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Numerical Simulations of Dynamic Fracture in Thin Shell
Structures

C. Gato and Y. Shie1

Abstract: Numerical simulations of large deformation dynamic fracture in thin
shell structures using 3-D meshfree method is presented. Due to the smoothness of
the meshfree shape functions, they are well suited to simulate large deformation of
thin shell structures while avoiding ill-conditioning as well as stiffening in numer-
ical computations. Dynamic fracture is modeled by simple criterion, i.e. removing
connectivity between adjacent nodes once a fracture criterion is met. The main
advantage of such 3-D meshfree continuum approach is its simplicity in both for-
mulation and implementation as compared to shell theory approach, or degenerated
continuum approach. Moreover, it is believed that the accuracy of the computation
may increase because of using 3-D exact formulation.
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1 Introduction

The numerical simulation of thin shell structures has been a challenge in applied
mechanics and in many engineering branches for many years. Its engineering sig-
nificance as well as technical difficulties can be best measured by the seemingly
ever-lasting ’new formulations’ or ’new contributions’ in the literature in the past
decades. Its applications cover e.g. sheet metal forming, crash-worthiness test,
civil structure design, pressure vessel liability, shipbuilding, defense technology,
just to name a few. Regarding the strategy of numerical simulations of thin shell
structures, there are three major approaches:

1. numerical simulation based on shell theories

2. degenerated continuum, or continuum based approach

3. direct three-dimensional (3-D) continuum approach
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Among these three approaches, 3-D continuum direct approach is the simplest;
nonetheless it is the least popular one in practice. The major drawback, or dilemma
that prevents using 3-D direct simulation is that it is often required to deploy mul-
tiple elements in the thickness direction of the thin shell to acquire reasonable gra-
dient fields, which, on the other hand, leads to degrading the conditioning of the
discrete system and then the accuracy of the numerical solution; moreover, the di-
rect continuum approach is very expensive, which usually requires more elements
in the same simulation than shell theory approach, or degenerated approach does.

Most meshfree methods proposed so far have focused on a continuum-based ap-
proach or simply modeled the shell or plate as a standard continuum. A meshfree
thin shell formulation based on Kirchhoff-love theory and element-free Galerkin
(EFG) method Belytschko, Lu, and Gu (1994) has been developed by Krysl and Be-
lytschko (1996) in the context of small strain, linear elastic framework. Rabczuk,
Areias, and Belytschko (2007) extended this work with the consideration of finite
strain, non-linear elastic material and focused on fracture. In the following work,
Rabczuk and Areias (2006) have simplified the treatment of cracks in thin shell by
using an extrinsic basis. Donning and Liu (1998) noted the advantage of meshfree
approximations in addressing shear locking in Mindlin type of beams and plates and
have developed a meshfree formulation based on the reproducing kernel particle
method (RKPM) Liu, Jun, and Zhang (1995). This methodology is further extended
by Kanok-Nukulchai, Barry, Saran-Yasoontorn, and Bouillards (2001) with the use
of EFG. EFG has been employed by Noguchi, Kawashima, and Miyamura (2000)
for shell and membrane structures in which bi-cubic and quartic basis functions are
introduced in order to avoid shear and membrane locking. Leitao (2001) developed
a meshfree method based on radial basis functions (RBF) for modeling a Kirchhoff
type of plate. Extension of RBF approach to the Mindlin type of plate was presented
in Liew and Chen (2004b,a). The meshless local Petrov-Galerkin was proposed by
Atluri and Zhu (1998, 2000); Atluri and Shen (2002); Atluri (2002); Han and Atluri
(2003); Tang, Shen, and Atluri (2003); Liu, Han, Rajendran, and Atluri (2006) for
solving beam problems and application of this meshfree approach to plates and
shells can be found in Long and Atluri (2002); Atluri, Cho, and Kim (1999); Soric,
Li, Jarak, and Atluri (2004); Sladek, Sladek, Wen, and Aliabadi (2006); Jarak,
Soric, and Hostler (2007); Li, Soric, Jarak, and Atluri (2005); Andreaus, Batra,
and Porfiri (2005); Sladek, Sladek, and Solek (2008); Jiawei, Xuefeng, and Lianfa
(2008). Wang and Chen (2006) showed that the Kirchhoff mode in the Mindlin
plate can be reproduced using EFG or RKPM if second-order polynomial basis
is used in the moving least-squares approximation. By implementing this with a
nodal integration and stabilization scheme, they have shown that the formulation is
stable and free of shear locking. Yagawa and Miyamura (2005) developed a free
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mesh method in which the discrete Kirchhoff theory is combined with the mixed
approach. In the case of 3D continuum models, Li, Hao, and Liu (2000) have
presented a formulation based on RKPM and have studied non-linear large defor-
mation of thin shells. Other relevant literature related to fracture or shell theory are
given e.g. in Hao and Liu (1999); Hao, Liu, and Chang (2000); Guz, Menshykov,
and Zozulya (2007); Ju and Liu (2007); Rabczuk and Belytschko (2006); Hagi-
hara, Tsunori, and Ikeda (2007); Nishioka, Kobayashi, and Fujimoto (2007); Hao,
Liu, and Weertman (2004); Liu, Liu, and Mahadevan (2007); Hao, Liu, Moran,
Vernerey, and Olson (2004); Guo and Nairn (2006); Zhao, Liu, and Wu (2008);
Rabczuk and Zi (2007); Ma, Lu, and Wang (2006); Gao, Liu, and Liu (2006); Hao,
Liu, Moran, and Olson (2003); Hao, Liu, Klein, and Rosakis (2004); Rong, Huang,
Liu, Song, and Wang (2008); Hao, Liu, and Belytschko (2004); Rabczuk, PMA,
and Belytschko (2007); Fujimoto and Nishioka (2006); Nishioka (2005); Hao and
Liu (2006); Nguyen-Van, N, and Tran-Cong (2008); Le, Mai-Duy, and Tran-Cong
(2008).

In this paper, we use meshfree 3-D continuum approach based on simple fracture
criterion. Once fracture criterion is met, connectivity between meshfree nodes are
removed. The advantage of this 3-D meshfree approach is its simplicity over more
complex methods.

The paper is structured as follows: We first describe the meshfree approximation
and the discrete equations. Then, we elaborate the fracture criterion. Two problems
involving large deformation dynamic fracture of thin shell structures are studied. At
the end, we conclude our paper and give future research directions.

2 General formulation

We have used a formulation within the total Lagrangian framework. Conservation
of linear momentum can be written as

∇X ·P+ρ0b = ρ0 ü, X ∈ Ω0 (1)

where b is the body force, ρ0 is initial density, u is displacement, P is the first
Piola-Kirchhoff stress tensor, ∇X denotes spatial derivatives with respect to mate-
rial coordinate and superimposed dots denote material time derivatives. The weak
formulation of linear momentum equation is: Find u ∈ U and δu ∈ U0 such that

δW = δWint −δWext +δWkin = 0 (2)
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with

δWint =
∫

Ω0

∇X δu : P dΩ0

δWext =
∫

Γ0t

δu · t̄0 dΓ0 +
∫

Ω0

ρ0δu ·b dΩ0

δWkin =
∫

Ω0

ρ0δu · ü dΩ0 (3)

with the approximation spaces U and U0 for the trial and test functions, respec-
tively,

U =
{

u|u ∈ H1, u = ū on Γu
}

U0 =
{

δu|δu ∈ H1, δu = 0 on Γu
}

(4)

The linear momentum equation is complemented with Dirichlet and von Neumann
boundary conditions:

u = ū, X ∈ ΓXu (5)

n0 ·P = t0 = t̄0, X ∈ Γ0t (6)

where the index t refers to traction boundaries, the index u refers to displacement
boundaries; n is the normal to the traction boundary and the subscript 0 refers to
quantities in the reference configuration; t is the traction.

3 Meshfree approximation

We use the elementfree Galerkin (EFG) method Belytschko, Lu, and Gu (1994)
that is based on moving least squares (MLS) Lancaster and Salkauskas (1981) ap-
proximation. The EFG approximation uh(X) of a given function u(X) can be posed
in terms of the shape functions and certain particle or nodal parameters uJ as

uh(X) =
n

∑
J=1

NJ(X)uJ = N u (7)

with n particles and shape functions

NT (X) = pT (X)A−1(X)PW(X) (8)

where A is the moment matrix with moment matrix

A(X) = P(Y)W(X)PT (Y) (9)
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where the matrix PT (Y) contains the polynomial basis p and

W(X) = diag{WI(X−XI ,h)VI} , I = 1, ...,n (10)

WI(X−XI ,h) is a kernel function with compact support, its parameter h, usually
called smoothing length or dilation parameter is a certain characteristic measure of
the size of the support of the kernel function (e.g. the radius in circular supports).
We used the quartic spline function that is commonly used in the literature:

W(X−XI ,h) = w(s) =
{

1−6s2 +8s3 −3s4 s ≤ 1
0 s > 1

(11)

with s = X−XI
2h for circular support size. The size of the domain of influence is

connected to the nodal spacing. We consider only structured nodal arrangements
Rabczuk and Belytschko (2005). The support size of the domain of influence, i.e.
the radius of the support size is twice the particle spacing, figure 1. Such support
sizes are commonly used in meshfree methods ?. The matrix P contains the poly-
nomial basis p. Instead of the global polynomial basis p(Y), we use a scaled locally
defined polynomial basis p((Y−X)/h), that leads to better conditioned moment
matrix A. In this work, we use a quadratic polynomial basis. We note that the
EFG approximation does not fulfil the Kronecker-delta property, i.e. u(XI) �= uI .
This requires specific attention when imposing displacement boundary conditions.
Also, if for example the displacement field needs to be plotted, then eq. (7) needs
to be used in the post-processing. More details on the EFG method can be found in
the literature Belytschko, Lu, and Gu (1994); ?.

support size

(a)

Figure 1: Radial support size
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The test and trial functions have the structure of equation (7). Introducing them
into the weak formulation with a Bubnov Galerkin method yields

n

∑
I=1

δuI

{
n

∑
J=1

−
∫

Ω0

∇X NI(X)P dΩ0 +
∫

Ω0

NI(X)b dΩ0

+
∫

Γ0t

NI(X)t̄0 dΓ0 +
∫

Ω0

ρ0NI(X)NJ(X)u dΩ0

}
= 0 (12)

Thus, for each particle I, the following identity must hold

n

∑
J=1

∫
Ω0

∇X NI(X)P dΩ0 =
∫

Ω0

NI(X)b dΩ0

+
∫

Γ0t

NI(X)t̄0 dΓ0 +
∫

Ω0

ρ0NI(X)NJ(X)u dΩ0 = 0 (13)

These equations can be recast into a matrix form

MIJüJ = −fext
I + fint

I (14)

with

MIJ =
∫

Ω0

ρNI(X) NT
J (X) dΩ0

fext
I =

∫
Γ0t

NT
I (X) t̄0dΓ0 +

∫
Ω0

NT
I (X) bdΩ0 (15)

fint
I =

∫
Ω0

∇X NT
I X) PdΩ0 (16)

The domain is subdivided into integration domains over which Gaussian quadrature
is performed. Background mesh is constructed such that nodes and integration
cell vertices coincide, see figure 2 for a two-dimensional description. We note
that the background mesh does not necessarily have to be conforming and hanging
nodes may easily be employed. Using Gaussian quadrature, the internal forces for
examples are given by Rabczuk, Belytschko, and Xiao (2004)

fint
I = ∑

J=1
n∇X N(X(ξJ)−XI) P(X(ξJ)) wQ

J |J| (17)

where ξ are local coordinates of the background mesh, |J| is the determinant of the
Jacobian and wQ

J are the quadrature weights.
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(a)

Figure 2: EFG nodes plotted as circular black dots with background mesh; left side:
unstructured mesh and right side: structured mesh

4 Constitutive model and Failure criterion

4.1 Visoplasticity model

We use a J2 isotropic hardening viscoplastic model of the type

g(ε p) = σ0

(
1+

ε p

ε p
0

)1/n

(18)

where σ0 is yield stress, ε p and ε p
0 are the total and reference plastic strains, re-

spectively and 1/n is hardening exponent.

Rate dependent behavior is modeled with power law of type

σe f f = g(ε p)
(

1+
ε̇ p

ε̇ p
0

)1/m

(19)

where 1/m is reference plastic strain rate and 1/m is strain rate sensitivity exponent.

4.2 Thermo-viscoplastic model

In this section, we outline the constitutive relation of the thermo-elasto-viscoplastic
solid adopted from Zhou, Ravichandran, and Rosakis (1996) in order to evaluate
the stress term in Equation 2. The rate form of the constitutive equation reads as
follows:

τ∇ = C :
(
D−Dvp −α Ṫ I

)
(20)

where C is the first order elasticity tensor, D is the symmetric part of the velocity
gradient L, τ∇ = τ̇ − W · τ − τ ·W is the Jaumann rate of the Kirchhoff stress
where W is the antimetric part of the velocity gradient, α is the thermal expansion
coefficient and I is the second-order identity matrix. The viscoplastic overstress
model here is based on von Mises

Dvp =
(

3¯̇ε
2σ̄

)
s̃ (21)
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with

s̃ = s−a with s = τ −1/3tr(τ) I, σ̄ = 3/2s̃ : s̃ (22)

where a is the back stress, set to zero in our studies. The thermo viscoplastic flow
is governed by the following power law

¯̇ε = ε̇0

(
σ̄

g(ε̄,T )

)m

(23)

with

g(ε̄,T ) = σ̄
(

1+
ε̄
ε0

)n (
1−δ

[
exp

(
T −T0

κ

)
−1

])
(24)

In Equations (23) and (24), ε̇0 is a reference strain rate, m is the rate sensitivity
parameter, σ0 is the yield stress, ε0 = σ0/E is the corresponding reference strain
and E is Young’s modulus, n is the strain hardening exponent, T0 is a reference
temperature and δ and κ are thermal softening parameters. The function g(ε̄,T ) is
the stress-strain relation measured at quasi-static strain rate of ε̇ at temperature T .
The equivalent plastic strain ε̄ is defined as

ε̄ =
∫ t

0
˙̄ε dt =

∫ t

0

√
2
3

Dvp : Dvp dt (25)

Softening in material due to temperature is accounted for by varying material pa-
rameters

E(T ) = E0 −1.6×106 (T −T0)−105 (
T −T)

)
[Pa]

ν = v0 +5×10−5 (T −T0)
σ0(T ) = σ0 −1.5×103 (T −T0)

2 [Pa]
α(T) = (2.2+0.0016 [T −T0])×10−5 [K−1] (26)

where E and ν are Young’s modulus and the Poisson ratio at temperature T . Fur-
thermore, for steel: E0= 200GPa, ν0=0.3 and σ0=2.0GPa. The constitutive update
scheme for the thermo-elasto-viscoplastic model largely follows the rate tangent
modulus approach developed by Peirce, Shih, and Needleman (1984). The essence
of the rate tangent modulus method is to approximate any function of time in the
interval tn+θ ∈ [tn, tn+1], θ ∈ [0,1] as

fθ = (1−θ ) fn +θ fn+1 (27)
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Thus, with the predicted velocity field vtrial
n+1 = vn +Δt an it follows that

vθ = (1−θ )vn +θvtrial
n+1 = vn +θΔt an (28)

uθ = (1−θ )un +θun+1 = un +θΔt vn +θ 2Δt2 an (29)

Lθ = ∇X vθ ·F−1
n+1 (30)

With θ = 0.5, we recovered central difference scheme. To update the Kirchhoff
stress, we proceed as follows:

τn+1 = τn + τ̇ Δt (31)

τ̇ ≈ τ∇ +Wθ · τn +τn ·WT
θ (32)

Of course, one has to find first ˙̄εθ before τ∇. Let

˙̄εθ = (1−θ ) ˙̄εn +θ ˙̄εn+1 (33)

where ˙̄εn+1 is approximated by a first-order Taylor series expansion in σ̄ , ε̄ and T

˙̄εn+1 = ˙̄εn +Δtn

(
∂ ˙̄ε
∂ σ̄

|n ˙̄σθ +
∂ ˙̄ε
∂ ε̄

|n ˙̄εθ +
∂ ˙̄ε
∂T

|nṪθ

)
(34)

Assume that the temperature update proceeds first, and Ṫθ comes in handy; based
on plastic consistency condition and constitutive relations, on may find that

˙̄εθ ≈
˙̄εn

1+ζθ
+

ζθ

Hθ (1+ζθ )

(
Pθ : Dθ + Ṫθ

(
∂ ˙̄ε/∂T

∂ ˙̄ε/∂ σ̄

)
n

)
(35)

where

Pθ = C : pn (36)

pn =
3s̃
2σ̄

(37)

Hθ ≈ ∂ ˙̄ε/∂ ε̄
∂ ˙̄ε/∂ σ̄

|n +(p : L : p)n (38)

ζθ ≈ θ Δt

(
∂ ˙̄ε
∂ σ̄

)
n

Hθ (39)

∂ ˙̄ε
∂ σ̄

=
m ˙̄ε
σ̄

(40)

∂ ˙̄ε/∂T

∂ ˙̄ε/∂ σ̄
|n = −

(
σ̄

g(ε̄,T )

)
∂g
∂T

(41)
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Following the rate tangent modulus approach Peirce, Shih, and Needleman (1984),
the objective rate of the Kirchhoff stress can be given as

τ∇ = Ctan
θ : Dθ −

˙̄εn

1+ζθ
Pθ −

ζθ

(1+ζθ )Hθ

∂ ˙̄ε/∂T

∂ ˙̄ε/∂ σ̄
|nṪθ Pθ −α Ṫθ C : I (42)

where

Ctan
θ = C−

(
ζ

(1+ζ )H

)
θ

Pθ : Pθ (43)

Once the objective rate is obtained, the Kirchhoff stress can then be updated ac-
cording to Equation(31). The corresponding first Piola Kirchhoff stress tensor is
then given as P = F−1 · τ .

4.3 Failure model

Two types of failure models are used

• Stress-based fracture criterion

• Strain-based fracture criterion

For stress-based fracture criterion, fracture is introduced once the maximum prin-
cipal tensile stress exceed 3 times the tensile strength σ0 of the material.

For strain-based fracture criterion, fracture is introduced once the effective plastic
strain rate exceeds a given threshold. This threshold is 0.2 in our studies.

Both criteria required a non-local averaging of stress and strain field.

Fracture is modeled in a very simple manner. We broke the link between neigh-
boring particles once fracture criterion is met. More sophisticated models will be
studied in the future.

5 Results

5.1 Pinched cylinder

We first show the efficiency and accuracy of the method with simple example: Lin-
ear elastic pinched cylinder with rigid end diaphragm. This problem resembles one
of bench mark problems in the so-called standard problem set testing finite ele-
ment accuracy and was tested for example by Sze, Lo, and Yao (2002); Weissmann
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(a)

Figure 3: Normalized displacement versus number of elements in each side,
pinched cylinder example

(1996); Bucalem and Bathe (1993); Parish (1991); Simo, Fox, and Rifai (1989).
Only one eights of the cylinder is usually modeled. We model the entire cylinder
since we cannot take advantage of symmetry in the following examples. In order
to compare results with the literature, we have scaled the number of background
cells to the number of elements of the 1/8 cylinder. This normalized displacement
plot is depicted in figure 3. The results are of similar accuracy as results with finite
elements that use the same number of elements though this method is much simpler
and better suited for modeling fracture.

5.2 Cylinder under internal pressure

The configuration of the problem is shown in Figure 4. The cylinder considered
has an axial length of 1.2m. The circular cross-section has a mean radius of 22.575
cm and thickness of 0.15 cm. The mesh for approximately 30,000 nodes is shown
in figure 5a. The finer mesh with approximately 150,000 nodes is shown in figure
5b. The background cells built by 4 nodes are illustrated in this figure as well. We
used standard commercial software to obtain the nodal points and the background
mesh. We also used a mesh with 100,000 nodes and 120,000 nodes.

The initial crack is modeled with the visibility criterion developed Belytschko and
Lu (1995); Belytschko, Lu, and Gu (1995). Thermo-viscoplastic model described
in section 4.2 is used with material parameters: ε̇0 = 0.001s−1, m = 70, n = 0.01,
T0 = 293K, δ = 0.5, κ = 1000K, ρ = 7839kg/m3, cp = 448J/(kgK), χ = 0.9.
Stress-based fracture criterion is used as described in section 4.3. The internal
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thickness 1.5mm

0.2m

1.2m

0.225m

Figure 4: Dimension of the pressurized cylinder problem

(a) 30,000 nodes (b) 150,000 nodes

Figure 5: Structured nodal arrangement and background mesh of the pressurized
cylinder problem; initial configuration



Numerical Simulations of Dynamic Fracture in Thin Shell Structures 281

pressure is increased linearly. We test 2 scenarios:

• slow loading rate

• fast loading rate

For slow loading rate, we perform quasi static analysis and the loading rate is
15.2Pa/s. For fast loading rate, the maximum load of 15.2MPA is reached after
1ms leading to loading rate of 15.2kPa/s.

(a) temperature distribution (b) von Mises stress

(c) Slow load rate; temperautre (d) Slow load rate; temperautre

(e) Fast load rate; von Mises stress

Figure 6: Displaced configuration of the cylinder under internal pressure

The displaced cylinder for slow loading rate is illustrated in figure 6. The crack
propagates straight. For fast loading rate, the crack propagates first straight but
then branches. This was also observed by other authors Zhou, Ravichandran,
and Rosakis (1996); Ravi-Chandar (1998); Sharon, Gross, and Fineberg (1995);
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Figure 7: Maximum radial displacements for different meshes

Rabczuk and Belytschko (2004, 2007). The maximum radial displacements mea-
sured from the simulation data for different meshes are shown in figure 7. The
results are almost indistinguishable after exceeding 100,000 nodes. This indicates
mesh independent results. The displaced cylinder and the crack patterns are also
indistinguishable and therefore we presented only the displaced cylinder for the
simulation with 100,000 nodes in figure 6.

5.3 Detonation driven fracture of cylinder

This problem was experimentally studied by Chao (2004). The test-setup consists
of a detonation tube of 152cm length to which a thin-walled aluminium tube is at-
tached. The lengths of aluminium tube range from 45.7cm to 89.6cm. The inner
tube radius is 1.975cm and thickness of shell is 0.89mm. While the lower end of
the device is closed, a thin diaphragm seals up the other end. The aluminium tube
contains notches of various lengths midspan of the aluminium tube. The entire ap-
paratus is filled with a combustible mixture of ethylene and oxygen. Initial pressure
varies from 80kPa to 180kPa. The mixture is thermally ignited at the closed end
and the combustion transitions quickly to a detonation. When it enters the test spec-
imen, the detonation is close to the Chapman-Jouguet (CJ) limit of quasi-stationary
self-sustained propagation. Its velocity is between 2300m/s and 2400m/s and the
pressure values in the fully recreated CJ state range from 2.6MPa to 6.1MPa (de-
pending on the initial pressure).

We model this problem with von Mises type J2 visco-plasticity model, section
4.1, and strain-based failure criterion. The material data is: E = 69GPa, ρ =
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Figure 8: Pressure over the time of a particle close to the notch from a pure fluid
simulation of gas-detonation in rigid specimen

2719kg/m3, ν = 0.33, σ0 = 275GPa, ε p
0 = 0.001, 1/n = 0.07, 1/m = 0.01. Since

it is complicated to model the gas explosion and fracture of the cylinder at the same
time, we proceed as follows:

• We first simulate the gas explosion at rigid cylinder.

• Then, we prescribe the pressure time history of the previous simulation to
our fracture model.

The gas explosion simulation was done by using equation of state model. The
pressure time-history at the notch location of one particle is shown in figure 8. We
now focus on the fracture of the shell. More details on the gas explosion simulation
is given in Gato (2007).

The cylindrical shells are modeled with up to 280,000 nodes. Using half the number
of nodes resulted in similar numerical data. We considered 2 notch lengths.

For notch length of 1”, the results are shown in figure 9. Cracks propagate shortly
from the crack tips and then bifurcate in circumferential direction. Similar obser-
vations were made in the experiment. The cracks are arrested after propagating
approximately 3/4 of the circumference. In the experiment, the side opposed to
the source of explosions failed around the entire circumference while the other side
did not. The simulation cannot capture this behavior due to the relatively regularly
applied pressure load. A coupled simulation might resolve this issue.

For notch length of 2”, result is shown in figure 10. Since pressure differences
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(a) (b)

(c)

Figure 9: Displaced configuration and effective stress of the detonation-driven frac-
ture of cylinder at different times; notch length is 1”

(a)

Figure 10: Displaced configuration and effective stress of the detonation-driven
fracture of cylinder; notch length is 2”
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around and ahead of the crack tips were more pronounced from the gas explosion
simulations, we captured the basic behavior of the experiment. While crack prop-
agates straight on the RHS, crack curves in 45 degree angle before propagating in
circumferential direction and getting arrested. This behavior was also seen in the
experiment.

6 Conclusions

With the developments of a non-linear meshfree method and a thermo-visco-plastic
material model, we studied the failure of cylinders. The advantages of using a
meshfree method over finite element method are:

• Meshfree method can deal with large deformations more accurately than fi-
nite element method.

• Arbitrary crack growth is represented naturally and independent of the nodal
arrangement because of absence of mesh.

• No complicated shell theory needs to be used that is difficult to implement.
Nevertheless, the results are of the same accuracy for similar amount of
nodes.

We predicted the failure mode of cylinders under internal pressure independent
of the mesh size (after exceeding 100,000 nodes). We modeled detonation-driven
fracture of cylindrical tubes with different notch lengthes. Therefore, internal pres-
sure time histories from pure gas-detonation fluid simulation in rigid tube is used.
For notch length of 2”, experimental fracture pattern can be predicted accurately
while for notch length of 1”, our simulated fracture pattern is different from the
experimental fracture pattern though we were able to predict the basic features, i.e.
crack bifurcation in circumferential direction and short straight crack propagation.
These differences might occur due to neglecting fluid-structure interaction effect.
For short notch, spatial pressure distribution around and ahead the notch is similar
in simulation of pure fluid simulation while spatial differences in pressure distribu-
tion occur for longer notch length. A more sophisticated fracture model might be
another source of inaccuracies. Discrete crack cohesive zone model will improve
accuracy. These aspects will be studied in future research.
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