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A Fictitious Time Integration Method for
Two-Dimensional Quasilinear Elliptic Boundary Value

Problems

Chein-Shan Liu1

Abstract: Dirichlet boundary value problem of quasilinear elliptic equation is
numerically solved by using a new concept of fictitious time integration method
(FTIM). We introduce a fictitious time coordinate t by transforming the dependent
variable u(x,y) into a new one by (1 + t)u(x,y) =: v(x,y, t), such that the origi-
nal equation is naturally and mathematically equivalently written as a quasilinear
parabolic equation, including a viscous damping coefficient to enhance stability in
the numerical integration of spatially semi-discretized equation as an ordinary dif-
ferential equations set on grid points. Six examples of Laplace, Poisson, reaction
diffusion, Helmholtz, the minimal surface, as well as the explosion equations are
tested. It is interesting that the FTIM can easily treat the nonlinear boundary value
problems without any iteration and has high efficiency and high accuracy. Due to
the dissipation nature of the resulting parabolic equation, the FTIM is insensitive
to the guess of initial conditions and approaches the true solution very fast.

Keyword: Quasilinear elliptic equation, Laplace equation, Poisson equation, He-
lmholtz equation, Fictitious Time Integration Method (FTIM)

1 Introduction

Partial differential equations (PDEs) are first divided into two categories: non-
evolutionary and evolutionary. Then, the latter is further classified into as parabolic
and hyperbolic types according to the number of real characteristic lines. The non-
evolutionary PDE is usually named elliptic type PDE because it exists no real char-
acteristic line.

Dirichlet problem of elliptic type PDE is a classical one, and has a broad applica-
tion in engineering problems. Although for some linear PDEs in simple domains,
the analytic solutions could be found, in general, for a given quasilinear PDE or
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when the domain of considered problem having complexity, the finding of ana-
lytical solution is not easy. Indeed, the explicit solutions are exceptional. If one
encounters nonlinear case in an arbitrary domain, both the geometric complexity
and the problem nonlinearity appear, and then typically the numerical solutions
should be resorted.

In the past few decades many numerical methods were developed for elliptic type
PDEs. This sort of PDEs arises from many fields, like as mechanics, electromag-
netism, and biology. For quasilinear elliptic boundary value problems (BVPs),
Chen and Zhou (2000) have presented some iteration methods, which include the
mountain iteration algorithm, the scaling iterative algorithm, the monotone iterative
algorithm, as well as direct iterative algorithm. In general, a sequence of iterations
is generated by different methods, but they are not guaranteed to converge to the
true solution. Generally speaking, a stronger condition of the differential equation
is needed to guarantee the convergence.

On the other hand, there are many papers to concern with the numerical solutions
of linear elliptic type BVPs, like as, Liu (2007a,2007b,2007c,2008a). Meshless
and meshfree methods are nowadays the main stream in numerical computations as
intensively advocated by many researchers, to name a few, Zhu, Zhang and Atluri
(1998, 1999), Atluri and Zhu (1998a, 1998b), Atluri, Kim and Cho (1999), Atluri
and Shen (2002), Cho, Golberg, Muleshkov and Li (2004), Jin (2004), Li, Lu,
Huang and Cheng (2007), Liu (2007d,2007e), Tsai, Lin, Young and Atluri (2006),
and Young, Chen, Chen and Kao (2007). However, it cannot be overemphasized the
effectiveness of those methods, when nonlinear problems are encountered. Atluri
(2004) has extended the meshless local Petro-Galerkin method to solve nonlinear
boundary value problems.

Many collocation techniques together with bases expansions were also employed
to solve elliptic type BVPs; see, for example, Cheng, Golberg, Kansas and Za-
mmito (2003), Hu, Li and Cheng (2005), Algahtani (2006), and Libre, Emdadi,
Kansa, Rahimian and Shekarchi (2008). Recently, Li, Lu, Hu and Cheng (2008)
gave a very detailed description of the collocation Trefftz method on engineering
problems. Basically, the above bases expansion methods are effective for linear
problems. For nonlinear problems some iterations of those methods are unavoid-
able.

Our task is to develop a non-iterative algorithm having the advantages of easy to
numerical implementation, and a great flexibility applying to the most elliptic type
BVPs without resorting on special treatments. Let us begin with a discussion of the
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following quasilinear elliptic equation:

Δu(x,y) = F(x,y,u,ux,uy, . . .), (x,y) ∈ Ω, (1)

u(x,y) = H(x,y), (x,y) ∈ Γ, (2)

where Δ is a Laplacian operator, Γ is the boundary of the problem domain Ω, and
F and H are given functions.

It is known that for the evolutionary type PDEs a semi-discretization of the spa-
tial coordinates together with numerical time integrators for initial value problems
(IVPs) can help us to find numerical solutions effectively [Ames (1992)]. However,
this technique may be not applicable on the non-evolutionary type PDEs due to an
inherent ill-posed property of an IVP version of elliptic type BVP as first pointed
out by Hadamard. Indeed, the problem consists of the Laplace equation

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0,

and the initial conditions

u(x,0) = 0,

∂u
∂y

(x,0) = k−1 sin(kx)

is known to be ill-posed, since the work of Hadamard.

It is easily verified that the exact solution

u(x,y) = k−2 sin(kx) sinh(ky)

of the above problem does not become small for any nonzero y, even the initial
condition k−1 sin(kx) can be made arbitrary small by increasing k. It is obvious that
the solution does not depend continuously on the initial data, and it is not a well-
posed problem. Therefore, we cannot view it as an initial value problem and apply
the numerical integration method on the above Laplace equation in the y direction
by discretizing the coordinate of x.

It may have different strategies by adding a time variable t in Eq. (1), and change it
to an initial boundary value problem. The first is viewed the solution u of Eqs. (1)
and (2) as a steady state of the following equation:

∂u
∂ t

= Δu(x,y)−F(x,y,u,ux,uy, . . .). (3)

Another is making a perturbation of Eq. (1) by a small parameter:

ε
∂u
∂ t

= Δu(x,y)−F(x,y,u,ux,uy, . . .). (4)
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When ε = 0, it recovers to the original equation.

Even there are many better time integration techniques to solve the above two equa-
tions by using a semi-discretization technique, it has a big problem of the above two
approaches, because Eqs. (3) and (4) are much deviating from the original equation
(1). In order to approach the steady state we should calculate Eq. (3) to a long time
such that it is very time consumption, and on the other hand we do not know that
whether Eq. (3) has a steady state or not. For the second approach, there appears
a small quantity ε which will lend a highly singular differential equation when di-
viding both the sides of Eq. (4) by ε , and this will be very difficult to numerical
integration due to instability.

This paper is motivated by using the evolutionary property of parabolic type PDE
and the accurcay of numerical time integrators, and proposes a natural and math-
ematical equivalent approach to transform Eq. (1) into a parabolic PDE without
destroying the original structure.

For one-dimensional second-order BVP, Liu (2006a, 2006b, 2006c) has made a
breakthrough to extend the method of group preserving scheme (GPS) previously
developed by Liu (2001) for ODEs to BVPs, namely the Lie-group shooting method
(LGSM), and the numerical results revealed that the LGSM is a rather promising
method to effectively solve the nonlinear two-point BVPs. With this in mind, we
hope that the present paper could provide an effective numerical solver for the
nonlinear BVPs of second-order quasilinear elliptic equations.

2 A fictitious time integration approach

2.1 Transformation into an evolutional PDE

First we propose the following transformation:

v(x,y, t) = (1+ t)u(x,y), (5)

and introduce a viscosity damping coefficient ν in Eq. (1):

0 = νΔu−νF(x,y,u,ux,uy, . . .). (6)

Multiplying the above equation by 1+ t and using Eq. (5) we have

0 = νΔv−ν(1+ t)F(x,y,u,ux,uy, . . .). (7)

Recalling that ∂v/∂ t = u(x,y) by Eq. (5), and adding it on both the sides of the
above equation we obtain

∂v
∂ t

= νΔv−ν(1+ t)F(x,y,u,ux,uy, . . .)+u. (8)
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Finally by using u = v/(1 + t), ux = vx/(1 + t) and uy = vy/(1 + t), etc., we can
change Eqs. (1) and (2) into a parabolic type PDE:

∂v
∂ t

= νΔv−ν(1+ t)F

(
x,y,

v
1+ t

,
vx

1+ t
,

vy

1+ t
, . . .

)
+

v
1+ t

, (x,y) ∈ Ω, (9)

v(x,y, t) = (1+ t)H(x,y), (x,y) ∈ Γ. (10)

There is maybe another selection of Eq. (5) by using v(x,y, t) = q(t)u(x,y), where
we require that q(0) = 1. However, when q(t) is more complex than 1 + t the
resulting PDE is more complex than Eq. (9), and there seems no good reason to
select a more complex q(t).

The above idea is first proposed by Liu (2008b) to treat an inverse Sturm-Liouville
problem by transforming an ODE into a PDE. Then, Liu and his coworkers [Liu
(2008c, 2008d); Liu, Chang, Chang and Chen (2008)] extended this idea to develop
new methods for estimating parameters in the inverse vibration problems. Recently,
Liu and Atluri (2008) have employed the above technique of fictitious time integra-
tion method (FTIM) to solve large system of nonlinear algebraic equations, and
showed that high performance can be achieved by using the FTIM. Furthermore,
Liu (2008e) has used the FTIM technique to solve the nonlinear complementarity
problems, whose numerical results are very well.

2.2 Semi-discretization

Let vi, j(t) := v(xi,y j, t) be a numerical value of v at the grid point (xi,y j)∈ Ω and at
the time t. Applying a semi-discrete procedure on the above PDE in Eq. (9) yields
a coupled system of ordinary differential equations (ODEs):

v̇i, j =
ν

(Δx)2 [vi+1, j −2vi, j +vi−1, j]+
ν

(Δy)2 [vi, j+1 −2vi, j +vi, j−1]+
vi, j

1+ t

−ν(1+ t)F

(
xi,y j,

vi, j

1+ t
,
vi+1, j −vi−1, j

2(1+ t)Δx
,

vi, j+1 −vi, j−1

2(1+ t)Δy
, . . .

)
, (11)

where Δx and Δy are uniform spatial grid lengths in x and y directions, and m is the
number of subintervals in each direction, assuming the same.

In this section we have transformed the boundary value problem of the second-
order elliptic PDE in Eq. (1) to an evolutionary problem of a parabolic PDE in
Eq. (9), and finally arrived to an initial value problem in the n-dimensional ODE
system (11) with dimensions n = m2. The initial value of Eq. (11) is given through
a guess because the true initial condition of v(x,y,0)= u(x,y) is not known a priori;
however, when (xi,y j) is located on the boundary, the boundary condition (10) has
to be satisfied.
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2.3 GPS for differential equations system

Upon letting v = (v1,1,v1,2, . . . ,vm,m)T and f denoting a vector with the i j-th com-
ponent being the right-hand side of Eq. (11) we can write it as a vector form:

v̇ = f(v, t), v ∈ R
n, t ∈ R, (12)

where n is the number of total grid points inside the domain Ω.

Group-preserving scheme (GPS) can preserve the internal symmetry group of the
considered ODE system. Although we do not know previously the symmetry group
of differential equations system, Liu (2001) has embedded it into an augmented
differential system, which concerns with not only the evolution of state variables
themselves but also the evolution of the magnitude of the state variables vector. Let
us note that

‖v‖=
√

vTv =
√

v ·v, (13)

where the superscript T signifies the transpose, and the dot between two n-dimensional
vectors denotes their inner product. Taking the derivatives of both the sides of
Eq. (13) with respect to t, we have

d‖v‖
dt

=
(v̇)Tv√

vTv
. (14)

Then, by using Eqs. (12) and (13) we can derive

d‖v‖
dt

=
fTv
‖v‖ . (15)

It is interesting that Eqs. (12) and (15) can be combined together into a simple
matrix equation:

d
dt

[
v

‖v‖
]

=

⎡
⎣ 0n×n

f(v,t)
‖v‖

fT(v,t)
‖v‖ 0

⎤
⎦[

v
‖v‖

]
. (16)

It is obvious that the first row in Eq. (16) is the same as the original equation (12),
but the inclusion of the second row in Eq. (16) gives us a Minkowskian structure
of the augmented state variables of X := (vT,‖v‖)T, which satisfies the cone con-
dition:

XTgX = 0, (17)
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where

g =
[

In 0n×1

01×n −1

]
(18)

is a Minkowski metric, and In is the identity matrix of order n. In terms of (v,‖v‖),
Eq. (17) becomes

XTgX = v ·v−‖v‖2 = ‖v‖2−‖v‖2 = 0. (19)

It follows from the definition given in Eq. (13), and thus Eq. (17) is a natural result.

Consequently, we have an n+1-dimensional augmented system:

Ẋ = AX (20)

with a constraint (17), where

A :=

⎡
⎣ 0n×n

f(v,t)
‖v‖

fT(v,t)
‖v‖ 0

⎤
⎦ , (21)

satisfying

ATg+gA = 0, (22)

is a Lie algebra so(n,1) of the proper orthochronous Lorentz group SOo(n,1). This
fact prompts us to devise the group-preserving scheme (GPS), whose discretized
mapping G must exactly preserve the following properties:

GTgG = g, (23)

det G = 1, (24)

G0
0 > 0, (25)

where G0
0 is the 00-th component of G.

Although the dimension of the new system is raised one more, it has been shown
that the new system permits a GPS given as follows [Liu (2001)]:

X�+1 = G(�)X�, (26)

where X� denotes the numerical value of X at t�, and G(�) ∈ SOo(n,1) is the group
value of G at t�. If G(�) satisfies the properties in Eqs. (23)-(25), then X� satisfies
the cone condition in Eq. (17).
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The Lie group can be generated from A ∈ so(n,1) by an exponential mapping,

G(�) = exp[ΔtA(�)]

=

⎡
⎢⎣ In + (a�−1)

‖f�‖2 f�fT
�

b�f�
‖f�‖

b�fT�
‖f�‖ a�

⎤
⎥⎦ ,

(27)

where

a� := cosh

(
Δt‖f�‖
‖v�‖

)
, (28)

b� := sinh

(
Δt‖f�‖
‖v�‖

)
. (29)

Substituting Eq. (27) for G(�) into Eq. (26), we obtain

v�+1 = v� +η�f�, (30)

‖v�+1‖ = a�‖v�‖+
b�

‖f�‖ f� ·v�, (31)

where

η� :=
b�‖v�‖‖f�‖+(a�−1)f� ·v�

‖f�‖2 (32)

is an adaptive factor. From f� ·v� ≥−‖f�‖‖v�‖ we can prove that

η� ≥
[

1−exp

(
−Δt‖f�‖

‖v�‖
)] ‖v�‖

‖f�‖ > 0, ∀Δt > 0. (33)

This scheme is group properties preserved for all Δt > 0, and is called the group-
preserving scheme.

2.4 Numerical procedure

Starting from an initial value of vi, j which can be guessed in a rather free way, we
employ the above GPS to integrate Eq. (11) from t = 0 to a selected final time t f .
In the numerical integration process we can check the convergence of vi, j at the �-
and �+1-steps by√

m

∑
i, j=1

[v�+1
i, j −v�

i, j]2 ≤ ε , (34)
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where ε is a selected convergent criterion. If at a time t0 ≤ t f the above criterion is
satisfied, then the solution of u is given by

ui, j =
vi, j(t0)
1+ t0

. (35)

In practice, if a suitable t f is selected we find that the numerical solution is also
approached very well to the true solution, even the above convergent criterion is
not satisfied. The viscosity coefficient ν introduced in Eq. (11) can increase the
stability of numerical integration. For example, for the Laplace equation we require
that νΔt/(Δx)2 < 1/2 for a reason of numerical stability [Ames (1992)], where Δt
is a time stepsize used in the numerical integration; hence, if a small ν is selected,
the above inequality can be satisfied.

In particular we would emphasize that the present method is a new fictitious time
integration method (FTIM). Because it does not need to face the nonlinearity in
the spatial domain, this new FTIM can calculate the boundary value problem of
quasilinear elliptic equation very stably and effectively without needing of any it-
eration. Below we give numerical examples to display some advantages of the
present FTIM.

3 Numerical examples

In this section we will apply the new method on both linear, semilinear and quasi-
linear boundary value problems. In order to focus on the study of the effect of our
new method, we suppose that some exact solutions are known and can be compared
with the numerical solutions, and the boundary is a rectangle, such that we do not
need to consider the interpolation of boundary data when rectangular grids are used
in the finite difference.

3.1 Example 1

We first consider an analytical solution of Laplace equation:

u(x,y) = ex cosy. (36)

The domain is given by Ω = {(x,y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The exact boundary
data H(x,y) can be obtained by inserting the exact u on the boundary.

A straightfoward derivation leads to

v̇i, j =
ν

(Δx)2
[vi+1, j −2vi, j +vi−1, j]+

ν
(Δy)2

[vi, j+1 −2vi, j +vi, j−1]+
vi, j

1+ t
, (37)
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where

v0, j(t) = (1+ t)cosy j, vm+1, j(t) = (1+ t)ecosy j, (38)

vi,0(t) = (1+ t)exi, vi,m+1(t) = (1+ t)exi cos1 (39)

are time-varying boundary conditions. We fix Δx = Δy = 1/m with m = 20, and the
number of equations in Eq. (37) is n = 19×19.

We start by an initial value of vi, j = 0.3 and integrate Eq. (37) by using the GPS
with a time stepsize Δt = 0.001. The final time is t f = 10. Under a given ν = 0.1
and ε = 0.01 the convergence is not performed within the range of t < t f = 10.

At the point y0 = 0.5 the error of u was plotted with respect to x in Fig. 1 by the
dashed line, of which the maximum error is about 5×10−5. At the point x0 = 0.5
the error of u was plotted with respect to y in Fig. 1 by the solid line, of which the
maximum error is about 4.9×10−5. It can be seen that even the numerical solutions
are not convergent, they are still rather accurate. If a larger ε = 0.03 is employed, at
the 2126 steps the numerical solution is convergent; however, the maximum errors
are both enlarged to 2.8×10−2.
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Figure 1: Plotting the numerical errors of Example 1 for a Laplace equation.

3.2 Example 2

Then we consider an analytical solution

u(x,y) = x3 +2xy (40)
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of a linear Poisson equation:

Δu = 6x. (41)

The domain is given by Ω = {(x,y)|−1≤ x≤ 1, −1≤ y≤ 1}. The exact boundary
data H(x,y) can be obtained by inserting the exact u on the boundary. Liu, Yeih,
Kuo and Chen (2006) have solved this problem by a Trefftz method with iterations
and using SVD regularization technique; however, their results are not good with
an error in the order of 100.

A derivation leads to

v̇i, j =
ν

(Δx)2 [vi+1, j −2vi, j +vi−1, j]+
ν

(Δy)2 [vi, j+1 −2vi, j +vi, j−1]

+
vi, j

1+ t
−6ν(1 + t)xi. (42)

Here we fix ν = 0.3 and m = 30. Starting from an initial value of vi, j = 1 we
integrate Eq. (42) by using the GPS with a time stepsize Δt = 0.001. At the point
y0 = 1/3 the error of u was plotted with respect to x in Fig. 2(a) by the dashed line,
of which the maximum error is about 3.2×10−7. At the point x0 = 1/3 the error of
u was plotted with respect to y in Fig. 2(a) by the solid line, of which the maximum
error is about 2.2×10−7. Very accurate numerical results are obtained because we
let t f = 15 be larger than that of t f = 10 used in the previous example.

We use the above closed-form solution again, but with the following nonlinear
equation:

Δu = u2 +6x−x6 −4x4y−4x2y2. (43)

By using the same parameters, at the point y0 = 1/3 the error of u was plotted
with respect to x in Fig. 2(b) by the dashed line, of which the maximum error is
about 3.6×10−7. At the point x0 = 1/3 the error of u was plotted with respect to
y in Fig. 2(b) by the solid line, of which the maximum error is about 1.8×10−7.
Similarly, for the nonlinear case very accurate numerical results are also obtained.

We have also written a program to calculate this example according to the steady
state concept as shown in Eq. (3) by multiplying the right-hand side by a viscous
damping constant ν ; however, no matter which Δt and ν are used, that method
cannot work. For example, under the following parameters of ν = 0.01, m = 30,
and Δt = 0.0002, the numerical result after 10000 time steps shows a maximum
error of 1.8, which is already over the value of u itself.

3.3 Example 3

The following nonlinear diffusion reaction equation is considered:

Δu = 4u3(x2 +y2 +a2). (44)
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Figure 2: Plotting the numerical errors of Example 2: (a) for a linear Poisson
equation, and (b) for a nonlinear Poisson equation.

The domain is same as that given in Example 2. The analytic solution

u(x,y) =
−1

x2 +y2 −a2 (45)

is singular on the circle with a radius a.

Algahtani (2005) has solved this problem by using a radial basis method, whose
results as shown there in Fig. 3 are not matched well to the exact solution. Here we
consider two cases of a = 1.5 and a = 1.1. By fixing ν = 0.1, m = 20, Δt = 0.002
and t f = 10 we solve this problem by our method, starting from an initial value of
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vi, j = 1. At the point y0 = 0 the error of u was plotted with respect to x in Fig. 3(a)
by the dashed line, of which the maximum error is about 2.1×10−3. At the point
x0 = 0.5 the error of u was plotted with respect to y in Fig. 3(a) by the solid line, of
which the maximum error is about 3.1×10−3. When the singular circle is inside
the domian with a = 1.1 the errors are plotted in Fig. 3(b) with x0 = 0.1 and y0 = 0.
It can be seen that even the singularity is appeared in the problem domain, the
numerical solutions are also acceptable with errors smaller than 0.25.
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Figure 3: Plotting the numerical errors of Example 3 for (a) a = 2 and (b) a = 1.1
of a nonlinear reaction-diffusion equation.
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3.4 Example 4

The following nonlinear Helmholtz equation is investigated:

Δu = k2(u)u, (46)

where we fix k2 = 4u2. The domain is same as that given in Example 1. The
analytic solution

u(x,y) =
1

x+y+1
(47)

is singular on the straight line x+y = −1.

By fixing ν = 0.1, m = 20, Δt = 0.002 and t f = 20 we solve this problem by our
method, starting from an initial value of vi, j = 1. At the point y0 = 0.75 the error of
u was plotted with respect to x in Fig. 4 by the dashed line, of which the maximum
error is about 2×10−5. At the point x0 = 0.5 the error of u was plotted with respect
to y in Fig. 4 by the solid line, of which the maximum error is about 3.3×10−5.
It can be seen that when t f is increased the accuracy of numerical solutions is
increased to the fifth order.
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Figure 4: Plotting the numerical errors of Example 4 for a nonlinear Helmholtz
equation.

3.5 Example 5

The following quasilinear equation is investigated:

Δu+u2
xuyy +u2

yuxx−2uxuyuxy = 0, (48)
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which is known a minimal surface equation. For this equation we can write

∂v
∂ t

= νΔv+
v

1+ t
+

ν
(1+ t)2 (v2

xvyy +v2
y vxx −2vxvyvxy), (x,y) ∈ Ω, (49)

v(x,y, t) = 0, (x,y) ∈ Γ. (50)

The domain Ω is the same as that used in Example 1.

Under the following parameters of Δx = Δy = 1/30, Δt = 0.0001, vi, j(0) = 0.3,
ν = 0.1 and ε = 10−3 we find that the numerical solution is convergent at the 1688
time steps. We plot a minimal surface above the unit square in Fig. 5.

Figure 5: The minimal surface obtained by solving a quasilinear elliptic equation.

3.6 Example 6

A highly nonlinear case to test the effectiveness of FTIM is a thermal explosion
problem of the Frank-Kamenettski equation:

Δu+δ exp[u] = 0. (51)
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This equation is frequently encountered for determining the regimes of safe opera-
tion for combustion and other exothemic processes.

For the present calculation we fix the parameter of δ = 1.5. As remarked by Bal-
akrishnan and Ramachandran (1999), this problem is highly nonlinear and can be
used a benchmark for testing numerical methods. Under the following parameters
of Δx = Δy = 1/40, Δt = 0.0001, vi, j(0) = 0.3, ν = 0.1 and ε = 10−3 we find that
the numerical solution is convergent at the 2146 time steps. We plot a surface of
the solution above the unit square in Fig. 6. As compared with the method used by
Chen (1995), it can be seen that the present FTIM is much simpler to obtain stable
solution.

Figure 6: A surface obtained by solving a thermal explosion problem.

4 Conclusions

The present paper was the first time that the original quasilinear elliptic equation
is mathematically transformed into a parabolic type evolutionary equation by in-
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troducing a fictitious time coordinate, and adding a viscous damping coefficient to
enhance the stability of numerical integration of the discretized equations by using
a group preserving scheme. In the past several decades the methods developed to
numerically solve the elliptic boundary value problems, in addition the linear cases,
are frustrated by nonlinearity, and then require some iterations, because the meth-
ods were carried out in the spatial domain. In the present paper the nonlinearity of
quasilinear elliptic equation is detoured by adding a fictitious time coordinate, and
we only required to numerical integration the discretized equations to a certain time
to obtain numerical solution. We must stress that the resulting parabolic equation is
mathematically equivalent to the original equation, and no approximation is made.
Hence, the present FTIM can work very effectively and accurately for the solution
of boundary value problem of quasilinear elliptic equation. Because no iteration is
required, the present method is very time saving.
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