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Exact Large Deflection Solutions for Timoshenko Beams
with Nonlinear Boundary Conditions
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Abstract: A new analytic solution method is developed to find the exact static
deflection of a Timoshenko beam with nonlinear elastic boundary conditions for
the first time. The associated mathematic system is shifted and decomposed into six
linear differential equations and at most four algebra equations. After finding the
roots of the algebra equations, the exact solution of the nonlinear beam system can
be reconstructed. It is shown that the proposed method is valid for the problem with
strong nonlinearity. Examples, limiting studies and numerical analysis are given
to illustrate the analysis. The exact solutions are compared with the perturbation
solutions. The influence of the nonlinear spring constant and the slenderness ration
on the errors of the perturbation solutions is evaluated.
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1 Introduction

Beams are one of the most commonly used structures in the world. It can be
widely found in all the engineering fields. Based on the linear theory, including
the Bernoulli-Euler and the Timoshenko beam theories, the studies on the static
and dynamic response of beam structures are tremendous [Timoshenko (1955);
Meirovitch (1967); Lee and Kuo (1992, 1993); Lee and Lin (1992, 1996, 1998);
Iura, Suetake, and Atluri (2003); Beda (2003); Zupan and Saje (2003); Andreaus,
Batra and Porfiri (2005); Vinod, Gopalakrishnan and Ganguli (2006); Lee and Hsu
(2007); Huang and Shih (2007); Lin, Lee and Lin (2008)]. When the physical
properties of a beam structure are uniform, the exact solution for the beam struc-
tures can be found in many standard text books [Timoshenko (1955); Meirovitch
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(1967)]. When the physic properties of non-uniform beams are in arbitrary polyno-
mial forms, the exact solutions for various kinds of beam can be found in the works
done by Lee and Kuo (1992,1993), Lee and Lin (1992, 1996, 1998); Lee and Hsu
(2007), Lin, Lee and Lin (2008). In addition, many different kinds of numerical
methods were employed to study the problems.

In the non-linear analysis, Emam and Nayfeh (2004), and Saffari, Rahgozar and
Tabatabaei (2007) studied the beam problems with geometry nonlinearity. Monasa
and Lewis (1983) studied the beam problems with material nonlinearity. Lee and
Kuo (1994) and Coºkun (2000) examined the problems for a beam resting on non-
linear elastic foundation. Ma and Silva (2004), Turner (2004), Wolf and Gottlieb
(2001), Fung and Huang (2001) and Kuang and Chen (2005), Lee, Lin, Lee, Lu
and Liu (2008) investigated the response of a beam with nonlinear elastic boundary
conditions.

It is well known that, in general, the exact solutions for the nonlinear beam prob-
lems are not available. The problems were mainly solved by approximated meth-
ods such as: the perturbation method [Monasa and Lewis (1983); Lee and Kuo
(1994); Wolf and Gottlieb (2001)], the iterative method [Ma and Silva (2004)], the
Galerkin’s method [Emam and Nayfeh (2004); Cao and Zhang (2005); Lee and Soh
(1994)], the finite element method [Saffari, Rahgozar and Tabatabaei (2007); Fung
and Huang (2001)] and the Adomian decomposition method [Kuang and Chen
(2005)]. One exact static deflection solution for a Bernoulli-Euler beam with par-
ticularly designed nonlinear boundary conditions was found in the paper by Ma and
Silva (2004). Recently, Lee, Lin, Lee, Lu and Liu (2008) developed a new solution
method to find the exact large deflection of a Bernoulli-Euler beam with nonlinear
boundary conditions.

From the existing literature, it can be found that a systematic analytical method to
find the exact solutions for the deflection of a Timoshenko beam with various non-
linear elastic boundary conditions still is not available. In this paper, a systematic
analytical method which is an extension of the method developed by Lee and Lin
(1998) and Lee, Lin, Lee, Lu and Liu (2008) is developed to find the exact large de-
flection solutions for Timoshenko beams with nonlinear elastically restrained end
supports. The associated nonlinear mathematic system is changed and decomposed
into six linear differential equations and at most four algebra equations. After find-
ing the roots of the algebra equations, the exact solution of the nonlinear beam
system can be reconstructed. The proposed method is valid for the problem with
strong nonlinearity. Examples, limiting studies and numerical analysis are given to
illustrate the analysis. Exact solution is compared with perturbation solution which
is also a kind of analytic solution and widely used in the existing literature. The
influence of the nonlinear spring constant and the slenderness ration on the errors
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of the perturbation solutions is evaluated.

2 Mathematical Modeling of the Beam System

Consider the static deflection of a uniform Timoshenko beam with nonlinear elas-
tic boundary conditions, as shown in Figure 1. In terms of the following non-
dimensional quantities:

ξ =
x
L
, w(ξ ) =

W (ξ )
L

, p(ξ ) =
P(ξ )L3

EI
, β1 =

KθLL
EI

,

μ =
EI

κGAL2 , β2 =
KT LL3

EI
, β3 =

KθRL
EI

, β4 =
KT RL3

EI
, K =

kL4

EI
, (1)

γ1 =
KNθLL

EI
, γ2 =

KNT LL5

EI
, γ3 =

KNθRL
EI

, γ4 =
KNT RL5

EI
, s2 =

AL2

I
,

the two couple governing differential equations of the system are

− d
dξ

[
1
μ

(
dw(ξ )

dξ
−Ψ(ξ )

)]
+Kw(ξ ) = p(ξ ), ξ ∈ (0,1), (2)

d2Ψ(ξ )
dξ 2 +

1
μ

(
dw(ξ )

dξ
−Ψ(ξ )

)
= 0, ξ ∈ (0,1). (3)

Figure 1: Geometry and coordinate system of a uniform beam with non-linear elas-
tic boundary conditions
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The nonlinear elastic boundary conditions are
at ξ = 0:

dΨ(ξ )
dξ

−β1Ψ(ξ )− γ1Ψ3(ξ ) = 0, (4)

− 1
μ

(
dw(ξ )

dξ
−Ψ(ξ )

)
+β2w(ξ )+ γ2w3(ξ ) = 0, (5)

at ξ = 1:

dΨ(ξ )
dξ

−β3Ψ(ξ )− γ3Ψ3(ξ ) = 0, (6)

1
μ

(
dw(ξ )

dξ
−Ψ(ξ )

)
+β4w(ξ )+ γ4w3(ξ ) = 0. (7)

Here, W(ξ ) is the flexural displacement, Ψ(ξ ) is the angle of rotation due to bend-
ing and ξ is the space variable along the beam. E, G, κ , I, A, L and s are the
Young’s modulus, the shear modulus, the shear correction factor, the area moment
of inertia, the cross section area, the length and the slenderness ratio of the beam,
respectively. P(ξ ) is the applied distributed transverse force per unit length. KT L,
KθL, KT R and KθR are the linear translational spring constants and the linear rota-
tional spring constants at the left end and the right end of the beam, respectively.
KNT L, KNθL, KNT R and KNθR are the nonlinear translational spring constants and the
nonlinear rotational spring constants at the left end and the right end of the beam,
respectively. K is the spring constant of elastic foundation.

3 Shifting Function Method

3.1 Change of variable

To find the solution for the two couple differential equation with nonlinear elastic
boundary conditions, one extends the method developed by Lee and Lin (1998) and
Lee, Lin, Lee, Lu and Liu (2008) by taking

w(ξ ) = v(ξ )+
4

∑
i=1

figi(ξ ), Ψ(ξ ) = ϕ(ξ )+
4

∑
i=1

f̄iḡi(ξ ), (8)

where

f1 = 0, f̄1 = −γ1ϕ3(0) (9)

f2 = μγ2w3(0), f̄2 = 0 (10)
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f3 = 0, f̄3 = −γ3ϕ3(1) (11)

f4 = μγ4w3(1), f̄4 = 0 (12)

Here v(ξ ) and φ (ξ ) are the transformed functions. gi(ξ ) and ḡi(ξ ), i =1, 2, 3, 4 are
the shifting functions to be specified. It should be mentioned that among the eight
shifting functions, only four of them, g2(ξ ), g4(ξ ), ḡ1(ξ ) and ḡ3(ξ ), are required
in this analysis.

Substituting equations (8-12) into equations (2-7), one has the differential equations
for v(ξ ) and φ (ξ )

− 1
μ

[
d2v(ξ )

dξ 2 − dϕ(ξ )
dξ

]
+Kv(ξ )

= p(ξ )+
1
μ

[
4

∑
i=1

fi

(
d2gi(ξ )

dξ 2

)
−

4

∑
i=1

f̄i

(
dḡi(ξ )

dξ

)]
−K

4

∑
i=1

figi(ξ ),
(13)

d2ϕ(ξ )
dξ 2 +

1
μ

(
dv(ξ )

dξ
−ϕ(ξ )

)

= − 1
μ

4

∑
i=1

fi

(
dgi(ξ )

dξ

)
+

4

∑
i=1

f̄i

(
1
μ

ḡi(ξ )− d2ḡi(ξ )
dξ 2

)
,

(14)

and the associated boundary conditions
at ξ = 0:

dϕ(ξ )
dξ

−β1ϕ(ξ ) = − f̄1 −
4

∑
i=1

f̄i

[(
dḡi(ξ )

dξ
−β1ḡi(ξ )

)]
, (15)

−
(

dv(ξ )
dξ

−ϕ(ξ )
)

+ μβ2v(ξ )

= − f2 +
4

∑
i=1

fi

(
dgi(ξ )

dξ
−μβ2gi(ξ )

)
−

4

∑
i=1

f̄iḡi(ξ ),
(16)

at ξ = 1:

dϕ(ξ )
dξ

−β3ϕ(ξ ) = − f̄3 −
4

∑
i=1

f̄i

[(
dḡi(ξ )

dξ
−β1ḡi(ξ )

)]
, (17)

(
dv(ξ )

dξ
−ϕ(ξ )

)
+ μβ4v(ξ )

= − f4−
4

∑
i=1

fi

(
dgi(ξ )

dξ
+ μβ4gi(ξ )

)
+

4

∑
i=1

f̄iḡi(ξ ).
(18)
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3.2 Shifting Functions

If the shifting functions gi(ξ ) and ḡi(ξ ), i =1, 2, 3, 4 in equation (8) are chosen to
satisfy the differential equations

d2gi(ξ )
dξ 2 = 0,

1
μ

ḡi(ξ )− d2ḡi(ξ )
dξ 2 = 0, (19)

and the following boundary conditions

dḡi(ξ )
dξ

−β1ḡi(ξ ) = δi j, j = 1, (20)

dgi(ξ )
dξ

−μβ2gi(ξ ) = δi j, j = 2, (21)

dḡi(ξ )
dξ

−β3ḡi(ξ ) = δi j, j = 3, (22)

dgi(ξ )
dξ

+ μβ4gi(ξ ) = δi j, j = 4, (23)

where δi j is a Kronecker symbol, then the differential equations (13-14), the asso-
ciated boundary conditions (15-18) can be reduced to

− 1
μ

[
d2v(ξ )

dξ 2 − ∂ϕ(ξ )
∂ξ

]
= p(ξ )+

1
μ

[
4

∑
i=1

f̄i

(
dḡi(ξ )

dξ

)]
−K

4

∑
i=1

figi(ξ ), (24)

d2ϕ(ξ )
dξ 2

+
1
μ

(
dv(ξ )

dξ
−ϕ(ξ )

)
= − 1

μ

4

∑
i=1

fi

(
dgi(ξ )

dξ

)
, (25)

at ξ = 0:

∂ϕ(ξ )
∂ξ

−β1ϕ(ξ ) = 0, (26)

−
(

dv(ξ )
dξ

−ϕ(ξ )
)

+ μβ2v(ξ ) = 0, (27)

at ξ = 1:

dϕ(ξ )
dξ

−β3ϕ(ξ ) = 0, (28)

dv(ξ )
dξ

−ϕ(ξ )+ μβ4v(ξ ) = 0. (29)
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Once the transformed functionsv(ξ ) and φ (ξ ) and the shifting functions g2(ξ ),
g4(ξ ), ḡ1(ξ ) and ḡ3(ξ ) are determined, one substitutes these functions into equa-
tion (8). It leads to

w(ξ ) = v(ξ )+ γ2w3(0)g2(ξ )+ γ4w3(1)g4(ξ ), (30)

Ψ(ξ ) = ϕ(ξ )− γ1Ψ3(0)ḡ1(ξ )− γ3Ψ3(1)ḡ3(ξ ), (31)

where, w(0), w(1), Ψ(0), Ψ(1) are four constants to be determined.

Setting ξ = 0 and ξ = 1 into equations (30-31), one has the following algebra
equations

w(0) = v(0)+ γ2w3(0)g2(0)+ γ4w3(1)g4(0), (32)

w(1) = v(1)+ γ2w3(0)g2(1)+ γ4w3(1)g4(1), (33)

Ψ(0) = ϕ(0)− γ1Ψ3(0)ḡ1(0)− γ3Ψ3(1)ḡ3(0), (34)

Ψ(1) = ϕ(1)− γ1Ψ3(0)ḡ1(1)− γ3Ψ3(1)ḡ3(1). (35)

As a result, the mathematic system of the nonlinear problem is shifted and decom-
posed into six linear differential equations, in terms of the transformed functions
v(ξ ) and φ (ξ ) and the shifting functions g2(ξ ), g4(ξ ), ḡ1(ξ )and ḡ3(ξ ), and at most
four algebra equations. After finding the roots of the four algebra equations (32 -
35), the exact solution of the nonlinear beam system can be reconstructed from
equations (30-31).

From equations (8-12, 24-29, 30-31), it can be observed that total solution is the
superposition of the linear and the nonlinear parts of the solution. The transformed
function v(ξ ) and φ (ξ ) is corresponding to the solution of the associated linear
system. The rest of terms in equation (8) are contributed from the nonlinear parts
of the boundary conditions.

4 Verification and Examples

To illustrate the previous analysis, the following examples, limiting cases and nu-
merical analysis are studied.

4.1 Clamped-nonlinear translational spring supported Timoshenko beam sub-
jected to uniform distributed load

4.1.1 Timoshenko beam

Consider the deflection of a beam subjected to uniform distributed load P. The
beam is clamped at the left end and is nonlinear translational spring supported at
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the other end. The governing differential equation and the boundary conditions are:

− 1
μ

d2w(ξ )
dξ 2 +

1
μ

dΨ(ξ )
dξ

= p, (36)

d2Ψ(ξ )
dξ 2 +

1
μ

(
dw(ξ )

dξ
−Ψ(ξ )

)
= 0, (37)

at ξ = 0:

Ψ = 0, w = 0, (38)

at ξ = 1:

dΨ(ξ )
dξ

= 0,
1
μ

(
dw(ξ )

dξ
−Ψ(ξ )

)
+β4w(ξ )+ γ4w3(ξ ) = 0, (39)

One lets

w(ξ ) = v(ξ )+ f4g4(ξ ), (40)

where

f4 = μγ4w3(1). (41)

Here g4(ξ ) is the shifting function to be specified. v(ξ ) is the transformed function
which satisfies the differential equation

− 1
μ

d2v(ξ )
dξ 2 +

1
μ

dΨ(ξ )
dξ

= p, (42)

d2Ψ(ξ )
dξ 2 +

1
μ

[
dv(ξ )

dξ
−Ψ(ξ )

]
=

f4

μ (1+ μβ4)
, (43)

and the homogeneous boundary conditions
at ξ = 0:

Ψ(ξ ) = 0, v(ξ ) = 0,

1
1+β2

(
∂ 3V
∂ξ 3 +n

∂V
∂ξ

+β2V

)
= f̄2− f̄i

[
1

1+β2

(
∂ 3g
∂ξ 3 +n

∂g
∂ξ

+β2g

)]
(44)

at ξ = 1:

dΨ(ξ )
dξ

= 0,

(
dv(ξ )

dξ
−Ψ(ξ )

)
+ μβ4v(ξ ) = 0. (45)
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It can be easily found that the function ψ(ξ ) and the transformed function v(ξ ) are

Ψ(ξ ) =
Pξ 3

6
+mξ +nξ 2, (46)

v(ξ ) =
ξ (24μγ4w3(1)+(Pξ 3−12Pξ μ +12ξm+8ξ 2n−48μn)(1+ μβ4))

24(1+ μβ4)
,

(47)

where

m = −−12P+24γ4w3(1)−Pβ4

8(3+β4 +3μβ4)
, n = −24P−24γ4w3(1)+5Pβ4 +12Pμβ4

16(3+β4 +3μβ4)
.

The shifting function g4(ξ ) satisfies the following differential equation and the
homogeneous boundary conditions:

d2g4(ξ )
dξ 2 = 0, (48)

at ξ = 0:

g4(0) = 0, (49)

at ξ = 1:

dg4(1)
dξ

+ μβ4g4(1) = −1. (50)

The shifting function g4(ξ ) is determined as

g4(ξ ) =
−ξ

1+ μβ4
. (51)

Substituting the transformed function v(ξ ) and the shifting function g4(ξ ) back
into equation (40), one has

Ψ(ξ ) = mξ +nξ 2 +
1
6

pξ 3, (52)

w(ξ ) =
ξ (24μγ4w3(1)+(pξ 3 −12pξ μ +12ξm+8ξ 2n−48μn)(1+ μβ4))

24(1+ μβ4)

+ μγ4w3(1)
−ξ

1+ μβ4
,

(53)
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where

m = −−12p+24γ4w3(1)− pβ4

8(3+β4 +3μβ4)
, n = −24p−24γ4w3(1)+5pβ4 +12pμβ4

16(3+β4 +3μβ4)
.

Setting ξ = 1 in the equations (52-53), and using the Cardano’s formula, one obtains
w(1).

w(1) =
−21/38(3+β4 +3μβ4)

A
+

A

21/324(γ4 +3μγ4)
, (54)

where

A =
(

Λ+
√

28311552(3+β4 +3μβ4)
3 (γ4 +3μγ4)3 +Λ2

)1/3

,

Λ = pγ2
4

(
5184+51840μ +171072μ2 +186624μ2γ4

)
.

After substituting w(1) back to equation (53), one obtains the exact dimensionless
deflection of the problem.

When the nonlinear spring constant is zero, γ4 = 0, the system turns to be a linear
one. The exact solution is reduced to

w(ξ ) =
ξ (pξ 3 −12pξ μ +12ξm+8ξ 2n−48μn)(1+ μβ4)

24(1+ μβ4)
. (55)

When both linear and nonlinear spring constants are zeros, γ4 = 0 and β 4 = 0, it is
further reduced to

w(ξ ) =
ξ 4 +4ξ 3 −6(1−2μ)ξ 2 −24μξ

24
p. (56)

It is the exact dimensionless deflection of a cantilevered Timoshenko beam sub-
jected to uniformly dimensionless distributed load p.

4.1.2 Bernoulli-Euler beam

In the Bernoulli-Euler beam theory, the shear deformation is not considered. By
setting μ = 0 in equations (53-54), they are reduced to

w(ξ ) =
(

β4 +12
16β4 +48

)
pξ 2 −

(
5β4 +24

48β4 +144

)
pξ 3 +

1
24

pξ 4

+ γ4w3(1)
(
− 3

2β4 +6
ξ 2 +

1
2β4 +6

ξ 3
)

,

(57)
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where

w(1) =
−21/38(3+β4)

H1/3
+

H1/3

21/324(γ4 +3μγ4)
, (58)

H = 5184pγ2
4 +

√
28311552(3+β4)

3 γ3
4 +26873856p2γ4

4 .

The nonlinear deflection of the Bernoulli-Euler beam is the same as that given by
Lee, Lin, Lee, Lu and Liu (2008).

4.1.3 Perturbation solutions

To compare the derived exact solution with the perturbation solution which is a
kind of approximated analytic solution commonly used in the literature, one lets

w(ξ ) = w0(ξ )+ γ4w1(ξ )+ γ2
4 w2(ξ )+ .....

= w0(ξ )+εw1(ξ )+ε2w2(ξ )+ .....,
(59)

Ψ(ξ ) = Ψ0(ξ )+εΨ1(ξ )+ε2Ψ2(ξ )+ ....., (60)

Substituting the two equations above into the governing differential equations, equa-
tions (2-3), and the associated boundary conditions, equations (4-7), and collecting
terms with like power of ε , one obtains the governing differential equations and
the associated boundary conditions for w0(ξ ), Ψ0(ξ ), w1(ξ ), Ψ1(ξ ), w2(ξ ) and
Ψ2(ξ ).

The governing differential equations for w0(ξ ) and Ψ0(ξ ) are

− 1
μ

d2w0(ξ )
dξ 2 +

1
μ

dΨ0(ξ )
dξ

= p, (61)

d2Ψ0(ξ )
dξ 2 +

1
μ

(
dw0(ξ )

dξ
−Ψ0(ξ )

)
= 0. (62)

The associated boundary conditions are

Ψ0(0) = 0, w0(0) = 0, (63)

dΨ0

dξ
(1) = 0,

1
μ

(
dw0(1)

dξ
−Ψ0(1)

)
+β4w0(1) = 0. (64)

The solution for w0(ξ ) is

w0(ξ ) =
ξ

(
pξ μ

(
ξ 2 −12μ

)
+4m0

(−ξ 2 +6μ +n0ξ
))

24μ
, (65)
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where

m0 =
pμ (24+β4 (5+12μ))

8(3+β4 +3β4μ)
, n0 =

3(12+β4)
24+5β4 +12β4μ

. (66)

The governing differential equations for w1(ξ ) and Ψ1(ξ ) are

d2w1(ξ )
dξ 2 − dΨ1(ξ )

dξ 2 = 0, (67)

d2Ψ1(ξ )
dξ 2 +

1
μ

(
dw1(ξ )

dξ
−Ψ1(ξ )

)
= 0, (68)

and the associated boundary conditions are

Ψ1(0) = 0, w1(0) = 0, (69)

dΨ1

dξ
(1) = 0,

1
μ

dw1(1)
dξ

− 1
μ

Ψ1(1)+β4w1(1)+w3
0(1) = 0. (70)

The solution for w1(ξ ) is

w1(ξ ) =
ξ

(
ξ 2 −3ξ −6μ

)
6μ

81μ (p+4Cμ)3

512(3+β4 +3β4μ)4 . (71)

The governing differential equations for w2(ξ ) and Ψ2(ξ ) are

d2w2(ξ )
dξ 2 − dΨ2(ξ )

dξ 2 = 0, (72)

d2Ψ2(ξ )
dξ 2 +

1
μ

(
dw2(ξ )

dξ
−Ψ2(ξ )

)
= 0, (73)

The associated boundary conditions are

Ψ1(0) = 0, w1(0) = 0, (74)

dΨ1

dξ
(1) = 0,

1
μ

dw2(1)
dξ

− 1
μ

Ψ2(1)+β4w2(1)+3w2
0(1)w1(1) = 0. (75)

The solution for w2(ξ ) is

w2(ξ ) = −ξ
(
ξ 2 −3ξ −6μ

)
6μ

2187μ (1+3μ)(p+4Cμ)5

32768(3+β4 +3β4μ)7 . (76)
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After substituting w0(ξ ), w1(ξ ), and w2(ξ ) back to equation (59), one has the
perturbation solution of the nonlinear system in term of w(ξ ).

By setting μ = 0, it yields to the perturbation solution for the Bernoulli-Euler beam

w(ξ ) =
β4 +12

16β4 +48
pξ 2 − 5β4 +24

48β4 +144
pξ 3 +

1
24

pξ 4

+ε
(

3p
8β4 +24

)3 (
− 3

2β4 +6
ξ 2 +

1
2β4 +6

ξ 3
)

+ε2
(

3p
8β4 +24

)5 (
3

3+β4

)2 (
1
2

ξ 2 − 1
6

ξ 3
)

+ . . .

(77)

4.1.4 Numerical analysis

To compare the developed exact solutions with the perturbation solutions, one de-
fines:

Error(1) = (|BP−BE |/BE)×100%,

Error(2) = (|TP−TE |/TE)×100%,

Error(3) = (|BE −TE |/TE)×100%,

Error(4) = (|BP−TE |/TE)×100%,

(78)

where TE is the exact solution based on the Timoshenko beam theory, equations
(53-54). TP is the perturbation solution based on the Timoshenko beam theory,
equations (59, 65, 71, and 76). BE is the exact solution based on the Bernoulli-
Euler beam theory, equations (57-58). BP is the perturbation solution based on the
Bernoulli-Euler beam theory, equation (77).

In the following numerical analysis, one considers a beam of square cross section
with width d and length 10d. The beam structure is constructed by the material
AISI 1020 (E: 210GPa; G: 80GPa, μ = 0.0025) and subjected to a dimensionless
uniformly distributed load p = 5.

In Tables 1-2, based on two different beam theories, the deflections of the beam
evaluated via two different approaches are presented. The errors are also evaluated.
It can be observed that the errors of the perturbation solutions increase as the non-
linear spring constant K2is increased. The perturbation solutions are not accurate
enough for a system of high nonlinearity. The conclusions are consistent with those
we are familiar with.

In figures 2-3, the influence of the nonlinear spring constant K2on Errors (1) ∼ (4)
at two different positions are shown. It can be observed that

a. The influence of the nonlinear spring constant K2on Error (3) is not significant.
Errors (3) at ξ = 1 are less than those at ξ = 0.1.
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Figure 2: Influence of the nonlinear spring constant k2 on Errors (1) ∼ (4) at ξ =
0.1
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Figure 3: Influence of the nonlinear spring constant k2 on Errors (1) ∼ (4) at ξ = 1
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Table 1: Exact and perturbation solutions for the nonlinear deflections of the
Bernoulli-Euler beam

Bernoulli-Euler beam (p = 5, k1= 1)
k2= 1 k2= 5 k2= 10

ξ BE BP Error (1) BE BP Error (1) BE BP Error (1)
(%) (%) (%)

0 0 0 0 0 0 0 0 0 0
0.1 0.009 0.009 0.00 0.008 0.009 12.50 0.008 0.012 50.00
0.5 0.166 0.166 0.00 0.149 0.165 10.74 0.137 0.225 64.23
1 0.447 0.447 0.00 0.393 0.446 13.49 0.356 0.636 78.65

Table 2: Exact and perturbation solutions for the nonlinear deflections of the Tim-
oshenko beam

Timoshenko beam (p = 5, k1= 1, μ= 0.0025)
k2= 1 k2= 5 k2= 10

ξ TE TP Error (2) TE TP Error (2) TE TP Error (2)
(%) (%) (%)

0 0 0 0 0 0 0 0 0 0
0.1 0.010 0.010 0.00 0.009 0.010 11.11 0.009 0.013 44.44
0.5 0.169 0.169 0.00 0.152 0.170 11.84 0.140 0.233 66.43
1 0.450 0.450 0.00 0.395 0.452 14.43 0.358 0.654 82.68

b. Independent of the beam theory employed, the errors of the perturbation so-
lutions, Errors (1) and (2), increase as the nonlinear spring constant K2 is in-
creased. Since the beam considered is a slender beam, the difference between
the two Errors is relatively small.

c. Error (4) will decrease to zero first, then, increase rapidly as the nonlinear spring
constant K2 is increased. The reflection of the curve at Error (4) = 0 is due to
the definition of the Error which is the absolute value of the difference of two
different solutions.

d. Errors (1, 2, 4) at ξ = 1 are greater than those at ξ = 0.1.

Figure 4 illustrates the influence of the slenderness ratio on the Errors (2) ∼ (4) at
ξ = 1 when k2 = 5. It can be observed that

a. The difference between the deflections evaluated via two different beam the-
ories, Error (3), decreases and approaches to zero as the slenderness ratio is
increased.
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Figure 4: Influence of the slenderness ratio s on Errors (2) ∼ (4) at ξ = 1 (k2 = 5)

b. As the slenderness ratio is increased, Error (2) decreases and Error (4) increases.
Finally, they will approach to the same value.

4.2 Clamped-nonlinear rotational spring supported Timoshenko beam subjected
to uniform distributed load

Consider the deflection of a beam subjected to uniformly distributed load P with
clamped one end and nonlinear rotational spring support at the other end. The
governing differential equations are the same as equations (61-62) and the boundary
conditions are
at ξ = 0:

Ψ = 0, w = 0, (79)

at ξ = 1:

dΨ(ξ )
dξ

−β3Ψ(ξ )− γ3Ψ3(ξ ) = 0 ,
1
μ

(
dw(ξ )

dξ
−Ψ(ξ )

)
= 0. (80)

One lets

Ψ(ξ ) = ϕ(ξ )+ f̄3ḡ3(ξ ), (81)

where

f̄3 = −γ3Ψ3(1), (82)
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Following the procedures revealed in the last section, one has

ϕ(ξ ) = m̄ξ + n̄ξ 2 +
1
6

pξ 3, (83)

w(ξ ) =
ξ

[−12ξγ3ψ3(1)+(−1+β3)(pξ 3−12pξ μ +12ξ m̄+8ξ 2n̄−48μ n̄)
]

24(−1+β3)
,

(84)

where m̄ = − 3p−2pβ3
6(−1+β3)

, n̄ = − p
2 and

g3(ξ ) =
ξ

β3 −1
. (85)

After substituting the equations (83) and (85) above back to equation (81), one has

Ψ(ξ ) = m̄ξ + n̄ξ 2 +
1
6

pξ 3 − γ3Ψ3(1)
ξ

β3−1
, (86)

w(ξ ) =
ξ (−12ξγ3Ψ3(1)+(−1+β3)(pξ 3 −12pξ μ +12ξ m̄+8ξ 2n̄−48μ n̄))

24(−1+β3)
,

(87)

where m̄ = − p(3−2β3)
6(−1+β3)

and n̄ = − p
2 .

Setting ξ = 1 in the equations (86-87), and Using the Cardano’s formula, one ob-
tains Ψ(1).

Ψ(1) =
Q

21/318γ3
− 21/36(−1+β3)

Q
, (88)

where

Q =
(
−972pγ2

3 +
√

5038848(−1+β3)
3 γ3

3 +944784p2γ4
3

)1/3

.

After substituting Ψ(1) back to equations (86-87), one obtains the exact solutions
of the problem.

For a Bernoulli-Euler beam, equations (87) is reduced to the following equation by
setting μ being zero

w(ξ ) = pξ 2
[(

2β3 −3
12β3−12

)
− 1

6
ξ +

1
24

ξ 2
]
+ γ3

(
dw(1)

dξ

)3 (
1

2−2β3
ξ 2

)
. (89)
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Setting ξ = 1 in the equation (89), and Using the Cardano’s formula, one obtains

dw(1)
dξ

=
Q

21/318γ3
− 21/36(−1+β3)

Q
. (90)

The solution form, equation (90), is the same as that of equation (88)

When γ3 = 0, the system turns to be a linear problem. Equation (89) is reduced to

w(ξ ) = pξ 2
[(

2β3 −3
12β3−12

)
− 1

6
ξ +

1
24

ξ 2
]
. (91)

5 Conclusions

In this paper, an analytic solution method is developed to find the exact static de-
flection of a Timoshenko beam with nonlinear elastic springs supports at ends for
the first time. The associated mathematic system is shifted and decomposed into
six linear differential equations and at most four algebra equations. After finding
the roots of the algebra equations, the exact solution of the nonlinear beam system
can be reconstructed. It is shown that the proposed method is valid for the problem
with strong nonlinearity. Examples and limiting studies are given to illustrate the
analysis. The exact solutions are compared with the perturbation solutions. The
errors of the perturbation solutions are evaluated. In the present study, the load-
ing considered is a distributed force only. However, it can be easily extended to
the problems with various kind of loading. It will be of interesting to extend the
proposed solution method to study different kinds of nonlinear problems.
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