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A Faster Method of Moments Solution to Double Layer
Formulation of Acoustic Scattering

B. Chandrasekhar1 and Sadasiva. M. Rao2

Abstract: In this work, the acoustic scattering problem based on double layer for-
mulation is solved with a novel numerical technique using method of moment’s so-
lution. A new set of basis functions, namely, Edge based Adaptive Basis Functions
(EABF) are defined in the method of moment’s solution procedure. The geome-
try of the body is divided into triangular patches and basis functions are defined
on the edges. Since the double layer formulation involves the evaluation of the
hyper-singular integral, the edge based adaptive basis functions are used to make
the solution faster. The matrix equations are derived for the double layer formula-
tion. The edge based adaptive basis functions used in this work generates a diagonal
moment matrix and hence do not need any matrix inversion to be carried out. The
scattering cross section of the canonical shapes is used to validate the numerical
solution developed and the plots are presented.

Keyword: Acoustic scattering, Method of moments, Adaptive basis function,
Boundary integral equations.

1 Introduction

Burton and Miller (BM) [Burton and Miller (1971)] has proposed a mathematical
formulation to address the non-uniqueness of the solution that is inherent in the
boundary integral equation formulations of exterior acoustic scattering/radiation
problems. Non-uniqueness of the solutions may be defined as failure of these for-
mulations when the frequency of incident acoustic wave matches with the charac-
teristic / eigen-frequencies of the corresponding interior problem. BM approach
[Burton and Miller (1971)] is based on linearly combining the Helmholtz inte-
gral equation and its normal derivative with a complex coupling parameter. It has
been mathematically proved by them that, this linearly combined integral equa-
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tion insures unique solution at all frequencies. A major drawback of this formu-
lation is the presence of the hyper-singular integral in the normal derivative of the
Helmholtz integral equation. Many researchers [Amini and Wilton (1986), Meyer,
Bell, Zinn, and Stallybras (1978), Chien, Raliyah and Alturi (1990), Yan, Cui and
Hung (2005)] have attempted to evaluate the hyper-singular integral that may be
used in the BM procedure to overcome the non-uniqueness problem. The usual
procedure that has been proposed by these researchers is to regularize the hyper–
singular integral. The regularization technique is computationally very expensive
and it is difficult to incorporate in a general-purpose code. Also, there are other
methods which reduce the hyper singular kernel to a strongly singular kernel and
their solution is based on based on Petrov-Galerkin schemes [Qian, Han, and Atluri
(2004)] and collocation-based boundary element method [Qian, Han, Ufimtsev, and
Atluri (2004)]. A de-singularized boundary integral formulation is also one of the
recently proposed method [Callsen, von Estorff, and Zaleski (2004)] to overcome
the problems of singularity.

Chandrasekhar and Rao [Chandrasekhar and Rao (2004b)] have attempted to ex-
tend the concept of BM approach by linearly combining the integral equations
based on layer potentials, namely, Single Layer and Double Layer Formulations, in
contrast to combining the Helmholtz integral equation and the its normal derivative
as suggested by Burton and Miller. The double layer formulation that they defined
[Chandrasekhar and Rao (2004a)] also has the hyper-singular integral. They used a
unique method of moments solution procedure along with a simple vector calculus
operations to circumvent the hyper-singular nature of the integral. The method of
moments solution procedure that they used, has basis functions defined on edges
and it results in a moment matrix of the order equal to the number of edges gen-
erated in the triangular patch modeling of an arbitrarily shaped three dimensional
body.

Chandrasekhar [Chandrasekhar (2005)] has tried to reduce the solution time of the
acoustic scattering problem by defining the basis functions on the nodes in contrast
to defining it on the edges. Since the number of nodes that are generated in the
triangular patch modeling of a closed body is almost one third of the number of
edges, the order of the moment matrix is equal to the number of nodes or approx-
imately equal to one third of the number edges. In both the ways of defining the
basis functions, i.e. on edges and on nodes, the moment matrix that is generated is
a full matrix and matrix inversion is required to be carried out to solve the linear
system of equations. Matrix inversion is the most expensive step computationally
and is one of the major drawbacks of the method of moments procedure compared
to differential equation formulation and finite element procedures.

In this work, the double layer formulation is solved with edge based basis functions,
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but without using the step of matrix inversion. For this purpose, a new set of basis
functions are defined in such a way that the final matrices generated by the method
of moment’s solution procedure is diagonal and hence they do not need any matrix
inversion algorithms to solve the linear system of equations. Since the matrix inver-
sion is eliminated, it does not matter much from computational perspective whether
the basis functions are defined on the edges or nodes as the matrix generated is a
diagonal one. The new basis functions, popularly known as adaptive basis func-
tions in the electromagnetic scattering/radiation areas [Waller and Rao (2002)], are
used as basis functions while the pulse functions are used as testing functions. It is
not the intent of this work to prove the non-uniqueness of the solution, but only to
solve the double layer formulation (DLF) faster.

The method developed in this work can be used to improve or in combination with
other methods like Mesh Less Petrov-Galerkin schemes [Vavourakis, Sellountos
and Polyzos (2006); Sladek, Sladek, Wen and Aliabadi (2006); Gao, Liu and Liu
(2006); Zhang and Chen (2008); Sladek, Sladek, Solek and Wen (2008); Dang
and Bhavani Sankar (2008); and Arefmanesh, Najafi and Abdi, (2008)], boundary
element formulation but not limited to acoustic scattering [Owatsiriwong, Phan-
sri, and Park (2008); Criado, Ortiz, Manti c, Gray, and Paris (2007); Zai You Yan
(2006); and Soares Jr, and Vinagre (2008):] or other techniques [Gergidis, Kourou-
nis, Mavratzas and Charalambopoulos (2007); Chandrasekhar and Rao. (2007);
Christov, Christov and Jordan (2007) and Fabian and Duddeck (2006)].

2 Organization of a paper

In this paper, next section briefly describes the method of moment’s solution proce-
dure [Harrington (1968)]. References to mathematical formulation and derivation
of matrix equations are given in section 4 for the double layer formulation (DLF).
In section 5, we describe the numerical solution procedure and develop edge based
adaptive basis functions. Numerical results, based on the development of new ba-
sis functions are given in section 6. Lastly we present some important conclusions
drawn from the present work.

3 Outline of Method of Moments (MoM)

Consider the deterministic equation

L f = g (1)

where L is a linear operator, g is a known function and f is an unknown function to
be determined. Let f be represented by a set of known functions f j, j = 1,2, ...,N
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termed as basis functions in the domain of L as a linear combination, given by

f =
N

∑
n=1

β j f j (2)

where β j are scalar coefficients to be determined. Substituting Eq. 2 into Eq. 1,
and using the linearity of L, we have

N

∑
n=1

β jL f j = g (3)

where the equality is usually approximate. Let (w1,w2,w3, ......) define a set of
testing functions in the range of L. Now, taking the inner product of Eq. 3 with
each wi and using the linearity of inner product defined as 〈 f ,g〉 =

∫
s f •gds, we

obtain a set of linear equations, given by

N

∑
n=1

β j
〈
wi,L f j

〉
= 〈wi,g〉 i = 1,2, . . .,N (4)

The set of equations in Eq. 4 may be written in the matrix form as

ZX = Y (5)

which can be solved for X using any standard linear equation solution methodolo-
gies. The simplicity, accuracy and efficiency of the method of moments lies in
choosing proper set of basis/testing functions and applying to the problem at hand.
In this work, we propose a special set of basis functions and a novel testing scheme
to obtain accurate results using DLF.

4 Matrix Equations

Consider an acoustic wave, with a pressure and velocity
(

pi,ui
)
, incident on a three-

dimensional arbitrarily shaped rigid body placed in a source free homogeneous
medium of density ρ and speed of sound c through the medium. When the incident
wave interacts with the body, the acoustic wave gets scattered with a pressure and
velocity (ps,us). Here, we note that, incident fields are defined in the absence
of the scattering body. Φ is the scalar velocity potential satisfying the Helmholtz
differential equation ∇2Φ + k2Φ = 0 for the time harmonic waves present in the
region exterior to the surface of the body. One more condition on velocity potential
is that it should satisfy the appropriate boundary conditions on the surface of the
body along with the Sommerfeld radiation condition. The pressure and velocity
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fields of acoustic wave is related to the scalar velocity potential Φ as u =−∇Φ and
p = jωρΦ. The mathematic formulation and the derivation of the matrix equations
for the double layer formulation is already reported in ref [Chandrasekhar and Rao
(2004a)]. In ref [Chandrasekhar and Rao (2004a)], the matrix equations derived are
based on defining the basis functions on each edge and testing is carried out using
Galerkin’s method. Where as in this work, the basis functions defined on each edge
are grouped into different clusters to generate a diagonal moment matrix.

5 Numerical Solution Procedure

In a method of moments solution procedure, the basis functions can be defined
on patches [Raju, Rao, Sun (1991), Rao and Sridhara (1991), Rao, Raju, and Sun
(1992), Rao and Raju, (1989)], on edges [Chandrasekhar and Rao (2004a)], or on
nodes [Chandrasekhar (2005)]. The effect of a basis function defined on any of the
geometric entity like a patch, an edge or a node would be a non-zero at any point
somewhere else on the structure. That means the effect of a unit source located at
one point will be experienced by every other point on the structure. Imagine a case
where there is cluster of basis functions, formed by grouping the basis functions
and by assigning different weights to each of the basis functions in the cluster, net
effect of this entire cluster at any desired point on the structure can be made to
zero or less than a threshold value thus producing a null-field. This cluster of basis
functions which produces a null-field at any desired point on the structure is called
as Adaptive Basis Functions. Since the basis functions are defined on the edges in
this work, and grouping them into a cluster, they are called as Edge based Adaptive
Basis Functions (EABF). The procedure to develop the EABF is described in the
following paragraphs.

ith EdgeEdges connected to  ith Edge

Centroid of the triangle

ith EdgeEdges connected to  ith Edge

Centroid of the triangle

Figure 1: Cluster of edges grouped for defining adaptive basis function (EABF).
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Initially, a cluster of basis functions is formed by grouping the neighborhood edges
and weights are assigned to each of basis functions in the cluster. One may note
that, while choosing the cluster of basis functions, the condition of neighborhood is
not necessary. Let there are K basis functions in the cluster and the complex weights
attached to these basis functions are αk, k = 1,2, ......,K. Now let us assume that
there are Ne edges on the surface of the structure and the number of basis functions
K in the cluster is very less compared to Ne i.e. K � Ne. By assigning complex
weights αk to each of the basis functions in the cluster, and when tested at any
point outside the cluster, it results in a null field. Here, one may note that the points
that are chosen for testing the basis functions need not completely lie outside the
cluster, which is made clear in the following paragraphs.

Next task would be to evaluate the weights αk, which requires the cluster of basis
functions to be tested at number points equal to or grater than the number of basis
functions in the cluster. This results in a linear system of equations equal to or
greater than the number of weights to be determined depending on the case where
the number of testing points chosen are equal to or greater than number of basis
functions in the cluster respectively. In either case, the weights can be uniquely
solved for. In the next paragraph, an example of a cluster of edge based basis
functions and the procedure to evaluate the weights αk are explained.

Consider an edge i and a set of edges in the neighborhood of edge i in the triangular
patch modeling which has a total of Ne edges as shown in Fig. 1. The procedure to
define an edge based basis function is already reported in ref [Chandrasekhar and
Rao (2004a)]. Let there are K number of edges in the neighborhood of edge i. Let
a cluster of edges be formed by grouping the edge i and its neighborhood edges.
Hence there are totally K +1 number of edges in the cluster. By assigning a weight
of unity or one to the edge i and weights αk to rest of the edges in the cluster,
αk becomes the unknowns which need to be determined uniquely by testing the
cluster at number of points equal to or greater than K. For the sake of clarity let us
assume K = 10. Then for notational purposes the indices of the edges range from
i−5, i−4, . . ., i, . . ., i + 4, i + 5 which is arbitrary. When the testing is carried out,
it results in a system of linear equations given by

Z1,i−5αi,i−5 +Z1,i−4αi,i−4 + . . .+Z1,i + . . .

+Z1,i+4αi,i+4 +Z1,i+5αi,i+5 = 0

Z2,i−5αi,i−5 +Z2,i−4αi,i−4 + . . .+Z2,i + . . .

+Z2,i+4αi,i+4 +Z2,i+5αi,i+5 = 0

. . . = 0

ZN,i−5αi,i−5 +ZN,i−4αi,i−4 + . . .+ZN,i + . . .

+ZN,i+4αi,i+4 +ZN,i+5αi,i+5 = 0

(6)
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Eq. 6 can be represented in matrix form as
⎡
⎢⎢⎣

Z1,i−5 Z1,i−4 . . . Z1,i+5

Z2,i−5 Z2,i−4 . . . Z2,i+5

. . . . . . . . . . . .
ZNe ,i−5 ZNe ,i−5 . . . ZNe ,i−5

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

αi,i−5

αi,i−4

. . .
αi,i+5

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

−Z1,i

−Z2,i

. . .
−ZNe ,i

⎫⎪⎪⎬
⎪⎪⎭

(7)

In the above matrix, the first suffix of Z ranging from 1 to Ne represents the index
of an edge on which the testing is carried out while the second index represents the
source edge on which the basis function is defined. The Zj,i are computed in the
same procedure as described in ref [Chandrasekhar and Rao (2004a)]. By solving
the Eq. 6 in the least square sense, the αi,k’s can be evaluated. Once the αi,k’s are
obtained, one can construct the ith adaptive basis function, given by

hi = fi +
K

∑
k=1

αi,k fk (8)

By using hi as the basis function, it produces null field at every point other than at
ith edge. Thus, it results whole ith column of [Z]-matrix as zero, or below a certain
threshold value, barring the diagonal term.

The above mentioned procedure for constructing the adaptive basis function for
ith edge may be repeated for all the Ne edges and thus Ne adaptive basis functions
hi, i = 1, . . . ,Ne can be constructed. The MoM procedure with EABF produces a
diagonal [Z]-matrix which can be easily solved for the source distribution without
using any matrix inversion algorithms or linear equations solvers. The off-diagonal
elements of the [Z]-matrix is not zero, but below certain threshold value which can
be set to zero.

Two important questions that need to be answered in the usage of EABF is 1).
How many basis functions one should use to obtain the satisfactory results and 2).
The criterion in choosing the K basis functions. Answer to the first question is
explained with an example in the next section which proves that when number of
basis functions in the cluster is about 10% of total number of edges generated in the
triangulated model, the solution gives satisfactory results for the simple and acous-
tically small problems. Higher the number of basis functions in the cluster, higher
the accuracy of the solution with respect to the traditional MoM solution based on
the independent basis functions. The criterion in choosing the basis functions is, it
is always better to choose the basis functions into the cluster which are in the neigh-
borhood of the ith edge since the neighborhood basis functions have almost same
amount of effect at any given point as the ith edge, if they are very closely spaced.
However, it is not a necessary condition and one can choose the basis functions into
the cluster which are not adjacent to each other.
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In case, when number of basis functions chosen is less than the required minimum
number, the results may not be satisfactory. This is due to the fact that off-diagonal
elements will be having values greater than the threshold limit and may not be
close to zero as defined by the threshold value. This is because, one may have
to gather certain minimum number of basis functions into the cluster to get the
given threshold limit. In case this is not possible, then one may choose the solution
obtained as an initial guess to solve the Eq. 5 iteratively. This is an effective method
of solving the Eq. 5 and it will take only a fewer number of iterations as proved in
the next section. In this work, conjugate gradient method is chosen as the iterative
scheme and one may choose more efficient algorithms for the same purpose.

It is also possible to use the adaptive basis functions as testing functions as well.
Further for Galerkin procedure, one can use these functions both as basis as well as
testing functions. But it is more computationally expensive to use these functions
in Galerkin procedure.

The salient features of the proposed method are:

Less storage memory: The computer storage requirement for the method of mo-
ments solution with EABF is considerably less than the MoM solution based on
using ungrouped edge based basis functions [Chandrasekhar and rao (2004a)].The
storage requirements for the new method has two parts. The first one being the
space required to store the weights of the basis functions which is KXNe, whereK �
Ne. The second one being the storage of the diagonal matrix, which can be a vector
of size Ne as the off-diagonal elements of the [Z]-matrix are assumed to be below
the threshold value or zero. To refine the solution, the solution of the adaptive basis
functions can be used as an initial guess for an iterative solution of Eq. 5, then an
additional storage space of NeXNe for [Z]-matrix may be needed, which is worth as
the computational time required for the solution of the linear system of equations
is greatly reduced.

Less computational time: Computationally most expensive step in the solution of
the acoustic scattering problem based on the integral equation formulation and
method of moment’s solution is the inversion of the moment matrix. Especially
when the number of edges in the triangulated model is large, hardware of the com-
puter in use may have a limitation in solving the linear system of equations. Since
the matrix inversion is eliminated in this new method, it can handle much larger
problems. For a case of number of unknowns of 100,000 time required for the gen-
eration of [Z]-matrix is very less compared to the time required to invert it. Since
this step of inversion is completely eliminated in the proposed method, it is more
efficient than the traditional MoM. However, one may have to solve the linear sys-
tem of equations given by Eq. 6, number of times equal to Ne. This step is not
computationally expensive as K � Ne when Ne is very large. The operation count
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to solve the linear system of equations given Eq. 6, is estimated to be of the order(
K2Ne +KNe +cK3

)
, where c is the constant. As long as K � N1/2

e , the operation
count is similar to the MoM solution. However, for acoustically large problems,
with N ≈100,000, we envisage K ≈ N1/3

e and the proposed method gives a more
efficient solution than the traditional MoM. Further, the number of equations in Eq.
can be reduced to K[Rius, Parron, Ubeda and Mosig (1997)] which implies a very
large reduction in the computational operations. Thus when the computer storage
and solution time is a factor in solving the large problems, the capability of the
proposed method can be experienced.

6 Numerical Results

In this section, the numerical solution developed using EABF is validated for the
cases of a sphere, cylinder and a cube which are three dimensional bodies. For
all these cases, the body is placed at the center of the co-ordinate system and a
plane wave, traveling along –Z axis is incident on the body. Here, one may note
that, no convergence study is carried out to ascertain the optimum number of basis
functions required in the cluster to obtain certain degree of accuracy. The scattering
cross section is defined by

S = 4π
∣∣∣∣
Φs

Φi

∣∣∣∣
2

≈ 1
4π

∣∣∣∣∣
Ne

∑
n=1

αnAnnn • rne jknn•rn

∣∣∣∣∣
2 (9)

As a first case, a sphere of radius 1m is considered and it is approximated with
triangular patch modeling. The modeling is done by dividing the θ and φ direction
equal segments each and the complete modeling procedure is described in [Chan-
drasekhar and Rao (2004a)]. Also the geometries with sharp corners and sharp
edges such as a cube and a cylinder are considered in order to demonstrate the
capability of method of moments solution based on EABF.

The sphere considered for the validation of the EABF solution is modeled with
178 nodes, 352 patches and 528 edges. Fig.2 shows the scattering cross section
versus polar angle for an acoustically rigid sphere of radius 1m, subjected to an
axially incident plane wave of k = 1rad/m, based on double layer formulation
(DLF). Solutions based on the edge based adaptive basis functions (EABF) are
compared with the exact and traditional MoM solution with out any refinement to
the ABF solutions. The ABF solution with K =25, 37 and 53 are validated and it
can be concluded that the results with K=53 is very good agreement with the exact
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solution which is 10% of the Ne and the traditional MoM solution. In case of the
traditional MoM solution, the order of the matrix is 528 which is inverted/solved
iteratively. Where as in the cases of solution based on EABF, the number of basis
functions used is 53 and it generates an almost diagonal matrix.
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K=37
Traditional MoM

X

Y

Z

q

Figure 2: Scattering cross section versus polar angle for an acoustically rigid sphere
of radius 1m, subjected to an axially incident plane wave of k = 1rad/m, based on
double layer formulation (DLF) with no refinement of ABF sloution.
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Figure 3: Scattering cross section versus polar angle for an acoustically rigid sphere
of radius 1m, subjected to an axially incident plane wave of k = 1rad/m, based on
double layer formulation (DLF) with refinement of ABF solution.
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Fig. 3 shows the scattering cross section versus polar angle for an acoustically rigid
sphere of radius 1m, subjected to an axially incident plane wave of k = 1rad/m,
based on double layer formulation (DLF) where the refinement to the ABF solu-
tions are considered. Again, the same problem is solved with a cluster of 9 basis
functions and 3 iterations are used to refine the solution which is in well agree-
ment with the exact solution as well as the traditional MoM solution. In this case
the number of basis functions in the cluster are chosen as N1/3, the solution ob-
tained is used as an initial guess to solve Eq. 5 using conjugate gradient iterative
scheme, which just needed 3 iterations to obtain a solution of good accuracy. The
cases considered next do not have the closed form solution, hence the traditional
MoM solution is compared with the exact solution for the case of sphere [Bowman,
Senior and Uslenghi (1969)] to validate the traditional MoM solution.

Fig. 4 shows the scattering cross section versus polar angle for an acoustically rigid
cylinder of radius 1m and height 1m, subjected to an axially incident plane wave of
k = 1rad/m, based on double layer formulation (DLF). Here the cylinder is mod-
eled with 202 nodes, 400 patches and 600 edges. The number of basis functions
chosen in the cluster are 9 for calculating the initial guess and 3 iterations were
used to solve Eq. 5 iteratively. The solution based on the EABF is in well agree-
ment with the solution based on traditional MoM solution in which the independent
pulse functions are used basis functions on each edge.

As a next example, to show the capability of the edge based adaptive basis func-
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Figure 4: Scattering cross section versus polar angle for an acoustically rigid cylin-
der of radius 1m and height 1m, subjected to an axially incident plane wave of k = 1
rad/m, based on Double layer formulation (DLF) with refinement of ABF solution.
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Figure 5: Scattering cross section versus polar angle for an acoustically rigid cube
of length 1m, subjected to an axially incident plane wave of k = 1 rad/m, based on
Double layer formulation (DLF) with refinement of ABF solution.

tions which can handle higher number of edges in the triangulated model, a cube
is modeled with 866 nodes, 1728 patches and 2592 edges. Here, in case of the
traditional MoM, one has to invert/solve a matrix of size 2592x2592 which is com-
pletely eliminated by using the edge based adaptive basis functions, where only 15
basis functions are considered in the cluster. The solution obtained by the cluster
of basis functions is further refined 5 times to get more accurate solution. Fig. 5
shows the scattering cross section versus polar angle for an acoustically rigid cube
of length 1m, subjected to an axially incident plane wave of k = 1 rad/m, based
on double layer formulation (DLF). The solution obtained by the adaptive basis
functions is in well agreement with the traditional MoM solution.

7 Conclusions

In this work, a new method to solve the acoustic scattering problem from arbitrarily-
shaped 3-D rigid bodies, based on method of moments solution is presented. The
new method uses new basis functions, namely, Edge based Adaptive Basis Func-
tions (EABF), to generate a diagonal matrix considering non-zero elements of the
off-diagonal elements less than a threshold value. The diagonal matrix generated by
the EABF solution captures the essential features of the scattering phenomenon. To
improve the solution further, a simple iterative scheme is proposed which gives ac-
curate solution after relatively a few iterations when compared to the regular MoM
solution. The double layer formulation which involves evaluation of hyper singu-
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lar integral, needed edge based basis functions for the numerical solution based on
method of moments procedure. Since the number of edges in a triangular patch
modeling of a closed body is higher than that of patches and nodes, it generates
largest size of the matrix compared to patch based or node based solutions. With
the development of the edge based adaptive basis functions, the final size of the mo-
ment matrix is relatively irrelevant as the matrix inversion is eliminated. Presently
work is in progress to extend the concept of cluster of basis functions to solve the
combined layer formulation using node based basis functions.
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