in the CAD systems. The most current
CAD systems generate surfaces based on the NURBS representation. Therefore,
this function is very useful because the geometric data from the CAD systems can
be used directly in the analysis routine without any other manipulations and can
provide an integrated design of modeling and analysis interactively.

At present, our developed program imports the general surfaces including the trimmed
surfaces and it generates the NURBS surfaces from the imported surface geometric
data. Data between a CAD software and developed program are exchanged via the
IGES file format, which serves as a neutral data format for transference of design
between dissimilar CAD systems. Some examples are illustrated in Fig.7.

After the surface geometric data are imported and converted into the NURBS sur-
face, discretized elements have to be prepared for the analysis. To do so, the mesh
generation process is necessary. Because quadrilateral four and nine node shell el-
ements are used in our current study, the structural rectangular mesh generation is
required. When the NURBS surfaces are generated by interpolation with the given
data points and by the import of an IGES format file of the general surfaces, the
mesh is generated automatically by the embedded algorithm. But, in the case of
trimmed surfaces, the procedure is slightly different. It was not easy to manipulate
a trimmed surface in our previous work using the B-spline surface equations. Be-
cause the B-spline surface patch is not allowed to have a hole in the middle of it.
However the NURBS surfaces can be trimmed with segments that carve holes out
of the inside. For example, a surface with a hole in it can be represent by B-spline
surface or NURBS surface. As shown in Fig.8, the trimmed surface represented by
B-spine surface functions requires several patches but the trimmed surface repre-
sented by NURB surface functions is trimmed by two arcs. Therefore, the NURBS
surface makes modeling much faster and easier for a trimmed surface and surfaces
with a hole can be dealt more easily in this study by utilizing the NURBS surface
instead of B-spline surface.

The trimmed surface is defined by two items: the information of the surface itself
and the information of its trimming curves of the surface. If any parametric curve
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                             General surface   

                           Trimmed surface 

        (a)                                                             (b) 

Figure 7: (a) Modeling in the CAD system (b) Visualization of imported surface
data (data transformation between two of them in IGES file format)

(a)                                            (b) 
Figure 8: Trimmed surfaces: (a) Representation using B-spline surface patches (b)
Representation using NURBS surface equation

           (a)                                                (b) 
Figure 9: A trimmed surface: (a) 3-D model space and (b) 2-D parameter space
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(u(t),v(t)) is created in the domain of a surface S(u,v), it will be mapped to a curve
on the surfaces. Fig.9 illustrates this concept and the fact that the shape of the 3D
curve on the surface is a distorted version of the curve on the parametric domain.

The mesh generation is performed in the (u,v) parametric domain. First, inner and
outer trimming curves of the trimmed surface are extracted as shown in Fig.10(a),
and the parametric domain is divided appropriately in advance for the structural
mesh generation, as shown in Fig.10(b), And then, the mesh is generated in each
sub-region of the entire parametric domain and the mesh is refined in this paramet-
ric domain, if necessary (Fig.10(d)).

Because there is a one-to-one mapping relationship between the 2-D (u,v) para-
metric domain and the 3-D model domain, this mesh data can be mapped to the
original trimmed surface in the 3-D model space. Fig. 11 illustrates this.

These quadrilateral elements are used in the finite element analysis routine. All ge-
ometric quantities actually are computed at the Gauss points by using the NURBS
equation. Accordingly, the u,v values of Gauss points of each element are also
calculated in the 2-D parametric domain and then mapped to the original trimmed
surface in the 3-D model domain. These u,v values of the Gauss points act as the
input data to the function that computes the geometric quantities from the NURBS
equations.

4 Numerical Examples

In this section, well-known benchmark shell problems are considered in order to
test the performance of the present shell element with the NURBS representation.
The present results are compared with those of the analytical closed forms pre-
viously reported. In this section, the analysis results are classified into three cate-
gories according to the type of NURBS surfaces: the NURBS surfaces generated by
interpolation, the exact NURBS surface which is identical to the analytical closed
form surface and the trimmed NURBS surface. The assumed nine-node shell el-
ement with bubble displacement functions, which was developed in our previous
work is used in all problems.

4.1 Case 1: The NURBS Surface Generated by Interpolation

There are three kinds of parameterization methods for generating interpolated NURBS
surfaces: uniform, chord length and centripetal. Here, the NURBS surfaces are
generated by using each parameterization method, and the analysis results of each
case are compared to one another. The convergence rates and trends of the pa-
rameterization methods are slightly different from one another depending on the
problems.
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               (a)                                                (b) 

               (c)                                               (d) 

Figure 10: Structural quadrilateral mesh generation and mesh refinement

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(a) ( , )u v parametric domain                 (b) 3-D model domain 

Figure 11: The mapping relationship between parametric and model domain
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(a)                                                          (b) 

Figure 12: Mapping of gauss points from 2-D parametric domain to 3-D model
domain (in case of 4-node quadrilateral element)

4.1.1 Pinched Cylinder with Rigid Diaphram

A pinched cylinder with diaphragmed ends is considered. Radial loads of F = 1.0
is applied at the mid-section of the cylinder. The length L = 600, radius R = 300,
thickness h = 3.0, Young’s modulus E = 3×106 and Possion ratio ν = 0.3. The
analytical displacement is 1.8248×10−5. This is known as one of the benchmark
problems of bending dominant behavior in the thin limit.

The solution obtained by the present element is greater than the Flugge’s analyt-
ical solution because the shell theory used by Flugge does not include transverse
shear deformation unlike the present formulation. Thus, the numerical results of the
present shell element are also compared with another convergent reference solution
provided by NASTRAN QUAD8 element which allows transverse shear deforma-
tion. The transverse deflection is equal to 1.8541× 10−5. Fig.14(a) shows the
convergence rates of displacement of the exact surface and the NURBS surfaces,
which are generated using the uniform parameterization method. And Fig.14(b)
and (c) indicate the convergence of the NURBS surface, which is generated by us-
ing the centripetal and chord length parameterization respectively. In this example,
the convergence rate of the NURBS surface generated by using uniform parame-
terization is better than that of the NURBS surfaces generated by using the chord
length or centripetal parameterization. In this cylindrical surface problem, the knot
spacing is uniform in each u, v direction. Therefore, it is considered that uniform
parameterization method works better than the others. In Fig.15, the result of the
displacement convergence of the present method is compared with the result using
the MITC8 element. The present geometrically exact shell element integrated with
the NURBS equation works very well even for a coarse mesh configuration.
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Figure 13: Pinched cylinder with rigid diaphragm end condition

4.1.2 Pinched Hemispherical Shell with 18◦ Cut-out

A hemispherical shell, with an 18◦ cutout at the apex, subjected to alternating loads,
is analyzed. The geometry and material properties used are as follows: the radius of
the hemi-sphere R = 10, the thickness h = 0.04, Young’s modulus E = 6.258×107

and Poisson’s ratio ν = 0.3. The edge of the shell is free. The applied loads have
a magnitude F = 2and define two pairs of diametrically opposite loads alternating
in sign at 90◦. The convergence of the radial displacement under applied loads is
shown in Fig.16. The result of this problem is better when the NURBS surface
is generated by using the chord length and the centripetal parameterization meth-
ods than by using the uniform method. The chord length and centripetal meth-
ods give similar results as shown in Fig.17(b), and 17(c). In Fig.18, the rate of
convergence of the present result is compared with those of the solutions previ-
ous published, such as that obtained from the used of the S08 shell element of
Stander et al. [N.Stander, A. Matzenmiller, E. Ramm(1989)] with the uniformly
reduced and well-established Bathe-Dvorkin element(MITC8) [K.Y. Bathe, E.M.
Dvorkin(1986)]. Our result shows outstanding performance despite of the coarse
mesh and very rapid convergence compared to results obtained with use of other
elements.
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Figure 14: Convergence of the normalized radial displacement (the displacement
normalized by 1.8541×10−5)
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Figure 15: Comparison of the convergence

Figure 16: Pinched hemispherical problem configuration

4.1.3 Mexican Hat Problem

This benchmark problem can be characterized by a rapid change of curvature to
assess shell element performance.

Fig. 19 shows the configuration of a Mexican hat problem. The geometry and
material properties: Thickness h = 0.04, Young’s modulus E = 3.0×107, Possion’s
ratio ν = 0.3.
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Figure 17: Convergence of the normalized radial displacement (displacement nor-
malized by 0.094)
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Figure 18: Comparison of the convergence

Figure 19: Mexican hat problem configuration

The parameterized surface of the Mexican hat can be expressed in the analytical
closed form.

�r(θ 1,θ 2) = r cos(θ 1)�ex + r sin(θ 1)�ey +θ 2�ez (17a)

where,

x(θ 1,θ 2) = θ 1 cos(θ 2), y(θ 1,θ 2) = θ 1 sin(θ 2)

z(θ 1,θ 2) =
(

σ2 − (θ 1)2

σ4

)
exp

(−(θ 1)2

2σ2

)
(17b)
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The curvature changes according to the value of parameter σ . In this problem,
the value of σ is set equal to 1. The result is better when the NURBS surface is
generated by using the centripetal parameterization than generated by using the
uniform or the chord-length parameterizations, as depicted in Fig.20(b). Generally,
a smoother surface is defined by using the centripetal parameterization when the
control points are very unevenly spaced.

4.2 Case 2 : Analytically Exact NURBS Surface

The NURBS equation can exactly represent the quadratic cylindrical, spherical,
and conical surfaces etc. This property, especially, is very useful with respect to
geometry as well as analysis, because most current engineering surface designs are
a combination of quadric surfaces.

4.2.1 Pinched Cylinder with Rigid Diaphram

The geometry and material properties of this example are the same as those given
in section 5.1.

The analytical closed form of the cylinder is written as

�r(θ 1,θ 2) = r cos(θ 1)�ex + r sin(θ 1)�ey +θ 2�ez (18)

where x(θ 1,θ 2) = r cos(θ 1), y(θ 1,θ 2) = r sin(θ 1) and z(θ 1,θ 2) = θ 2. In Fig.22,
“Exact geometry” means that all geometric quantities such as surface metric, cur-
vature tensor and Christoffel symbols are computed from Eq.(18). And “Exact
NURBS” implies that the cylindrical surface is generated with the configuration
given by Fig.21. Actually, this surface is modeled in the CAD system and saved
in an IGES format file. Our developed program imports this file and performs the
analysis. As shown in Fig. 22, the two results are almost the same.

4.2.2 Pinched Hemispherical Shell with 18◦ Cut-out

The geometry and material properties of this example are the same as the one shown
in section 5.1. The values of control points and corresponding weights are specified
appropriately to represent the exact NURBS surface.

The analytical closed form of the hemispherical surface is expressed by

�r(θ 1,θ 2) = r cos(θ 1)�ex + r sin(θ 1)�ey +θ 2�ez (19)

where,

x(θ 1,θ 2) = r sin(θ 1)cos(θ 2)
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Figure 20: Convergence of normalized radial displacement
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Figure 21: The values of control points and weights for the exact NURBS surface
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Figure 22: Convergence of normalized radial displacement
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Figure 23: The exact NURBS surface
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Figure 24: Convergence of normalized radial displacement
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Figure 25: Trimmed cylindrical NURBS surface
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Figure 26: Convergence of radial displacement of cylinder surface

y(θ 1,θ 2) = r sin(θ 1)cos(θ 2)

z(θ 1,θ 2) = r cos(θ 1)

The analysis results of the exact NURBS surface and the analytically exact geom-
etry are almost the same as those shown in Fig. 24. This means that the NURBS
equation can guarantee about the same results as the analytically exact geometry
can for quadratic surfaces.
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(a) u -direction             (b) v -direction              (c) w -direction 
Figure 27: Displacement distribution

Figure 28: Trimmed hemi-spherical NURBS surface

4.3 Case 3: Trimmed Surfaces

A trimmed NURBS surface is defined by a set of trimming loops together with the
NURBS surface itself. Each trimming loop consists of a set of NURBS curves,
which are defined over the parametric space of the NURBS surface. The trimmed
surface is often encountered during the modeling in the CAD systems and the most
common one results from the intersection between two surfaces. The resulting in-
tersection curve is a curve on the surface of either of the two surfaces. To verify the
developed geometrically exact shell element and linkage framework with a CAD
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Figure 29: Convergence of radial displacement of cylinder surface

 
(a) u -direction         (b) v -direction          (c) w -direction 

Figure 30: Displacement distribution

system, two examples will be introduced here. One is a cylindrical surface with a
hole on its surface (Fig.25) and the other is a hemispherical surface having a hole
(Fig.28). All geometry and material properties are the same as those of the previous
examples, except that these surfaces have cutouts. These surfaces are modeled in
the CAD system and our developed program imports the surfaces in IGES format
file. The analysis result shows very good convergence even for a relatively coarse
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mesh is used. (Fig.26, 29)

5 Conclusions

In this study, we set up a framework that directly links a general tensor-based ge-
ometrically exact shell finite element to the NURBS surface geometric modeling.
By using the NURBS representation, we can use the present general tensor-based
shell element to describe an arbitrary geometry of free-form surfaces, including the
trimmed surfaces as well as quadratic cylindrical, conical and spherical surfaces,
which can be exactly represented by the NURBS equation. Some numerical ex-
amples verified this property. The geometrically exact shell element formulated
in the parametric domain with the NURBS equation provides an efficient linkage
framework between the surface modeling of CAGD (Computer Aided Geometric
Design) and finite element analysis.

Several numerical examples demonstrated the validity and efficiency of the devel-
oped geometrically exact shell element and the successful integration of the pro-
posed shell element with the geometric modeling based on the NURBS equation.
The performance of developed shell element was improved by employing the bub-
ble shape functions as well as the membrane and shear lockings were considerably
alleviated by the assumed strain methodology. The developed linkage framework
employing the NURBS equation has various applications and functionality for the
analysis of general shell surfaces. Trimmed surfaces with some cutouts on the sur-
face were also considered to enlarge the scope of applications.
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